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Abstract

In this paper, Bayes estimators for the shape and scale parameters of Gamma
distribution under the Entropy loss function have been obtained, assuming Gamma
and Exponential priors for the shape and scale parameters respectively. Moment,
Maximum likelihood estimators and Lindley’s approximation have been used
effectively in Bayesian estimation. Based on Monte Carlo simulation method, those
estimators are compared depending on the mean squared errors (MSE’s). The results
show that, the performance of the Bayes estimator under Entropy loss function is
better than other estimates in all cases.
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1. Introduction

The gamma distribution plays a very important role in statistical inferential problems. It is widely

used in reliability analysis and life testing and as a conjugate prior in Bayesian statistics.

It is a good alternative to the popular Weibull distribution, also, it is a flexible distribution that
commonly offers a good fit to any variable such as in environmental, meteorology, climatology and
other physical situation [1]. There are many applications for Gamma distribution in real life, for
example, in bacterial gene expression, the copy number of a constitutively expressed protein often
follows the gamma distribution, where the scale and shape parameter are, respectively, the mean
number of bursts per cell cycle and the mean number of protein molecules produced by a single

MRNA during its lifetime.
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The probability density function of the Gamma distribution is defined as follow [2]
Baxa—le—ﬁ’x

f(x;a;B)zT 5 X>09 a>0 ’ B>0 (1)
Where,
a and f are often called the shape and scale parameters, respectively. The Gamma function is

I'(a) = fooox“_le_x dx , for a >0
The cumulative distribution function (CDF) is:
. a-1 ,-upf

F(x; o, B) = fo T U e du

This function is called incomplete Gamma Function. The formula for the cumulative distribution
can be written as

Fg o) =1 - 5o E epr = 3o B0 oop
Therefore, the rellablllty function for I'(a, B) is:[2]
a—1 :
j
R(x;a,B) = (ﬁf) e Bx
=

2. Estimation Methods

The moment estimators are used as primary estimators for maximum likelihood estimators of each
of aand . On the other hand, the maximum likelihood estimators are used to derive Bayesian
estimators.
2.1 Moment Method

Suppose that, X be a random variable has a Gamma distribution defined by (1), and let xy, Xy, . . .,
X, be a random sample of size n from X. Defining the first k sample moments about origin as

:—Zl rx,r=12,...,k
The first k population moments about origin are given by P"r = EX").
N/ow, equaling these moments, that is
yr=m’r,r=1,2,...,k
The solutions to the above equations denote by 91, 6, Gk , yields the moment estimators of 0y,

925 e ey ek [3][4]
The moment method for estimating the two—parameter Gamma distribution can be derived as follows
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2.2 MaX|mum Likelihood Method

The maximum likelihood method is one of the best methods of obtaining a point estimator of a
parameter is proposed by R.A. Fisher (1912), and this technique was developed in the 1920s by a
famous British statistician, Sir R. A. Fisher. As the name implies, the estimator will be the value of the
parameter that maximizes the likelihood function.[5]

This method is the most popular procedure in estimating the parameter @ which specifies a

probability function f(x,6), based on the observations x4, x5, ..., x,, which were independent sample

from the distribution . The maximum likelihood estimator & of the parameter & which maximizes the
likelihood function will be as follows [6][7]

L(x;;0) = miz, f (xi; 6)
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The likelihood function for Gamma distribution, when two parameters are unknown is
e a0 ) = o (R0t A2 (4)
Taking the Iogarlthm for the likelihood function, yields
LnL = —nInl'(a) + nadnB + (a — DXL Inx; — B Y=, X;

The parameters that maximize the likelihood function are the solution of the equations
ainL

Wb = —n@(a) +ning + T, Inx, ©)
dlnL
a; == i1 X ©

Observe that, the two equations (5) and (6) are difficult and complicated to solve, then it is
impossible to find MLE for & and g analytically, we can use the numerical analysis (numerical

procedure) to obtain and estimate « and g that maximize the likelihood function. One of these
numerical procedures is Newton-Raphson method and using Hessian matrix, which can be written as
follows [3]
91(@) = —n¥(@)+ning + XL, Inx;
na —
92(B) = 5 X
The partial derivatives of g,(er) with respect to unknown parameters o and g are
09:1(a) — —n‘z”’(a')

da
Where W' () is the derivative of W(a) which is called as tri-gamma
9g91(a) _n

op B

The partial derivatives of g,(/) with respect to unknown parameters & and g are
392(8) _ n

da B
992(B) _ _na
B NG
Hence,
9, (@) 09, (@) |
ox 0
J = X _[all alZ]
ko “lazr  ax;
a9, (8) a9, ()
| Oa op |
The Jacobian matrix must be a non-singular symmetric matrix so its inverse can be found as
1[ Q2 0412
Jic! “ilmaz  oag ]
Oy | 9,(a)
= —J

Beal LB 9,(%)

[ak+1- _ [ak] _ [_aézzl—afﬁz] —nlp(o(k) -l;u’rrlln'b)k + Zlnzl lnxi
:8k+1- Bk A11022=012021 Bkk X
[ na;;Q _
—na,, ¥ (ay) + nayInfy + a, Z Inx; — ———+4+na,,x
Br Q11022 — Q12021 na1ay
na, ¥ (ay) —nay Infy — azq Z Inx; + —na; X
. k

The absolute value for the difference between the new value for & and £ in new iterative value
with previous value for o and £ in last iterative represent the error term, it's symbol is & , which isa
very small and assumed value.
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Then, error term is formulated as

gk+l (a) ak+1 ak

V) B B

Where o, and f, are the initial values for a and g respectively, for which are assumed.

3. Bayes Estimation

3.1 Posterior Density Functions Using Gamma and Exponential Priors

To estimate o and p parameters for Gamma distribution, we assume that o has a prior my(-), which
follows Gamma(a, b). Also, we assume that, the prior on B is m,(-) and the density function of my(+) is
Exponential and it is independent of m;(+).

(b)a(a)a—le—boz )
nl(a):{—r(a) ; a>0,b>0a>0 @®
0 p 0.w
B ; >0,=0
) = ¢ | ¢>0F ©

The equations (8) and (9) are prior distribution for & and S respectively.
The joint p.d.f is given by

](x1)x2' 'xn; a, B) = L(xll X2y weey xn; a, ﬂ) nl(a) nZ(ﬁ) b

B n am1—fE, kg U@ g
(r@)" Ti=1 ¢ ! I'(a) ce
And the marginal p.d.f. of (xq, x5, ..., x;,) is given by

Xi

f(xq, x5, ...,xn):ff L(x1,%2, ., Xp; @, )11 (@) T, (B)da dB

00
The posterior density functions of & and £ is defined as follows
L(xq, x5, ey Xp; @, B) 1 (@) 102 (B)
Jo Iy LGty Xa, vy X @, B)my (@) o (B)dadB

h(a, Blxq, X9, o, Xp) =

s

gna an x: (D)3 (@)~ 1lo-ba -8
(r@)" AR =1 che ’
1,-b
Iy gy ki le1x19ﬁ3%¥5‘1‘559‘36d“dﬁ

3.2 Bayes Estimators for a and 3 under Entropy Loss Function

Entropy loss function is one of asymmetric loss functions [3]. It was first introduced by James and
Stein for estimation of the Variance-Covariance (i.e., Dispersion) matrix of the multivariate normal
distribution [8]. Entropy loss function can be written as the following form.[9]

L(8,0)=2—InZ—1 (10)
Therefore, the Bayes estimator under the entropy loss 8z , is given by
Opg = [E(0 X)) (11)

Bayesian estimators of the shape parameter o and scale parameter 3 of the Gamma distribution has
been obtained under Entropy loss function as follows

Elu(a, B)] = f f u(a, ) (@ Blx, . %) daxdp

Where u(a,p) be any function for o and f.
After substitution, yields
f f u(a,f)L(x1,%2,.Xn;a,pB) T1(a) T2 (B) dadp
Elu(a, p)] =
I3 o LGy Xz xn;a,B) 1 (@) T2 (B) dad B
i) Bayesian Estimation for the Shape Parameter o under Entropy Loss Function
To obtain Bayesian estimation for a, under Entropy loss function, assume that
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1
(o)==
1 Iy Iy 7 L1 %2, Xnsa B (@) o (B) dadB
Therefore, E ( (=) |x ) = %%~
((a) |£) I Jo Llxpxz,.wxn;aB)my(a) ma(B) da dB
Notice that, it is difficult to find the solution of the ratio of two integrals. Therefore, the approximation
form of Lindley will be used to get E (% |§) as follows

1 11 1 1
E ((;)|£) =zt (u11011) + p1ugo11 + 2 (L3oui0fy) + > (L12u1011023) (12)
Where,
atti .
Lij:i—algjlnl‘(a ﬁ) ;o 01,] =0,1,2,3
InL(a, B) =na Inf-n In T(a)-YiL, x; + (a — 1) Xit, Inx;
_dmL(a,f) _ n _93InL(ap)
b= - R B T
9InL(a,p) _ 2na *InL(a,p) _ "
Loz = a—ﬁg, e v Lzo=—5—=—n¥" ()
0% 1InL(a, B _ 92 InL(a,) _ —-na
Lyy = Tz —n¥' () , Loy = T B
__ 1 __1 - _1r_#
%11 = Lo n¥ () v 032 = Loz na
2
uy = au;Z,B) — _q2 L uy = 9 zfxaﬁ) 20-3
au(a,p) *u(ap) _
u2=%=0 y Uy, = 6B2 —0

We assumed that a and § are independent. Therefore, the joint p.d.f of a and f§ is given by
a a-1,-ba
n(a,p) = L7 co-ch

I'(a)
p = Inn(a,f) = (a — 1)ina + alnb — ba — InT'(a) + Inc — cf
ap a-1 ap

p1= ————b v P2 = 5= 7€
Now, we can apply Lindley's form (12), as follows

1 _1 1 1 a-1 n¥"(@) 1 1
E (E |£) T a + a3n¥' (@) a? n‘P’(a)( b) (az(n\pr(a)) ) + (&3n‘{”(a) ) (13)
Now, Substituting (13) into (11) yields,
Apg = 1 1 1 a-1 1, n¥'@ 1 1

a ™t an¥' @  atn?' @) (_ B ) 2 (az(nqﬂ(a))Z) +35( a3n¥' (@) )

Where @ are the maximum likelihood estimators.
ii) Bayesian estimation for the scale parameter g under Entropy loss function

Assume that, u(o, B) = % , then,

au(a,B) % u(ap) _
155 =0 un =5
du(a,pB _ %u(aB
zzuéc;) B2, — g(;)_zﬁ3
1 1
Thus, E (E) = E + ‘(Uzzazz) t Pauz0;; + §(L03U2‘7222) + 5 (L21U201102;)
232 cf? 1( -2na 1 p*
+ = + = — = —
/3 T2\ Fna) pma T2\ T p @
S (14)
After Substltutlng (13) into (11) yields,
BBE - i+ i/\
B na
Where @, are the maximum likelihood estimators.
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4. Simulation Study

In this section, Monte-Carlo simulation is employed to compare the performance of three estimates
(moment, Maximum likelihood and Bayes estimators under Entropy loss function) for unknown shape
and scale parameters based on mean squared errors (MSE’s) as follows

I ~ 2

MSE(Q) — Zi=1(§i_9)
Where, | is the number of replications.
We generated | = 3000 samples of size n = 20, 30, 50, and 100 to represent small, moderate and large
sample sizes from Gamma distribution with o= 2, 3 and  =0.5, 1.
The parameters for the prior distribution of a were chosen as a=3, b= 3 and for 8's prior parameters are
c=4.
5. Discussion

The results are summarized and tabulated in Tables (1-6) which contains the expected values and
(MSE's) for estimating a and 8, and we have observed that
1. The performance of Bayes estimates under Entropy loss function for each of a and B is the best,
since it gives smallest mean square error, as indicated for all combination of initial values of
parameters.
2. It is observed that, MSE's of all estimators of shape parameter is increasing with the increase of the
value of shape parameter. Also, MSE values for all estimates are increasing with the increase of the
scale parameter value for all cases.
Table 1- The expected values of different estimators for unknown shape parameter o of Gamma

distribution when a =2

\Meth\od amo Ayy, apg

n B=0.5 p=1 B=0.5 p=1 B=0.5 B=1
20 2.486393 2.486393 2.33479 2.334791 211877 2.11877
30 2.298321 2.298321 2.194657 2.194658 2.05860 2.05860
50 2.183145 2.183145 2.118412 2.118412 2.03897 2.03897
100 2.090724 2.090724 2.055311 2.055311 2.01663 2.01663

Table 2-The expected values of different estimators for unknown shape parameter oo of Gamma

distribution when o =3
ethod ®umo Ay ApE

n B=0.5 p=1 B=0.5 p=1 B=0.5 p=1
20 3.600494 3.600494 3.447432 3.447433 3.08855 3.08855
30 3.405721 3.405721 3.299321 3.299319 3.06486 3.06486
50 3.255532 3.405721 3.18809 3.299319 3.04956 3.04956
100 3.126059 3.126059 3.089527 3.089528 3.02157 3.02157

Table 3-The MSE values of different estimators for unknown shape parameter a of Gamma

distribution when o =2
ethod &MO &ML &BE

?M\ B=0.5 B=1 B=0.5 p=1 B=0.5 p=1
20 1.13161 1.13161 0.80765 0.80765 0.54285 0.54286
30 0.58915 0.58915 0.38833 0.38833 0.29458 0.29458
50 0.29714 0.29714 0.18510 0.18510 0.15440 0.15440
100 0.13609 0.13609 0.08313 0.08313 0.07594 0.07594
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Table 4-The MSE values of different estimators for unknown shape parameter a of Gamma
distribution when o = 3

thod Ao ayL apE
" 6=0.5 p=1 B=0.5 p=1 6=0.5 p=1
20 206203 | 2.06203 162539 | 1.62540 1.08765 | 1.08765
30 111338 | 1.11338 0.84883 | 0.84883 0.63298 | 0.63298
50 0.61598 | 1.11338 0.44923 | 0.84883 0.37139 | 0.37139
100 0.25924 | 025924 | 0.18543 |0.18543 0.16787 | 0.16787

Table 5-The expected values of different estimators for unknown scale parameter p of Gamma
distribution when = 0.5

ethod 3 MO BML B BE

o=2 0=3 o=2 o=3 o=2 0=3
20 0.63802 0.61058 0.59870 0.58464 0.56879 0.56515
30 0.58456 0.57368 0.55831 0.55562 0.53969 0.54329
50 0.55128 0.54540 0.53514 0.53420 0.52443 0.52708
100 0.52472 0.52256 0.51588 0.51658 0.51073 0.51314

Table 6-The expected values of different estimators for unknown scale parameter f of Gamma
distribution when =1

W Buo Bur Bz

) o=2 0=3 0=2 0=3 0=2 0=3

20 1.27605 1.22115 1.19739 1.16928 1.08359 1.09387
30 1.16913 1.14735 1.11661 1.11124 1.04460 1.06298
50 1.10256 1.14735 1.07027 1.11124 1.02830 1.04032
100 1.04945 1.04511 1.03176 1.03317 1.01135 1.01949

Table 7-The MSE values of different estimators for unknown scale parameter f of Gamma
distribution when = 0.5

~

~

Method BVIO BML .BBE
n o=2 0=3 o=2 0=3 o=2 0=3
20 0.09335 0.06904 0.06875 0.05533 0.05686 0.04880
30 0.04509 0.03596 0.03113 0.02778 0.02714 0.02533
50 0.02224 0.01936 0.01490 0.01465 0.01361 0.01381
100 0.01023 0.00824 0.00681 0.00627 0.00651 0.00608
Table 8-The MSE values of different estimators for unknown scale parameter B of Gamma
distribution when g =1
W B B Box
n 0=2 0=3 0=2 0=3 o=2 0=3
20 0.37339 0.27617 0.27500 0.22131 0.19269 0.17422
30 0.18037 0.14383 0.12452 0.11114 0.09660 0.09322
50 0.08896 0.14383 0.05961 0.11114 0.05043 0.05236
100 0.04091 0.03295 0.02723 0.02508 0.02511 0.02363
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