
Saleh and Ali Iraqi Journal of Science, 2022, Vol. 63, No. 8, pp: 3652-3661

 DOI: 10.24996/ijs.2022.63.8.39

*Email: fatima.saleh1201@sc.uobaghdad.edu.iq

3652

Generating Streams of Random Key Based on Image Chaos and Genetic

Algorithm

Fatima Faiz Saleh

*
, Nada Hussein M. Ali

Department of Computer Science, College of Science, University of Baghdad, Baghdad, Iraq

Received: 9/9/2021 Accepted: 13/2/2022 Published: 30/8/2022

Abstract

 Today the Genetic Algorithm (GA) tops all the standard algorithms in solving

complex nonlinear equations based on the laws of nature. However, permute

convergence is considered one of the most significant drawbacks of GA, which is

known as increasing the number of iterations needed to achieve a global optimum.

To address this shortcoming, this paper proposes a new GA based on chaotic

systems. In GA processes, we use the logistic map and the Linear Feedback Shift

Register (LFSR) to generate chaotic values to use instead of each step requiring

random values. The Chaos Genetic Algorithm (CGA) avoids local convergence

more frequently than the traditional GA due to its diversity. The concept is using

chaotic sequences with LFSR to generate seed values for genetic algorithms, which

can generate keys with a high degree of randomness. The quality of key (generated

sequence) was tested using known standard tests, then a comparison table is

presented to show the increase in ratios in the test before and after applying GA,

demonstrating that the proposed system generates sequence (key) with high

randomness degree, The proposed system achieved an increase in the randomness

rate by four degrees on average and thus it solves the problem of repetition and

linearity, Finally, The system is built in the Java environment.

Keywords: Chaotic, Logistic Map, Linear Feedback Shift Register (LFSR), Genetic

Algorithm, National Institute of Standards and Technology (NIST).

والخوارزمية الجينية الفوضوية على الصورة الاعتمادمفاتيح عشوائية ب توليد تدفقات

محمد عليفاطمة فائز صالح، ندى حسين
 قدم عمهم الحاسبات ، كمية العمهم، جامعة بغداد، بغداد، العراق

 الخلاصة
اليهم جميع الخهارزميات القياسية في حل المعادلات الغير خطية (GA)تتردر الخهارزمية الجينية

أحد permute convergence المعقدة بالاعتماد عمى قهانين الطبيعة. ومع ذلك ، يعتبر التقارب المتغير
، والذي يُعرف بزيادة عدد التكرارات اللازمة لتحقيق المدتهى الأمثل لمحل. لمعالجة هذا (GA) اأهم عيهبه

هذا قائمة عمى الأنظمة الفهضهية. في (GA)لمخهارزمية الجينية رهر ، تقترح هذه الهرقة طريقة جديدة الق
وسجل تحهل التغذية المرتدة logistic map ، تدتخدم الخريطة المهجيدتية (GA) النظام الخهارزمية الجينية

، لإنذاء قيم فهضهية لاستخدامها بدلًا من كل Linear Feedback Shift Register (LFSR)الخطي
 The(CGA) . تتجنب خهارزمية الفهضى الجينية (GA)خطهة تتطمب قيمة عذهائية في الخهارزمية الجينية

Chaos Genetic Algorithm التقميدي بدبب الخهارزمية الجينية التقارب المحمي بذكل متكرر أكثر من

ISSN: 0067-2904

mailto:fatima.saleh1201@sc.uobaghdad.edu.iq

Saleh and Ali Iraqi Journal of Science, 2022, Vol. 63, No. 8, pp: 3652-3661

3653

، (GA)نذاء قيم أولية لمخهارزميات الجينيةلإ LFSRتدمدلات الفهضهية مع تنهعها. يتم اختبار استخدام ال
والتي يمكن أن تهلد مفاتيح بدرجة عالية من العذهائية ، ويتم اختبار جهدة المفتاح التدمدل المتهلد(باستخدام

ق الخهارزمية اختبارات قياسية معروفة وأضيف جدول مقارنة يظهر زيادة في الندب الاختبار قبل وبعد تطبي
مما يدل عمى أن حقق النظام المقترح زيادة في معدل العذهائية بمقدار أربع درجات كمتهسط ،(GA)الجينية

النظام المقترح يهلد تدمدلًا)مفتاحًا(بدرجة عالية من العذهائية وبهذا يحل مذكمة التكرار والخطية ، وأخيراً تم
 . JAVAبناء النظام باستخدام لغة جافا

1. Introduction

 Due to the continuous exchange of data over the Internet in different formats, such as text,

audio, image, and video, the need to protect this data from unauthorized access, illegal

copying and modification, has increased. The need increased to change the original data into

the unreadable format based on a key, this is known as “Cryptography”. A cryptographic

algorithm and a cryptographic key are the two main components of cryptography. Where the

algorithm Represent a mathematical function, while the key represents the parameter used by

this algorithm [1]. By increasing complexity in the key generation process, it becomes more

challenging for the cryptanalyst to discover the key. Thus, it becomes nearly impossible to

decrypt the cipher file and get the original file.

 Many types of studies have focused on chaotic cryptography in recent decades, pointing

out the existence of a robust relationship between cryptography and chaos, special chaotic

images. An image is a two-dimensional array of integer numbers, the height and width of

which are represented by rows and columns. Each element in this array represents a point of

colour known as a pixel, which is used to specify the size of an image. Each pixel in the

image is indexed by x and y coordinates and is stored as a 24-bit colour image or an 8-bit

grayscale image. The 24-bit images are spread across three bytes, each of which is an RGB

(red, green, blue) colour. The colours are created by combining these three RGB colours in

various properties [2].

Besides, the huge amount of data, which is included in the image, and the strong and complex

correlation between image pixels, led to the development of the traditional image encryption

algorithms, such as Advanced Encryption Standard (AES), Data Encryption Standard (DES),

International Data Encryption Algorithm (IDEA), etc.. Those algorithms, which have strong

computational security and employ plaintext as either a data stream or a block cipher, are

sometimes considered unsuitable for video or image encryption in real time. In addition, the

main advantage of using chaos stems from the observation that a chaotic image appears to

unauthorized users as noise. Second, some exciting properties, such as mixing and sensitivity

to initial conditions, can be linked to good cipher properties, such as confusion and diffusion

[3]. Furthermore, generating chaotic images is commonly low-cost with simple iterations,

making it suitable for the construction of stream ciphers. In addition to increasing the

complexity of key generation, and to get the infinity space of the one-time pad key we can

add GA and LFSR [4].

 This paper introduces a detailed description of generating random key streams based on

image chaos and a genetic algorithm that can be used to generate a strong cryptographic

key(s) with a high degree of randomness for symmetric cryptographic applications. It also

presents the study of the effectiveness of this approach by applying several randomness testes.

Moreover, comparisons have been made on the generated key. The results showed that this

final generated key provides more randomness than the proposed key without using chaotic

maps with genetic algorithm.

2. Literature review

 This section, presents the research of some prominent authors in the same field and

explains a short description of various randomness keys generation.

Saleh and Ali Iraqi Journal of Science, 2022, Vol. 63, No. 8, pp: 3652-3661

3654

Shakir M. Hussain and Hussein Al-Bahadili, 2016: The paper proposed a method of

symmetric ciphering applications that require a strong cryptographic key(s). Symmetric

ciphering applications require a strong cryptographic key(s). The Key-Based Random

Permutation (KBRP) method is fed with an initial private/secret key. It produces a

permutation key of size n, which is half the size of the cryptographic key required and creates

four vectors of size n representing the DNA bases of the private key (A, C, G, and T). The

DNA vectors are mathematically processed using a linear method to generate the

cryptographic key. Using the same permutation vector, the produced bases are re-permuted by

using the same permutation vector. This procedure can be performed indefinitely, with the

generated bases being re-permuted [1].

Ramen Pal and Somnath Mukhopadhyay, 2019: The paper proposed a method to find the

best seed value for a chaotic map actual programmed genetic algorithm evolutionary

algorithm Real Coded Genetic Algorithm (RCGA). The proposed system used a technique

divided into three-steps. First step, generate and encode an initial population of size n. where

n refers to the total number of chromosomes that is generated. The second step, the genetic

algorithm was adopted in one of these chaotic maps to optimize the system parameters. The

last step, based on these optimized system parameters used the respective chaotic map

equation to generate a random pseudorandom bit series. To ensure a high degree of

randomness of the generated bit sequence, the randomness test was done, using the most

common test NIST statistical test suit for randomness [5].

Afiqah Zahirah Zakaria, et.al, 2019: GA begins by generating a population of

chromosomes from random keys generated by a computer. The length of the key used then

equals the number of genes. Because of the DES and AES techniques, the key lengths used in

the proposed method are 48-bits and 128-bits, respectively. As a result, after generating the

population, it goes through genetic processes known as crossover then mutation, which cause

an increase in the total number of chromosomes. Finally, individuals based on their fitness are

chosen randomly to participate in genetic operations [5].

Yasser, Iet.al.2020: The paper presents a data encryption method for both confusion and

diffusion rounds by using novel perturbation. The chaotic structure was hybrid, where

multiple maps are combined for media encryption. Blended chaotic maps are used to generate

the control parameters for the permutation (shuffling) and diffusion (substitution) structures.

The method used guarantees maintaining great encryption quality reproduced by chaotic, and

key sensitivity, and low residual clarity[6].

3. The Linear Feedback Shift Register

The linear feedback shift register (LFSR) is a shift register that Depends on the previous state

of its linear function as an input. The exclusive-or (XOR) is used for single bits as a linear

feedback function, as shown in Figure 1. The main advantages of this type of pseudorandom

are its long period, ease of design and implementation, and good statistical properties of

binary sources [7].

Saleh and Ali Iraqi Journal of Science, 2022, Vol. 63, No. 8, pp: 3652-3661

3655

Figure 1-16-bit LFSR [8]

The LFSR is used in a variety of applications, including generating white noise, detection of

errors and correcting the codes, manipulation algorithms, communication systems,

compression algorithms, and cryptography systems. The LFSR's operation is completely

deterministic; thus, its output stream is entirely dependent on the LFSR's seed, the seed is the

initial state of LFSR. However, any register has a limited number of possible states, the LFSR

should eventually repeat its output cycle. When the feedback function is a primitive

polynomial, the maximum length of this repeated cycle is determined as in equation (2L– 1),

where L is the length of the LFSR. In general, determining the primitive polynomials for L-bit

LFSR is a difficult task [8].

4. Chaotic Map

Chaos is a type of restricted dynamic behaviour that occurs in nonlinear deterministic

systems. In this paper, we generate the chaotic sequence using logistic and LFSR. Chaotic

sequences have been shown to be simple and quick to generate and store, eliminating the need

for long sequence storage. Furthermore, by changing the initial condition, an infinite number

of different sequences can be generated. Moreover, these are deterministic and repeated

sequences. It is extremely sensitive to changes especially in the initial condition, and even a

minor change in the original initial condition can cause a significant change in system

behaviour. Despite its appearance, it occurs under deterministic conditions in a deterministic

nonlinear system.

One of the most important characteristics of chaotic systems is their sensitivity to the initial

state even if the two best-fit options were discovered via a series of iterations techniques are

relatively near [9]. In this study, the chaotic sequence was generated using logistic and LFSR.

Chaotic sequences have been shown to be simple and quick to generate and store, eliminating

the need for long sequence storage. Furthermore, by changing the initial condition, an infinite

number of different sequences can be generated.

Logistic Map: is one of the most fundamental types of chaotic mappings. This map is simply

a polynomial mapping, using the equation:

 Xn+1 = r Xn (1 – Xn) Xn ∈ (0, 1) (1)

Where, r refers to a control parameter, its range from (0 to 4). Clearly, X ∈ (0,1) on conditions

that the initial X0 ∈ (0,1) and X0 ∈{0.0, 0.25, 0.75, 0.5, 1.0}.When 3.57 < r ≤ 4, the system

has demonstrated a chaotic state. The value of r =3.99 was used for this study [9].

5. Genetic Algorithm

In Artificial Intelligence (AI), GA is a function that allows to stimulate the process of natural

selection. It could be used in the protein kinase C (PKC) field in a variety of ways, such as to

generate key(s), to improve the security of a standard encryption algorithm, or to create new

symmetric/asymmetric algorithms. The use of GA is investigated to find the best and most

Saleh and Ali Iraqi Journal of Science, 2022, Vol. 63, No. 8, pp: 3652-3661

3656

n
 t

im
es

randomized key for a cryptographic algorithm. The cryptanalyst would have a difficult time

deciphering the ciphertext due to the high level of difficulty involved in the key generation

process. In essence, a genetic algorithm entails three operators: selection, crossover, and

mutation, which are all applied to the generated population[10].

6. The Proposed Method Structure

The design of the proposed system is illustrated in Figure 2. It comprises of several stages

including a Logistic map, LFSR, and Genetic Algorithm. The following subsections

describe in detail the main phases of the proposed system construction, where n number of

keys will be generated and stored in directory.

Figure 2- diagram of the proposed system

Colure image

Apply logistic and LFSR
(Generate initial key)

Encrypted image
(Cipher image)

Mutation

Crossover

Calculation of fitness

Initial population generation

Dominance test

Sorting

Selection final key from

directory

C
h

ao
ti

c
im

ag
e

G
en

et
ic

 A
lg

o
ri

th
m

Selection

Saleh and Ali Iraqi Journal of Science, 2022, Vol. 63, No. 8, pp: 3652-3661

3657

As demonstrated in Figure 3, the algorithm depends on two stages:

6.1 Initial key value generation stage:

The first stage is composed of three steps for generating the final stream (value of initial key),

the last step represents the final stream obtained from this stage that is used in the second

stage later. Figure 3 and Algorithm 1, Algorithm 2, and Algorithm 3 respectively demonstrate

the necessary operation for key generation.

Figure 3-A flowchart for creating initial key in the proposed system

As shown in Figure 3, the generation of initial key depends on many Algorithms (1, 2, and 3):

 Create logistic series as in Algorithm 1

Algorithm (1): generate logistic sequence

 Input: r=3.99, x0=0.1, n= 652*652

Output: logistic Key

 Begin

Step 1: using logistic equation eq. (1)

Step 2: repeat step1 n times until became length of logistic KEY equal n

end

 Create LFSR Key as in Algorithm 2

Algorithm (2): LFSR Key generation

 Input: seed 16-bits,taps bits[16,14,13,11],n length of required LFSR-KEY

Output: LFSR-key

Start

Step 1: take last bit from right side to be first bit output as LFSR-KEY.

Step 2: shifting all bits in stream one step to RIGTH

Step 3: doing XOR operation between taps bits as next-bit

Step 4: INSERT next-bit in position 0 from stream

Step 5: repeat steps 2,3,4,5 until became length of LFSR-KEY equal n

end

Start

Create logistic key

End

Create LFSR key

XOR logistic key and LFSR

key

Initial key

Saleh and Ali Iraqi Journal of Science, 2022, Vol. 63, No. 8, pp: 3652-3661

3658

Algorithm (3): initial key generation

 Input: 16-bit LFSR-key, logistic Key

Output: initial key

Begin

Step 1: apply shift and exclusive or (XOR) between LFSR-key and Logistic Key

key to result Initial Key

end

6.2 Encrypting image by logistic and LFSR (Initial Key):

 The key obtained from previous stage will be used to encrypt the RGB (red, green, blue)

image of size (256, 256) in the current stage. The resulting chaos image is used later in

different methods, such as encryption algorithm, as in algorithm (4).

Algorithm (4): Encrypting image by Initial Key

Input: RGB image (height, width), initial key

Output: Cipher image

begin

Step 1: split colour image to three RGB channel

Step 2: binarized each RGB channels

Step 3: xor each channel from RGB channels with initial key

Step 4: decimalized each channel from RGB channel

Step 5: merge RGB channels to single colure encrypted image

end

6.3 Generating Final Randomness Key(s) by Applying Genetic Algorithm

At this stage, numerous random keys are generated that can be used to encrypt any type of

plaintext file to preserve privacy.

Which are all used during population generation as clarify in the following:

 Population Generation: The proposed algorithm generates a random initial set of 100

chromosomes, each containing 256 genes, by pulling decimal values from the set of encoded

images. Then convert each value to binary ignoring the zeros from the left, repeat this process

until we have 256 bits per 100 chromosomes.

 Crossover: The second step is to create a new child out of two randomly selected parents,

by pulling from encrypted image, Crossover Rate range is selected at 0.6 as optimal value

from crossover range [0,1][11] according to the following equation:

 (2)

Which gives the number of crossovers as 153. For each iteration, a different crossover point is

selected by pulling random value from encrypted image to perform a single point crossover.

Now the total population size becomes 253.

 Mutation: The next step is to perform mutation where a random chromosome is chosen

from the existing population and a mutation point is selected also based on the encoded image

by pulling random value to determine chromosome and mutation point and invert that bit. The

selected Mutation Rate is 0.001 as optimal value from mutation range [0,1][11] , according to

the following equation

Number of Mutation =

 (3)

Which gives the number of mutations to be performed as 2 chromosomes.

 Fitness Function Calculation

Many operations are executed in this function

Saleh and Ali Iraqi Journal of Science, 2022, Vol. 63, No. 8, pp: 3652-3661

3659

 Conversion: The binary valued chromosomes from the population of size 253 were

converted into the decimal number format.

 Fitness Value: The Fitness values calculate number of ones in key.

 Ordering: The chromosomes are then ordered in decreasing order based on their fitness

values.

 Dominance Testing: The topmost key from the sorted population is chosen, i.e. the fittest

value, and paired with the remaining chromosomes one at a time. The XOR function is

applied to all these pairs, and the hamming distance of each pair is calculated. The pair with

the greatest hamming distance is then chosen, and one of the chromosomes is chosen at

random from that final pair. This key is then saved in the repository, and the entire process is

repeated 15 times (Depending on the number of keys we want to generate), beginning with

the first step.

 Final Key Selection from Repository: The Dominance Testing is again applied to all the

100 keys generated and then the final key is selected for further data encryption and

decryption.
Algorithm (3): Generate Final Random Key

Input: encrypted image

Output: Random Key

Begin

Step 1: pull values from encrypted image and convert each value to binary continue until

get 256-bit

Step 2: repeat step 1 n times, n number of chromosomes in population

Step 3: calculate crossover number as equation(2)

Step 4: pull random value from encrypted image to determined index of twice

chromosomes

Step 5: pull random value from encrypted image to determined position of crossover

operation

Step 6: create new population first part from first chromosome and other from second

chromosome

Step 7: calculate mutation number as equation(3)

Step 8: pull random value from encrypted image to determined index of one chromosomes

Step 9: pull random value from encrypted image to determined position of mutation

operation

Step 10: edit same chromosome by revers single bit in mutation position between 0 or 1.

Step 11: for each chromosome calculate fitness value as equation (3).

Step 12: search about chromosome with maximum fitness.

Step 13: XOR the top chromosome with remainder chromosomes.

Step 14: calculate number of 1’s in each result from each xoring operation.

Step 15: select the pairs with maximum no. of 1’s as candidates.

Step 16: random selection between candidate’s pair to determined final randomness key.

Step 17: The same steps from [1-17] is iterated n times, where n: number of keys that we

want to create.

End

Saleh and Ali Iraqi Journal of Science, 2022, Vol. 63, No. 8, pp: 3652-3661

3660

Figure 4 represent visually the histogram analyses for cipher image. The most important thing

to remember here is that the distribution of the histogram diagram for the cipher image must

appear uniform and hide the redundancy of the plain image as possible as obviously the

difference in Figure 4.

(a) Lena plain

image

(b) Histogram of plain

image

(c) Cipher image

(d) Histogram of cipher

image

Figure 4- Histogram for both plain and cipher Images.

7. Results

The implementation of the proposed method was accomplished using the Java platform.

Random samples were created by encryption of colure image by a logistic map with r of 3.99,

x0 of 0.1 and 16 bit LFSR. After obtaining a cipher image, and applying the GA, a random

population of 100 chromosomes was generated to produce random samples. Various tests

were performed on the samples, and the results were positive.

After generating 100 chromosomes, the crossover function was used to increase the

population size to 253 chromosomes, with a crossover rate of 0.5. The mutation rate here was

set to 0.009. The number of ones in the generated key is used to calculate and analyse the

fitness values of the keys. Finally, the effectiveness of the proposed system can be seen in

table 4 by comparing the results of the NIST test before and after applying the GA.to validate

of randomness. The proposed work has been validated using the statistical test suite from the

National Institute of Standards and Technology (NIST). Five tests out of 15 different tests

were performed to determine the randomness for created keys of size 256 bits. The reason for

choosing those five tests is that these tests work correctly for a minimum length of the bit

sequence.

Saleh and Ali Iraqi Journal of Science, 2022, Vol. 63, No. 8, pp: 3652-3661

3661

Table 1-Statistical test results for encryption image (Before apply GA)
Test P values States

Frequency 0.169131 Success

Block Frequency 0.385534 Success

Runs Test 0.093373 Success

Cumulative Sums Forward 0.338189 Success

Cumulative Sums Backward 0.267215 Success

Table 2- Statistical test results for encryption image (After apply GA)
Test P values States

Frequency 0.707660 Success

Block Frequency 0.495036 Success

Runs Test 0.102115 Success

Cumulative Sums Forward 0.629223 Success

Cumulative Sums Backward 0.945889 Success

By comparing the results of each test in Table 1 and Table 2, the success of the five tests in

the second table is noticeable, and the results increased by an average of 4 degrees, which

proves the effectiveness of the proposed system.

8. Conclusion

In this paper, a new approach was proposed to generate the initial key using the concept of

chaotic image and LFSR, then GA was subsequently used to generate the final keys. The

originality of this method of this work has a flexible space due to: First, the addition of 16-bit

LFSR. Second, generated chaotic values rather than random values from using a logistic map.

Third the complexity of the work of the proposed system increased by using a genetic

algorithm, where a 16-bit LFSR stream was combined with a logistic map stream to create a

chaotic image, which was then utilized to pluck random values to run the GA and obtain the

random keys. Finally, randomness was tested by using NIST test groups where it was

observed that P-value was larger than or equal to 0.01 in all experiments.

In addition, the comparison between the NIST test results showed that this final generated key

provides more randomness degree than the proposed key without using chaotic maps with

genetic algorithm. Which determines that the new approach can generate random keys that are

difficult to predict. Hence, it can be concluded that the new proposed system is strong against

unauthorized attacks and is an improved part of a strong encryption system in the future.

References
[1] S. M. Hussain and H. Al-bahadili, “A DNA-Based Cryptographic Key Generation Algorithm,”

Int’l Conf. Secur. Manag. |, no. July, pp. 338–342, 2016.

[2] N. H. M. Ali and S. A. Abead, “Modified Blowfish Algorithm for Image Encryption using Multi

Keys based on five Sboxes,” Iraqi J. Sci., vol. 57, no. 4, pp. 2968–2978, 2016.

[3] H. S. Kwok and W. K. S. Tang, “A fast image encryption system based on chaotic maps with

finite precision representation,” Chaos, Solitons & Fractals, vol. 32, no. 4, pp. 1518–1529, May

2007, doi: 10.1016/J.CHAOS.2005.11.090.

[4] K. Faraoun, “Chaos-based key stream generator based on multiple maps combinations and its

application to images encryption,” Int. Arab J. Inf. Technol., vol. 7, no. 3, pp. 231–240, 2010.

[5] A. Z. Zakaria, S. N. Ramli, C. C. Wen, C. F. M. Foozy, P. Siva Shamala Palaniappan, and N. F.

Othman, “Enhancing the randomness of symmetric key using genetic algorithm,” Int. J. Innov.

Technol. Explor. Eng., vol. 8, no. 8, pp. 327–330, 2019.

[6] I. Yasser, M. A. Mohamed, A. S. Samra, and F. Khalifa, “A chaotic-based encryption/decryption

framework for secure multimedia communications,” Entropy, vol. 22, no. 11, pp. 1–23, 2020, doi:

10.3390/e22111253.

[7] S. Falih, “A Pseudorandom Binary Generator Based on Chaotic Linear Feedback Shift Register,”

Iraqi J. Electr. Electron. Eng., vol. 12, no. 2, pp. 155–160, 2016, doi: 10.37917/ijeee.12.2.5.

Saleh and Ali Iraqi Journal of Science, 2022, Vol. 63, No. 8, pp: 3652-3661

3662

[8] R. V Kshirsagar, “Design of 8 and 16 Bit LFSR with Maximum Length Feedback Polynomial &

Its pipelined Structure Using Verilog HDL,” pp. 3337–3339, 2014.

[9] M. Javidi and R. Hosseinpourfard, “Chaos genetic algorithm instead genetic algorithm,” Int. Arab

J. Inf. Technol., vol. 12, no. 2, pp. 163–168, 2015.

[10] S. Jawaid and A. Jamal, “Generating the Best Fit Key in Cryptography using Genetic Algorithm,”

Int. J. Comput. Appl., vol. 98, no. 20, pp. 33–39, 2014, doi: 10.5120/17301-7767.

[11] C. Johansson and G. Evertsson, “Optimizing genetic algorithms for time critical problems,”

Engineering, no. June, 2003, [Online]. Available: http://denver.bth.se/fou/cuppsats.nsf /all/

7f65a64 6dddb44a 7c1256d44003e9326/$file/Optimizing Genetic Algorithms for time critical

problems.pdf.

