

ISSN: 0067-2904

Quasi-Hadamard products of New Subclass of Analytic Functions of β Uniformly Univalent Function Defined by Salagean q-Differential Operator

O. M. Aljuboori*, Kassim A. Jassim

Received: 29/8/2021 Accepted: 12/10/2021 Published: 30/8/2022

Abstract

: In this paper, we show many properties and results on the Quasi-Hadamard products of a new subclass of analytic functions of β-Uniformly univalent function that is defined by the Salagean q-differential operator.

Keywords: Uniformly functions, Analytic function, Salagean type q-difference, , quasi-Hadamard products, Negative coefficients.

شبه حاصل ضرب هادمرد لفئة جديدة من الدوال التحليلية الاحادية التكافؤ المنتظمة من النوع بيتا q المعرفة بواسطة مؤثر سلاجيان التفاضلي من النوع

عمر ححم عبد * ، قاسم عبد الحميد جاسم
قسم الرياضيات ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق

> الخلاصة
> في هذه الدراسة بينا العديد من النتائج على شبه حاصل ضرب هادير الورد لفئة جديدة من الدوال التحليلية q الاحادية التكافؤ المنتظمة من النوع بيتا المعرفة بواسطة مؤثر سلاجيان التفاضلي من النوع

Introduction:

Let A be the class of analytic and univalent functions. A function in A has the form:

$$
\begin{equation*}
\mathrm{f}(\mathrm{z})=\mathrm{z}+\sum_{\mathrm{k}=2}^{\infty} \mathrm{a}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}}, \quad \mathrm{z} \in U=\{\mathrm{z}: \mathrm{z} \in \mathbb{C}:|\mathrm{z}|<1\} \tag{1}
\end{equation*}
$$

And let T be a subclass of . An element of T is defined by

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad, \quad a_{k} \geq 0 ; z \in U \tag{2}
\end{equation*}
$$

Consider $\mathrm{S}(\alpha)$ and $\mathrm{K}(\alpha)$ are two subclasses of A which are starlike and convex functions of order $\alpha, 0 \leq \alpha<1$ that satisfy

$$
\begin{equation*}
\mathrm{S}(\alpha)=\operatorname{Re}\left\{\frac{\mathrm{zf}(\mathrm{z})}{\mathrm{f}(\mathrm{z})}\right\}>\alpha, \quad(0 \leq \alpha<1) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
K(\alpha)=\operatorname{Re}\left\{1+\frac{\mathrm{zf}^{\prime \prime}(\mathrm{z})}{\mathrm{f}^{\prime}(\mathrm{z})}\right\}>\alpha, \quad(0 \leq \alpha<1) . \tag{4}
\end{equation*}
$$

[^0]It is easier to write $S(0)=S$ and $K(0)=K$ (see[1] and [2]) and from (3) and (4), we have $f(z) \in K(\alpha) \Leftrightarrow z f^{\prime}(z) \in S(\alpha)$.
Let's $\quad S^{*}(\alpha)=\mathrm{S}(\alpha) \cap T \quad$ and $\quad K^{*}(\alpha)=\mathrm{k}(\alpha) \cap T \quad$ [3] defined the following subclass of $S(K)$.
Circular arc γ contained in Y with center ζ is also in Y , the arc $\phi(\gamma)$ is convex (starlike) with respect to $\phi(\zeta)$. The class of uniformly convex (starlike) functions is denoted by UCV and UST, respectively (see [4]).
Definition 1 [4],[5],[6]. A function $\phi(\zeta) 2$ A is said to be in UCV, the class of uniformly convex functions, if it satisfies the following condition:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{\mathrm{zf}^{\prime \prime}(\mathrm{z})}{\mathrm{f}^{\prime}(\mathrm{z})}\right\} \geq\left|\frac{\mathrm{zf}^{\prime \prime}(\mathrm{z})}{\mathrm{f}^{\prime}(\mathrm{z})}\right| \quad \text { for } z \in U \tag{5}
\end{equation*}
$$

Further, afunction $\phi(\zeta) 2 \mathrm{~A}$ is said to be in UST , the class of uniformly starlike functions, if it satisfies the following condition:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})}\right\} \geq\left|\frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})}-1\right| \quad \text { for } z \in U \tag{6}
\end{equation*}
$$

The class UCV was introduced by Goodman [4] and Ma and Minda [5]. While the class UST was introduced by Goodman [6] and Ronning [7]. One can see that

$$
f(z) \in \text { UCV } \Leftrightarrow z f^{\prime}(z) \in \operatorname{UST}
$$

In [6],[8]. Ronning generalized the classes UCV and UST by introducing a parameter α by the following definition.
Definition 2 [6]. A function $\phi(\zeta) 2$ A is said to be in the class of uniformly starlike functions of order $\alpha, \operatorname{Y\Sigma T}(\alpha)$, if it satisfies the following condition:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})}-\alpha\right\} \geq\left|\frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})}-1\right| \quad(-1 \leq \alpha \leq 1 ; z \in U) \tag{7}
\end{equation*}
$$

Replacing ϕ in (7) by $z f^{\prime}(z)$, we have the condition:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{\mathrm{zf}^{\prime \prime}(\mathrm{z})}{\mathrm{f}^{\prime}(\mathrm{z})}-\alpha\right\} \geq\left|\frac{\mathrm{zf}^{\prime \prime}(\mathrm{z})}{\mathrm{f}^{\prime}(\mathrm{z})}\right| \quad(-1 \leq \alpha \leq 1 ; z \in U) \tag{8}
\end{equation*}
$$

This requires for the function $\phi(\zeta)$ to be in the class $\mathrm{YX}_{\zeta}(\alpha)$ of uniformly convex functions of order α, you can see that

$$
f(z) \in \operatorname{UCV}(\alpha) \Leftrightarrow z f^{\prime}(z) \in \operatorname{UST}(\alpha)
$$

Kanas and Wisniowska [9],[10]. introduced the classes of β-uniformly convex functions and β-uniformly starlike functions, $\beta-\mathrm{YX} \varsigma$ and $\beta-\mathrm{Y} \Sigma \mathrm{T} \quad(0 \leq \beta<1)$,respectively, by the following definition.

Definition 3: [9],[10]. A function $\phi(\zeta) 2 \mathrm{~A}$ is said to be in the class of β-uniformly starlike functions, $\beta-\mathrm{Y} \Sigma \mathrm{T}$, if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})}-\alpha\right\} \geq \beta\left|\frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})}-1\right| \quad(\beta \geq 0 ; z \in U) \tag{9}
\end{equation*}
$$

and $\phi(\zeta) 2 \mathrm{~A}$ is said to be in the class of β-uniformly convex functions, $\beta-\mathrm{Y} \mathrm{X}_{\varsigma}$, if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{\mathrm{zf}^{\prime \prime}(\mathrm{z})}{\mathrm{f}^{\prime}(\mathrm{z})}\right\} \geq \beta\left|\frac{\mathrm{zf}^{\prime \prime}(\mathrm{z})}{\mathrm{f}^{\prime}(\mathrm{z})}\right| \quad(\beta \geq 0 ; \mathrm{z} \in \mathrm{U}) \tag{10}
\end{equation*}
$$

The relationship between $\beta-\mathrm{Y} \Sigma \mathrm{T}$ and $\beta-\mathrm{YX} \varsigma$ is given by

$$
\mathrm{f}(\mathrm{z}) \in \beta-\mathrm{UCV} \Leftrightarrow \mathrm{zf}^{\prime}(\mathrm{z}) \in \beta-\mathrm{UST} .
$$

Let $f(z) \in A$, then

$$
\begin{gather*}
D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z f^{\prime}(z) \\
\vdots \\
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \tag{11}\\
\mathrm{z}+\sum_{\mathrm{k}=2}^{\infty} \mathrm{a}_{\mathrm{k}} \mathrm{k}^{\mathrm{n} \mathrm{z}^{\mathrm{k}}} \quad \mathrm{z} \in \mathrm{U}
\end{gather*}
$$

$=D^{\mathrm{n}} \mathrm{f}(\mathrm{z})$
where $\mathrm{U}=\{\mathrm{n} \in \mathrm{N}=\mathrm{N} \cup\{0\}, \mathrm{N}=1,2, \ldots\}$ and $\quad D^{n} f(z) \quad$ is introduced by salagean [11] , [12]
For $(0<q<1)$, the Jacksons $\mathrm{q}-$ derivative of a function $f(z) \in A$ is given by [13],[14],[15],[16],[17],[18],[19].

$$
D_{q} f(z)=\left\{\begin{array}{cc}
\frac{f(z)-f(q z)}{1-q(z)}, & \text { for } z \neq 0 \tag{12}\\
f^{\prime}(0), & \text { for } z=0
\end{array}\right.
$$

And $\quad D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. From (12), we have

$$
\begin{equation*}
D_{q} f(z)=1+\sum_{k=2}^{\infty} a_{k} \quad[k]_{q} z^{k-1} \tag{13}
\end{equation*}
$$

where, $\quad[\mathrm{k}]_{\mathrm{q}}=\frac{\left(1-q^{k}\right)}{1-q}(0<\mathrm{q}<1)$.
If $\mathrm{q} \rightarrow 1^{-}$, then $[\mathrm{k}]_{\mathrm{q}} \rightarrow k$. For a function $h(z)=z^{k}$, we obtain
$D_{q} h(z)=D_{q^{\prime}} z^{k}=\frac{\left(1-q^{k}\right)}{1-q} z^{k-1}=[k]_{q} z^{k-1}$
and

$$
\lim _{\mathrm{q} \rightarrow 1^{-}} \mathrm{D}_{\mathrm{q}} \mathrm{~h}(\mathrm{z})=\mathrm{kz}^{\mathrm{k}-1}=\mathrm{h}^{\prime}(\mathrm{z})
$$

Where h^{\prime} is the ordinary derivative of h.
For $f(z) \in A$, Govindaraj and Sivasubramanian [20],[21] defined the Salagean q-defference operator as follows:

$$
\begin{gather*}
D_{q}^{0} f(z)=f(z) \\
D_{q}^{1} f(z)=\mathrm{zD}_{\mathrm{q}} \mathrm{f}(\mathrm{z}) \\
\vdots \\
=\mathrm{z}+\sum_{\mathrm{k}=2}^{\infty} \mathrm{a}_{\mathrm{k}} \quad[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}} \mathrm{z}^{\mathrm{k}} \quad(\mathrm{n} \in \mathrm{~N}, 0<\mathrm{q}<1, \mathrm{z} \in \mathrm{U}) . \tag{15}
\end{gather*}
$$

For $\quad \beta \geq 0,-1 \leq \alpha<1,0<\mathrm{q}<1$ and $n \in N$, which is denoted by $\mathrm{A}_{q, n, k}(\alpha, \beta)$, the subclass of A that satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D_{q}\left(D_{q}^{n} f(z)\right)\right)^{\prime}}{D_{q}{ }^{n} f(z)}-\alpha\right\}>\beta\left|\frac{z\left(D_{q}\left(D_{q}^{n} f(z)\right)\right)^{\prime}}{D_{q}{ }^{n} f(z)}-1\right|, \quad \mathrm{z} \in \mathrm{U} \tag{16}
\end{equation*}
$$

Is defined the class $A_{q}(\mathrm{k}, \mathrm{n}, \alpha, \beta)$ by

$$
A_{q}(\mathrm{k}, \mathrm{n}, \alpha, \beta)=\mathrm{A}_{q, n, k}(\alpha, \beta) \cap T
$$

Let $f_{l}(z)(l=1,2, \ldots \ldots . h)$ be given by

$$
\begin{equation*}
f_{l}(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{k, l} \geq 0\right) \tag{17}
\end{equation*}
$$

The quasi-Hadamard product of these functions is defined by Kuang et al. [22] and Owa [23] as follows:

$$
\begin{equation*}
\left(f_{1} * f_{2} * \ldots * f_{h}\right)(z)=z-\sum_{k=2}^{\infty}\left(\prod_{l=1}^{h} a_{k, l}\right) z^{k} \tag{18}
\end{equation*}
$$

In this paper, we obtain the quasi-Hadamard product results for $f(z) \in A_{q}(\mathrm{k}, \mathrm{n}, \alpha, \beta)$
2. Quasi-Hadamard products

Theorem 1. A function $f(z) \in A_{q}(\mathrm{k}, \mathrm{n}, \alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{\mathrm{k}=2}^{\infty}[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-(\alpha+\beta)\right\} \mathrm{a}_{\mathrm{k}} \leq(1-\alpha) \tag{19}
\end{equation*}
$$

Proof. If the equation (17) holds, then
$\beta\left|\frac{z\left(D_{q}\left(D_{q}^{n} f(z)\right)\right)^{\prime}}{D_{q}^{n} f(z)}-1\right|-\operatorname{Re}\left\{\frac{z\left(D_{q}\left(D_{q}^{n} f(z)\right)\right)^{\prime}}{D_{q}^{n} f(z)}-\alpha\right\} \leq 1-\alpha$.
We have

$$
\begin{gathered}
\beta\left|\frac{z\left(D_{q}\left(D_{q}^{n} f(z)\right)\right)^{\prime}}{D_{q}^{n} f(z)}-1\right|-\operatorname{Re}\left\{\frac{z\left(D_{q}\left(D_{q}^{n} f(z)\right)\right)^{\prime}}{D_{q}^{n} f(z)}-\alpha\right\} \\
\leq \frac{(1+\beta) \sum_{\mathrm{k}=2}^{\infty}[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}-1\right\} \mathrm{a}_{\mathrm{k}} z^{k-1}}{1-\sum_{\mathrm{k}=2}^{\infty}[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} z^{k-1}} \\
\leq \frac{(1+\beta) \sum_{\mathrm{k}=2}^{\infty}[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}-1\right\} \mathrm{a}_{\mathrm{k}}}{1-\sum_{\mathrm{k}=2}^{\infty}[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}} \leq 1-\alpha .
\end{gathered}
$$

Hence, $f(z) \in A_{q}(\mathrm{k}, \mathrm{n}, \alpha, \beta)$,
Conversely, let $f(z) \in A_{q}(\mathrm{k}, \mathrm{n}, \alpha, \beta)$, then

$$
\left.\operatorname{Re}\left\{\frac{1-\sum_{\mathrm{k}=2}^{\infty}[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}[\mathrm{k}]_{\mathrm{q}} \mathrm{a}_{\mathrm{k}} \mathrm{kz}{ }^{\mathrm{k}-1}}{1-\sum_{\mathrm{k}=2}^{\infty}[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}-1}}-\alpha\right\} \geq \beta \right\rvert\, \frac{\sum_{\mathrm{k}=2}^{\infty}[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}-1\right\}_{\mathrm{a}_{\mathrm{k}} z^{\mathrm{k}-1}}^{1-\sum_{\mathrm{k}=2}^{\infty}[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}-1}} \mid}{}
$$

We get the desired inequality by letting $z \rightarrow 1^{-}$move along the real axis (19). The proof is completed.
Theorem 2: If $f_{l}(z) \in A_{q}\left(k, n, \alpha_{l}, \beta\right)$ for each $l=1,2, \ldots, h$, then
$\left(f_{1} * f_{2} * \ldots * f_{h}\right)(z) \in A_{q}(\mathrm{k}, \mathrm{n}, \delta, \beta)$, where

$$
\begin{equation*}
\delta=1-\frac{\left\{2[2]_{\mathrm{q}}(1+\beta)-\beta\right\} \prod_{\mathrm{l}=1}^{\mathrm{h}}\left(1-\alpha_{\mathrm{l}}\right)}{\prod_{\mathrm{l}=1}^{2}\left\{2[2]_{\mathrm{q}}(1+\beta)-\left(\alpha_{1}+\beta\right)\right\}} \tag{20}
\end{equation*}
$$

This result is sharp for the functions.

$$
\begin{equation*}
f_{l}(z)=z-\frac{\left(1-\alpha_{l}\right)}{[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-\left(\alpha_{l}+\beta\right)\right\}} z^{k} \quad(k \geq 2, l=1,2, \ldots h) . \tag{21}
\end{equation*}
$$

Proof: For $h=1$, we have that $\delta=\alpha_{1}$. For $h=2$, Theorem 1 gives

$$
\begin{equation*}
\sum_{\mathrm{k}=2}^{\infty} \frac{[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}}{\left(1-\alpha_{l}\right)} \mathrm{a}_{\mathrm{k}, l} \leq 1 \quad(l=1,2) \tag{22}
\end{equation*}
$$

Note that from (22), we have

$$
\begin{equation*}
\sum_{\mathrm{k}=2}^{\infty}[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}} \sqrt{\prod_{l=1}^{2} \frac{\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}}{\left(1-\alpha_{l}\right)} \mathrm{a}_{\mathrm{k}, l}} \leq 1 \quad(l=1,2) \tag{23}
\end{equation*}
$$

When $\mathrm{h}=2$, we have

$$
\begin{equation*}
\sum_{\mathrm{k}=2}^{\infty} \frac{[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-(\delta+\beta)\right\}}{(1-\delta)} \quad a_{\mathrm{k}, 1} a_{\mathrm{k}, 2} \leq 1 \tag{24}
\end{equation*}
$$

Or, such that
$\frac{\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-(\delta+\beta)\right\}}{(1-\delta)} \sqrt{\mathrm{a}_{\mathrm{k}, 1} \mathrm{a}_{\mathrm{k}, 2}} \leq \sqrt{\prod_{l=1}^{2} \frac{\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}}{\left(1-\alpha_{l}\right)} \mathrm{a}_{\mathrm{k}, l}} \quad(k \geq 2)$
Further, by using (23), we need the largest δ such that

$$
\frac{\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-(\delta+\beta)\right\}}{(1-\delta)} \leq \prod_{l=1}^{2} \frac{\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}}{\left(1-\alpha_{l}\right)} \mathrm{a}_{\mathrm{k}, l} \quad(k \geq 2)
$$

Which is equivalent to

$$
\begin{gathered}
\delta \leq\left(\frac{\prod_{l=1}^{2}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}-\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\beta\right\} \prod_{l=1}^{2}\left(1-\alpha_{l}\right)}{\prod_{l=1}^{2}\left(1-\alpha_{l}\right)}\right) \\
\times\left(\frac{\prod_{l=1}^{2}\left(1-\alpha_{l}\right)}{\prod_{l=1}^{2}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}}\right),
\end{gathered}
$$

That is,

$$
\delta \leq \frac{\prod_{l=1}^{2}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}-\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\beta\right\} \prod_{l=1}^{2}\left(1-\alpha_{l}\right)}{\prod_{l=1}^{2}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}}
$$

Or, equivalently that

$$
\delta \leq 1-\frac{\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\beta\right\} \prod_{\mathrm{l}=1}^{2}\left(1-\alpha_{\mathrm{l}}\right)}{\prod_{\mathrm{l}=1}^{2}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}} . \quad(\mathrm{k} \geq 2)
$$

If we define the function $\Phi(k)$ by

$$
\Phi(k)=1-\frac{\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\beta\right\} \prod_{l=1}^{2}\left(1-\alpha_{l}\right)}{\prod_{l=1}^{2}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}} . \quad(k \geq 2)
$$

Then, we see that $\Phi(k)$ for ≥ 2. This implies that

$$
\delta=\Phi(2)=1-\frac{\left\{2[2]_{\mathrm{q}}(1+\beta)-\beta\right\} \prod_{l=1}^{2}\left(1-\alpha_{l}\right)}{\prod_{l=1}^{2}\left\{2[2]_{\mathrm{q}}(1+\beta)-\left(\alpha_{l}+\beta\right)\right\}} j
$$

When $h=2$ the result is also correct for any positive integerh. Then, we have
$\left(f_{1} * f_{2} * \ldots * f_{h} * f_{h+1}\right)(z) \in A_{q}(k, n, v, \beta)$, where

$$
\begin{equation*}
v=1-\frac{\left\{2[2]_{\mathrm{q}}(1+\beta)-\beta\right\}(1-\delta)\left(1-\alpha_{h+1}\right)}{\left.\left\{2[2]_{\mathrm{q}}(1+\beta)-(\delta+\beta)\right\}\left\{2[2]_{\mathrm{q}}(1+\beta)-\left(\alpha_{h+1}+\beta\right)\right\}\right)} . \tag{25}
\end{equation*}
$$

Where δ is given by (20). It follows from (25) that

$$
\begin{equation*}
v=1-\frac{\prod_{l=1}^{h+1}\left\{2[2]_{\mathrm{q}}(1+\beta)-\beta\right\}\left(1-\alpha_{l}\right)}{\prod_{l=1}^{h+1}\left\{2[2]_{\mathrm{q}}(1+\beta)-\left(\alpha_{l}+\beta\right)\right\}} \tag{26}
\end{equation*}
$$

So, the result is correct for $h+1$. Therefore, by using the mathematical induction, we conclude that the result is true for any positive integer h
Finally, we take $f_{l}(z)$ that is given by (21), then we see that

$$
\begin{aligned}
\left(f_{1} * f_{2} * \ldots * f_{h}\right)(z) & =\mathrm{z}-\left\{\prod_{1=1}^{\mathrm{h}}\left(\frac{1-\alpha_{1}}{[2]_{\mathrm{q}}^{\mathrm{n}}\left\{2[2]_{\mathrm{q}}(1+\beta)-\left(\alpha_{1}+\beta\right)\right\}}\right)\right\} \mathrm{z}^{2} \\
& =z-\Psi_{2} z^{2} .
\end{aligned}
$$

Where

$$
\psi_{2}=\prod_{l=1}^{h}\left(\frac{1-\alpha_{l}}{[2]_{\mathrm{q}}^{\mathrm{n}}\left\{2[2]_{\mathrm{q}}(1+\beta)-\left(\alpha_{l}+\beta\right)\right\}}\right)
$$

Thus, we know that

$$
\sum_{\mathrm{k}=2}^{\infty} \frac{[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-(\delta+\beta)\right\}}{(1-\delta)} \cdot \psi_{\mathrm{k}}
$$

Then we have
$\frac{[2]_{\mathrm{q}}^{\mathrm{n}}\left\{2[2]_{\mathrm{q}}(1+\beta)-(\delta+\beta)\right\}}{(1-\delta)} \cdot \prod_{l=1}^{h}\left(\frac{1-\alpha_{l}}{[2]_{\mathrm{q}}^{\mathrm{n}}\left\{2[2]_{\mathrm{q}}(1+\beta)-\left(\alpha_{l}+\beta\right)\right\}}\right)=1$
Consequently, the result is sharp for the functions $f_{l}(z)$ that are given by (21).
Putting $h=2$ and $\alpha_{l}=\alpha$ in Theorem 2, then we have the following corollary
Corollary 1: If $f_{l}(z) \in A_{q}\left(\mathrm{k}, \mathrm{n}, \alpha_{l}, \beta\right)(l=1,2)$, then $\left(f_{1} * f_{2}\right)(z) A_{q}(\mathrm{k}, \mathrm{n}, \delta, \beta)$, where

$$
\delta=1-\frac{\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-\beta\right\}(1-\alpha)^{2}}{\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-(\alpha+\beta)\right\}^{2}} \quad(k \geq 2)
$$

The end result is sharp for the functions
$f_{l}(z)=z-\frac{1-\alpha}{[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-(\alpha+\beta)\right\}} z^{k} \quad(k \geq 2, l=1,2)$.
Corollary 2: Let $f_{l}(z) \in A_{q}(\mathrm{k}, \mathrm{n}, \alpha, \beta)$ for each $(l=1,2 \ldots h)$, then $\left(f_{1} * f_{2} * \ldots * f_{h}\right)(z) \in A_{q}(\mathrm{k}, \mathrm{n}, \delta, \beta)$, where

$$
\begin{equation*}
\delta=1-\frac{\left\{k[k]_{q}(1+\beta)-\beta\right\}(1-\alpha)^{h}}{\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-(\alpha+\beta)\right\}^{h}} \quad(k \geq 2) \tag{28}
\end{equation*}
$$

Theorem 3: Let $f_{l}(z) \in A_{q}\left(\mathrm{k}, \mathrm{n}, \alpha_{l}, \beta\right)$ for each $l=1,2 \ldots h$ and suppose that

$$
\begin{equation*}
F(z)=z-\sum_{k=2}^{\infty}\left(\sum_{l=1}^{h} a_{k, l}^{t}\right) z^{k} \quad(t>1, k \geq 2) \tag{29}
\end{equation*}
$$

Then, $F(z) \in A_{q}\left(\mathrm{k}, \mathrm{n}, \gamma_{h}, \beta\right)$, where

$$
\begin{equation*}
\gamma_{\mathrm{h}}=1-\frac{\mathrm{h}(1+\beta)\left(1-\alpha_{1}\right)^{\mathrm{t}}[2]_{\mathrm{q}}^{\mathrm{n}}\left[2[2]_{\mathrm{q}}+1\right]}{[2]_{\mathrm{q}}^{\mathrm{n}}\left\{2[2]_{\mathrm{q}}(1+\beta)-\left(\alpha_{1}+\beta\right)\right\}^{\mathrm{t}}-\mathrm{h}\left(1-\alpha_{1}\right)^{\mathrm{t}}} \tag{30}
\end{equation*}
$$

The result is sharp for the functions $f_{l}(z)(l=1,2, \ldots, h)$ that are given by (21).
Proof: Since $f_{l}(z) \in A_{q}\left(\mathrm{k}, \mathrm{n}, \alpha_{l}, \beta\right)$, by (19), we obtain

$$
\sum_{k=2}^{\infty} \frac{[k]_{q}^{n}\left\{(1+\beta) k[k]_{q}-\left(\alpha_{l}+\beta\right)\right\}}{\left(1-\alpha_{l}\right)} a_{k, l} \leq 1 \quad(l=1,2, \ldots h)
$$

By virtue of the Cauchy-Schwarz inequality, we get

$$
\begin{align*}
& \sum_{\mathrm{k}=2}^{\infty}\left[\frac{[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}}{\left(1-\alpha_{l}\right)}\right]^{t} a_{k, l}^{t} \\
& \leq\left(\sum_{\mathrm{k}=2}^{\infty} \frac{[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}}{\left(1-\alpha_{l}\right)} a_{k, l}\right)^{t} \leq 1 . \tag{31}
\end{align*}
$$

It follows from (31) that

$$
\sum_{k=2}^{\infty}\left[\frac{1}{h}\left(\sum_{\mathrm{k}=2}^{\infty} \frac{[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}}{\left(1-\alpha_{l}\right)}\right)^{t} a_{k, l}^{t}\right] \leq 1
$$

By setting

$$
\alpha=\min _{1 \leq l \leq h}\left\{\alpha_{l}\right\} .
$$

Therefore, to prove our result we need to find the largest γ_{h} such that

$$
\sum_{k=2}^{\infty} \frac{[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\gamma_{h}+\beta\right)\right\}}{\left(1-\gamma_{h}\right)}\left(\sum_{l=1}^{h} a_{k, l}^{t}\right) \leq 1 . \quad(t>1, k \geq 2)
$$

That is that

$$
\frac{[k]_{q}^{n}\left\{(1+\beta) k[k]_{q}-\left(\gamma_{h}+\beta\right)\right\}}{\left(1-\gamma_{h}\right)} \leq \frac{1}{h}\left(\sum_{k=2}^{\infty} \frac{[k]_{q}^{n}\left\{(1+\beta) k[k]_{q}-\left(\alpha_{l}+\beta\right)\right\}}{\left(1-\alpha_{l}\right)}\right)^{t}
$$

Which leads to

$$
\gamma_{h} \leq 1-\frac{h(1+\beta)\left(1-\alpha_{l}\right)^{t}\left[[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{k[\mathrm{k}]_{\mathrm{q}}+1\right\}\right]}{\left[[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}\right]^{t}-h\left(1-\alpha_{l}\right)^{t}}
$$

Now, let

$$
\Psi(k)=1-\frac{h(1+\beta)\left(1-\alpha_{l}\right)^{t}\left[[k]_{q}^{n}\left\{k[k]_{q}+1\right\}\right]}{\left[[k]_{q}^{n}\left\{(1+\beta) k[k]_{q}-\left(\alpha_{l}+\beta\right)\right\}\right]^{t}-h\left(1-\alpha_{l}\right)^{t}}
$$

Since $\Psi(\mathrm{k})$ is an increasing function of $(k \in N)$, then we get

$$
\gamma_{h}=\Psi(2)=1-\frac{h(1+\beta)\left(1-\alpha_{l}\right)^{t}\left[[2]_{\mathrm{q}}^{\mathrm{n}}\left\{2[2]_{\mathrm{q}}+1\right\}\right]}{\left[[2]_{\mathrm{q}}^{\mathrm{n}}\left\{(1+\beta) 2[2]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}\right]^{t}-h\left(1-\alpha_{l}\right)^{t}}
$$

So we can see that $0 \leq \gamma_{h}<1$. The result is sharp for the functions
$f_{l}(z)(l=1,2, \ldots, h)$ that are given by (21). The proof of Theorem 4 is thus completed. If we put $\mathrm{t}=2$ and $\alpha_{l}=\alpha(l=1,2, \ldots, h)$ in Theorem 3, we obtain the following result.
Corollary 3 : Let $f_{l}(z) \in A_{q}(\mathrm{k}, \mathrm{n}, \alpha, \beta)$ for each $(l=1,2 \ldots h)$ and suppose that

$$
\begin{equation*}
F(z)=z-\sum_{k=2}^{\infty}\left(\sum_{l=1}^{h} a_{k, l}^{2}\right) z^{k} \quad(k \geq 2) \tag{32}
\end{equation*}
$$

Then, $F(z) \in A_{q}\left(\mathrm{k}, \mathrm{n}, \alpha, \gamma_{h}, \beta\right)$ where

$$
\begin{equation*}
\gamma_{h}=1-\frac{h(1+\beta)\left(1-\alpha_{l}\right)^{2}\left[[2]_{\mathrm{q}}^{\mathrm{n}}\left\{2[2]_{\mathrm{q}}+1\right\}\right]}{\left[[2]_{\mathrm{q}}^{\mathrm{n}}\left\{(1+\beta) 2[2]_{\mathrm{q}}-\left(\alpha_{l}+\beta\right)\right\}\right]^{2}-h\left(1-\alpha_{l}\right)^{2}} \tag{33}
\end{equation*}
$$

The result is sharp for the functions $f_{l}(z)(l=1,2, \ldots, h)$ that are given by (21).
Theorem 4: Let $f_{l}(z) \in A_{q}\left(\mathrm{k}, \mathrm{n}, \alpha_{l}, \beta\right)$ for each $(l=1,2, \ldots, h)$ and suppose that the functions $g_{s}(z)$ are defined by

$$
\begin{equation*}
g_{s}(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k} \quad\left(b_{k} \geq 0, \mathrm{k} \geq 2\right) \tag{34}
\end{equation*}
$$

in the class $A_{q}\left(\mathrm{k}, \mathrm{n}, \alpha_{s}, \beta\right)(s=1,2, \ldots, t)$. Then
$\left(f_{1} * f_{2} * \ldots * f_{h} * g_{1} * g_{2} * \ldots * g_{t}\right)(z) \in A_{q}(k, n, \psi, \beta)$, where

$$
\psi=1-
$$

$$
\begin{equation*}
\frac{\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-\beta\right\} \prod_{l=1}^{h}\left(1-\alpha_{l}\right) \prod_{s=1}^{t}\left(1-\alpha_{s}\right)}{\prod_{l=1}^{h}\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-\left(\alpha_{l}+\beta\right)\right\} \prod_{s=1}^{t}\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-\left(\alpha_{s}+\beta\right)\right\}} . \tag{35}
\end{equation*}
$$

The end result is sharp for $f_{l}(z)(l=1,2, \ldots, h)$ that are provided by (21) and $g_{s}(z)$ that are given by

$$
\begin{equation*}
g_{s}(z)=z-\frac{1-\alpha_{s}}{[\mathrm{k}]_{\mathrm{q}}^{\mathrm{n}}\left\{(1+\beta) \mathrm{k}[\mathrm{k}]_{\mathrm{q}}-\left(\alpha_{s}+\beta\right)\right\}} z^{k} \quad(k \geq 2, s=1,2, \ldots t) . \tag{36}
\end{equation*}
$$

Proof : From (20), we get that if $f(z) \in A_{q}(\mathrm{k}, \mathrm{n}, \delta, \beta)$ and $g_{s}(z) \in A_{q}(k, n, \mu, \beta)$, then $(f * g)(z) \in A_{q}(\mathrm{k}, \mathrm{n}, \psi, \beta)$, where

$$
\psi=1-\frac{\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-\beta\right\}(1-\delta)(1-\mu)}{\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-(\delta+\beta\}\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-(\mu+\beta)\right\}\right.}
$$

Since Theorem 2 leads to $\left(f_{1} * f_{2} * \ldots * f_{h}\right)(z) \in A_{q}(k, n, \delta, \beta)$, where δ is defined by (20) and $\left(g_{1} * g_{2} * \ldots * g_{t}\right)(z) \in A_{q}(k, n, \mu, \beta)$, with

$$
\begin{equation*}
\mu=1-\frac{\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-\beta\right\} \prod_{s=1}^{t}\left(1-\alpha_{s}\right)}{\prod_{s=1}^{t}\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-\left(\alpha_{s}+\beta\right)\right\}} \tag{37}
\end{equation*}
$$

Then, we have $\left(f_{1} * f_{2} * \ldots * f_{h} * g_{1} * g_{2} * \ldots * g_{t}\right)(z) \in A_{q}(k, n, \psi, \beta)$, where ψ is given by (35), this completes the proof of theorem 4.
Letting $\alpha_{l}=\alpha(l=1,2, \ldots, h)$ and $\alpha_{s}=\alpha(l=1,2, \ldots, t)$ in Theorem 4, we obtain the following corollary
Corollary 4: Let the functions $f_{l}(z) \in A_{q}(\mathrm{k}, \mathrm{n}, \alpha, \beta)(l=1,2, \ldots h)$ and the functions $g_{s}(z)$ that are defined by (36) in the class $A_{q}(\mathrm{k}, \mathrm{n}, \alpha, \beta)$. Then, we have

$$
\begin{gather*}
\left(f_{1} * f_{2} * \ldots * f_{h} * g_{1} * g_{2} * \ldots * g_{t}\right)(z) \in A_{q}(k, n, \psi, \beta), \text { where } \psi \\
\psi=1-\frac{\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-\beta\right\}(1-\alpha)^{h+t}}{\left\{\mathrm{k}[\mathrm{k}]_{\mathrm{q}}(1+\beta)-(\alpha+\beta)\right\}^{h+t}} \tag{38}
\end{gather*}
$$

Conclusions

In this work, properties and results on the Quasi-Hadamard products have been shown . This is done for a new subclass of analytic functions of β-Uniformly univalent function that is defined by the Salagean q-differential operator.

References

[1] M. S. Robertson, "On the theory of univalent functions", Ann. Math., no 37, pp 374-408, 1936.
[2] H.M. Srivastava and S. Owa (Eds.), "Current Topics in Analytic Function Theory", World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
[3] H. Silverman, "Univalent functions with negative coefficients", Proc. Amer. Math. Soc., vol 51, no. 1, pp 109-116, 1975.
[4] A. W. Goodman, "On uniformly convex functions", Ann. Polon. Math., no 56, pp 87 - 92, 1991.
[5] W. Ma and D. Minda, "Uniformly convex functions", Ann. Polon. Math., no 57, pp 165 - 175, 1997.
[6] F. Ronning, "On starlike functions associated with the parabolic regions", Ann. Marae CurieSklodowska sect. A, vol 45, no. 14, pp 117-122, 1991.
[7] A. W. Goodman, "On uniformly starlike functions", J. Math. Anal. Appl., no 155 pp 364 - 370, 1991.
[8] F. Ronning, "Uniformly convex functions and a corresponding class of starlike functions", Proc. Amer. Math. Soc., no 118, pp 189-196, 1993.
[9] S. Kanas and A. Wisniowska, "Conic regions and k-uniformly convexity", J. Comput. Appl. Math., no 104, pp 327-336, 1999.
[10] S. Kanas and A. Wisniowska, "Conic regions and starlike functions", Rev. Roumaine Math. Pures Appl., vol 45, no 4,pp 647-657, 2000.
[11] G. Salagean, "Subclasses of univalent functions", Lecture note in Math., Springer-Verlag, no 1013, pp 362 - 372, 1983.
[12] M. K. Aouf ,"Neighborhoods of certain classes of analytic functions with negative coefficients", Internat. J. Math. Math. Sci. Article ID38258, 1-6, 2006.
[13] M. H. Annby and Z. S. Mansour, "q-Fractional Calculas Equations", Lecture Noes in Math., 2056, Springer-Verlag Berlin Heidelberg, 2012.
[14] M. K. Aouf, H. E. Darwish and G. S. Salagean, "On a generalization of starlike functions with negative coefficients", Romania, Math. (Cluj) 43, vol 66 no 1. pp 3-10, 2001.
[15] A. Aral, V. Gupta and R. P. Agarwal, "Applications of q-Calculas in Operator Theory, Springer", New York, NY, USA, 2013.
[16] G. Gasper and M. Rahman, "Basic hypergeometric series", Combridge Univ. Press, Cambrididge, U. K., 1990.
[17] F. H. Jackson, "On q-functions and a certain difference operator", Transactions of the Royal Society of Edinburgh, no 46, pp 253-281, 1908.
[18] T. M. Seoudy and M. K. Aouf, "Convolution properties for certain classes of analytic functions defined by q-derivative operator", Abstract Appl. Anal., pp 1-7, 2014.
[19] T. M. Seoudy and M. K. Aouf," Coefficient estimates of new classes of q-convex functions of complex order", J. Math. Inequal, vol 10, no.1, pp 135-145, 2016.
[20] M. Govindaraj and S. Sivasubramanian, "On a class of analytic function related to conic domains involving q-calculus", Analysis Math., vol 43, no. 5, pp 475-487, 2017.
[21] G. Murugusundaramoorthy and K. Vijaya, "Subclasses of biunivalent functions defined by Salagean type q- difference operator", Math. CV vol 30 arXiv:1710.00143v 1 Sep 2017.
[22] W. P. Kuang, Y. Sun and Z. Wang, "On quasi-Hadamard product of certain classes of analytic functions", Bull. Math. Anal. Appl, no 2, pp 36-46,.2009.
[23] S. Owa., "The quasi-Hadamard product of certain analytic functions". In: H. M. Srivastava and S. Owa (Eds.), Current Topics in analytic Functions Theory, Word Scieftific, Singapor, pp 234-251, 1992.

[^0]: *Email: omar.najim1103@sc.uobaghdad.edu.iq

