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Abstract 

     In this paper, Bayes estimators for the shape and scale parameters of Gamma 

distribution under the Entropy loss function have been obtained, assuming Gamma 

and Exponential priors for the shape and scale parameters respectively. Moment, 

Maximum likelihood estimators and Lindley’s approximation have been used 

effectively in Bayesian estimation. Based on Monte Carlo simulation method, those 

estimators are compared depending on the mean squared errors (MSE’s). The results 

show that, the performance of the Bayes estimator under Entropy loss function is 

better than other estimates in all cases.    
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 تقدير معلمتي توزيع كاما تحت دالة خسارة الانتروبي
 

 هدى عبدالله رشيد، *لؤي فائق ناجي
 ، كلية العلوم، الجامعه المستنصرية، بغداد، العراققسم الرياضيات

 
 الخلاصة

بيز لمعلمتي القياس والشكل لتوزيع كاما تحت دالة خسارة  ي، تم الحصول على مقدر هذا البحثفي      
ات العزوم مقدر  على التوالي.معلمتي القياس والشكل لكل من والأسي كاما  أسبقية تيدالفتراض باالانتروبي، 

طريقة مونت كارلو  استناداً الىالبيزي.  وتقريب ليندلي تم استخدامها بكفاءة في التقديرالإمكان الأعظم و 
أظهرت النتائج  (.MSE'sللمحاكاة فإن هذه المقدرات، تمت مقارنتها بالاعتماد على متوسط مربعات الخطأ )

 .أفضل من التقديرات الاخرى لجميع الحالات أن أداء مقدر بيز تحت دالة الخسارة الأنتروبي 
 

1. Introduction 

     The gamma distribution plays a very important role in statistical inferential problems. It is widely 

used in reliability analysis and life testing and as a conjugate prior in Bayesian statistics.  

It is a good alternative to the popular Weibull distribution, also, it is a flexible distribution that 

commonly offers a good fit to any variable such as in environmental, meteorology, climatology and 

other physical situation [1]. There are many applications for Gamma distribution in real life, for 

example, in bacterial gene expression, the copy number of a constitutively expressed protein often 

follows the gamma distribution, where the scale and shape parameter are, respectively, the mean 

number of bursts per cell cycle and the mean number of protein molecules produced by a single 

mRNA during its lifetime.         
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The probability density function of the Gamma distribution is defined as follow [2]  

 (     )  
          

 ( )
               ;   x > 0  ,    α > 0   ,   β > 0                                                                 (1) 

Where, 

α and β are often called the shape and scale parameters, respectively. The Gamma function is  

 ( )  ∫         

 
               

     The cumulative distribution function (CDF) is: 

F(     ) = ∫
  

 ( )
            

 

 
  

    This function is called incomplete Gamma Function. The formula for the cumulative distribution 

can be written as 

F(     ) =   ∑
(  ) 

  
       

    ∑
(  ) 

  
     

      

Therefore, the reliability function for  (   ) is:[2]  

 (     )  ∑
(  ) 

  
    

   

   

 

2. Estimation Methods  

     The moment estimators are used as primary estimators for maximum likelihood estimators of each 

of        . On the other hand, the maximum likelihood estimators are used to derive Bayesian 

estimators. 

2.1 Moment Method                                                                                             
     Suppose that, X be a random variable has a Gamma distribution defined by (1), and let x1, x2, . . . , 

xn be a random sample of size n from X. Defining the first k sample moments about origin as 

  
  

 

 
∑   

  
     , r = 1, 2, . . . , k. 

     The first k population moments about origin are given by 𝜇
 

 
  (  ). 

Now, equaling these moments, that is 

𝜇
 

 
   

  , r = 1, 2, . . . , k 

The solutions to the above equations denote by  𝜃
 

 
 𝜃 

    𝜃 
  , yields the moment estimators of    θ1, 

θ2, . . . , θk    [3][4] 

The moment method for estimating the two–parameter Gamma distribution can be derived as follows 

   
∑   
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From     𝜇 
    ,       𝜇   , we get 

 ̂  
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∑   
  

      ̅                                                                                                                                        (2) 

 ̂  
  ̅

∑   
    ̅  

   

                                                                                                                                       (3) 

2.2 Maximum Likelihood Method  

     The maximum likelihood method is one of the best methods of obtaining a point estimator of a 

parameter is proposed by R.A. Fisher (1912), and this technique was developed in the 1920s by a 

famous British statistician, Sir R. A. Fisher. As the name implies, the estimator will be the value of the 

parameter that maximizes the likelihood function.[5] 

     This method is the most popular procedure in estimating the parameter   which specifies a 

probability function f(x,𝜃), based on the observations            which were independent sample 

from the distribution . The maximum likelihood estimator 
^

  of the parameter   which maximizes the 

likelihood function will be as follows [6][7] 

 (   𝜃)      
  (   𝜃)  
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     The likelihood function for Gamma distribution, when two parameters are unknown is 

 (               )  
   

( ( ))
 (    

   )
      ∑   

 
                                                                           (4) 

Taking the logarithm for the likelihood function, yields 

           ( )        (   )∑     
 
     ∑   

 
                                       

The parameters that maximize the likelihood function are the solution of the equations 
    

  
    =    ( )       ∑     

 
                                                                                                      (5)                                           

    

  
 

  

 
 ∑   

 
                                                                                                                                  (6) 

     Observe that, the two equations (5) and (6) are difficult and complicated to solve, then it is 

impossible to find MLE for   and  analytically, we can use the numerical analysis (numerical 

procedure) to obtain and estimate   and   that maximize the likelihood function. One of these 

numerical procedures is Newton-Raphson method and using Hessian matrix, which can be written as 

follows [3] 

  ( )    Ψ(α)      ∑     
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The partial derivatives of )(1 g  with respect to unknown parameters   and   are 
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     ( )  

Where   ( ) is the derivative of   ( ) which is called as tri-gamma 
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The partial derivatives of )(2 g  with respect to unknown parameters   and   are 
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The Jacobian matrix must be a non-singular symmetric matrix so its inverse can be found as 
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     The absolute value for the difference between the new value for   and   in new iterative value 

with previous value for   and   in last iterative represent the error term, it's symbol is   , which is a 

very small and assumed value. 
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Then, error term is formulated as  
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Where k  and k  are the initial values for   and   respectively, for which are assumed. 

3. Bayes Estimation 

3.1 Posterior Density Functions Using Gamma and Exponential Priors 

To estimate α and β parameters for Gamma distribution, we assume that α has a prior π1(·), which 

follows Gamma(a, b). Also, we assume that, the prior on β is π2(·) and the density function of π2(·) is 

Exponential and it is independent of π1(·). 

  ( )  {
( ) ( )       

 ( )
                            

                                                                             
                                                                        (8) 

  ( )  {
                                                  
                                                                   

                                                                              (9) 

The equations (8) and (9) are prior distribution for   and   respectively. 

The joint p.d.f  is given by 
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The posterior density functions of   and   is defined as follows 
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3.2 Bayes Estimators for α and β under Entropy Loss Function 

     Entropy loss function is one of asymmetric loss functions [3]. It was first introduced by James and 

Stein for estimation of the Variance-Covariance (i.e., Dispersion) matrix of the multivariate normal 

distribution [8]. Entropy loss function can be written as the following form.[9]      

 (𝜃 𝜃)  
 ̂

 
   

 ̂

 
                                                                                                                           (10) 

Therefore, the Bayes estimator under the entropy loss 𝜃   , is given by 

𝜃   [ (𝜃  | )]                                                                                                                             (11) 

     Bayesian estimators of the shape parameter α and scale parameter β of the Gamma distribution has 

been obtained under Entropy loss function as follows 

 [ (   )]  ∫ ∫  (   )
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Where u(α,β) be any function for α and β. 

After substitution, yields 
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i) Bayesian Estimation for the Shape Parameter α under Entropy Loss Function 

To obtain Bayesian estimation for α, under Entropy loss function, assume that 
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u(α,β) = 
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Notice that, it is difficult to find the solution of the ratio of two integrals. Therefore, the approximation 

form of Lindley will be used to get  (
 

 
| ) as follows 

   ((
 

 
)| )  

 

 ̂
 

 

 
(      )          

 

 
(        

 )  
 

 
(           )                                    (12)                               

Where,  

Lij = 
    

         (   )                            

   (   )   nα lnβ-n ln Г(α)-β∑    (   )∑     
 
   

 
     

L12 = 
     (   )

      =  
 

                ,         
     (   )

    
  = 0 

    
     (   )

    
   

              ,         
     (   )

    =      ( ) 

    
     (   )

        ( )     ,        
     (   )

    
   

    

σ
  

   
 

   
  

 

   ( )
                ,     

  
    

 

   
   

  

  
  

   
  (   )

  
                     ,        

   (   )

          

   
  (   )

  
                          ,         

   (   )

     = 0                                                                             

We assumed that α and β are independent. Therefore, the joint p.d.f of α and β is given by 
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Now, we can apply Lindley's form (12), as follows 

 (
 

 
| )   

 

 ̂
 

 

 ̂    ( ̂)
   

 

 ̂    ( ̂)
(
   

 ̂
  )  

 

 
(

    ( ̂)

 ̂ (   ( ̂))
 )  

 

 
( 

 

 ̂    ( )
   )                        (13) 

Now, Substituting (13) into (11) yields, 
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Where  ̂  are the maximum likelihood estimators. 
ii) Bayesian estimation for the scale parameter β under Entropy loss function 

Assume that,  (   )  
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After Substituting (13) into (11) yields, 
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Where  ̂   ̂  are the maximum likelihood estimators. 
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4. Simulation Study 

     In this section, Monte-Carlo simulation is employed to compare the performance of three estimates 

(moment, Maximum likelihood and Bayes estimators under Entropy  loss function) for unknown shape 

and scale parameters based on mean squared errors (MSE’s) as follows 

MSE(𝜃) = 
∑ ( ̂   )

  
   

 
 

Where, I is the number of replications. 

We generated I = 3000 samples of size n = 20, 30, 50, and 100 to represent small, moderate and large 

sample sizes from Gamma distribution with α = 2, 3 and β =0.5, 1.  

The parameters for the prior distribution of   were chosen as a=3, b= 3 and for β's prior parameters are 

c = 4. 

5. Discussion 
     The results are summarized and tabulated in Tables (1-6) which contains the expected values and 

(MSE's) for estimating α and β, and we have observed that 

1. The performance of Bayes estimates under Entropy loss function for each of α and β is the best, 

since it gives smallest mean square error, as indicated for all combination of initial values of 

parameters.                                                               

2. It is observed that, MSE's of all estimators of shape parameter is increasing with the increase of the 

value of shape parameter. Also, MSE values for all estimates are increasing with the increase of the 

scale parameter value for all cases. 

Table 1- The expected values of different estimators for unknown shape parameter α of Gamma 

distribution when α = 2 

Method 

n 

 ̂    ̂    ̂   

β=0.5 β=1 β=0.5 β=1 β=0.5 β=1 

20 2.486393 2.486393 2.33479 2.334791 2.11877 

 

2.11877 

 
30 2.298321 2.298321 2.194657 2.194658 2.05860 

 

2.05860 

 
50 2.183145 2.183145 2.118412 2.118412 2.03897 

 
2.03897 

100 2.090724 2.090724 2.055311 2.055311 2.01663 

 
2.01663 

 

Table 2-The expected values of different estimators for unknown shape parameter α  of Gamma 

distribution when α = 3 

Method 

n 
 ̂    ̂    ̂   

β=0.5 β=1 β=0.5 β=1 β=0.5 β=1 

20 3.600494 3.600494 3.447432 3.447433 3.08855 3.08855 

30 3.405721 3.405721 3.299321 3.299319 3.06486 3.06486 

50 3.255532 3.405721 3.18809 3.299319 3.04956 3.04956 

100 3.126059 3.126059 3.089527 3.089528 3.02157 3.02157 

 

Table 3-The MSE values of different estimators for unknown shape parameter α of Gamma 

distribution when α = 2 

Method 

n 
 ̂    ̂    ̂   

β=0.5 β=1 β=0.5 β=1 β=0.5 β=1 

20 1.13161 1.13161 0.80765 0.80765 0.54285 0.54286 

30 0.58915 0.58915 0.38833 0.38833 0.29458 0.29458 

50 0.29714 0.29714 0.18510 0.18510 0.15440 0.15440 

100 0.13609 0.13609 0.08313 0.08313 0.07594 0.07594 
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Table 4-The MSE values of different estimators for unknown shape parameter α of Gamma 

distribution when α = 3 

Method 

n 

 ̂       ̂       ̂   

β=0.5 β=1 β=0.5 β=1 β=0.5 β=1 

20 2.06203 2.06203 1.62539 1.62540 1.08765 1.08765 

30 1.11338 1.11338 0.84883 0.84883 0.63298 0.63298 

50 0.61598 1.11338 0.44923 0.84883 0.37139 0.37139 

100 0.25924 0.25924 0.18543 0.18543 0.16787 0.16787 

 

Table 5-The expected values of different estimators for unknown scale parameter β of Gamma 

distribution when β = 0.5 

Method 

n 
 ̂    ̂    ̂   

α=2 α=3 α=2 α=3 α=2 α=3 

20 0.63802 0.61058 0.59870 0.58464 0.56879 0.56515 

30 0.58456 0.57368 0.55831 0.55562 0.53969 0.54329 

50 0.55128 0.54540 0.53514 0.53420 0.52443 0.52708 

100 0.52472 0.52256 0.51588 0.51658 0.51073 0.51314 

 

Table 6-The expected values of different estimators for unknown scale parameter β of Gamma 

distribution when β = 1 

     Method 

n 
 ̂    ̂      ̂   

α=2 α=3 α=2 α=3 α=2 α=3 

20 1.27605 1.22115 1.19739 1.16928 1.08359 1.09387 

30 1.16913 1.14735 1.11661 1.11124 1.04460 1.06298 

50 1.10256 1.14735 1.07027 1.11124 1.02830 1.04032 

100 1.04945 1.04511 1.03176 1.03317 1.01135 1.01949 

 

Table 7-The MSE values of different estimators for unknown scale parameter β of Gamma 

distribution when β = 0.5 

        Method 

n 
 ̂    ̂    ̂   

α=2 α=3 α=2 α=3 α=2 α=3 

20 0.09335 0.06904 0.06875 0.05533 0.05686 0.04880 

30 0.04509 0.03596 0.03113 0.02778 0.02714 0.02533 

50 0.02224 0.01936 0.01490 0.01465 0.01361 0.01381 

100 0.01023 0.00824 0.00681 0.00627 0.00651 0.00608 

 

Table 8-The MSE values of different estimators for unknown scale parameter β of Gamma 

distribution when β = 1 

Method 

n 
 ̂    ̂    ̂   

α=2 α=3 α=2 α=3 α=2 α=3 

20 0.37339 0.27617 0.27500 0.22131 0.19269 0.17422 

30 0.18037 0.14383 0.12452 0.11114 0.09660 0.09322 

50 0.08896 0.14383 0.05961 0.11114 0.05043 0.05236 

100 0.04091 0.03295 0.02723 0.02508 0.02511 0.02363 
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