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Abstract

In this paper, a Sokol-Howell prey-predator model involving strong
Allee effect is proposed and analyzed. The existence, uniqueness, and
boundedness are studied. All the five possible equilibria have been are
obtained and their local stability conditions are established. Using
Sotomayor's theorem, the conditions of local saddle-node and transcritical
and pitchfork bifurcation are derived and drawn. Numerical simulations are
performed to clarify the analytical results.
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1. Introduction
The study of prey-predator dynamics is important in both theoretical ecology and applied
mathematics. It is used to descript the relationships between species and their surrounding environment
in addition to the connections between different species. Therefore, the prey-predator models have been
receiving great interest in population dynamics. Consequently, varieties of mathematical models have
been studied by many researchers. These models were written in the framework of the traditional work
given by Lotka [1] and Volterra [2]. In fact, the traditional Lotka-Volterra model serves as the basis for
many models used today to analyze population dynamics. Many of the well-known proposed classical
models were developed by many researchers taking into consideration various environmental factors

that affect the existence and stability of this system, such as prey refuge [3-5], disease,[6, 7], delay [8],
harvesting [9] and many other factors [10-13].

Note that, the Lotka-Volterra prey-predator model in its general form can be expressed by [14]:
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== F(NN —a,g(N)P,

2 = —dP + a,g(N)P,
where N(t) and P(t) denote the prey and predator individuals. While f(N) is the prey's growth rate per
capita, d is the predator's death rate in the absence of prey and a; and a, are the prey and predator
interaction rates, respectively. The function g(N) is the functional response of the predators, which
corresponds to the saturation of their appetites and reproductive capacity. In theoretical ecology, several
known functional responses in the prey-predator system exist, which include Holling type-I, type-II,
type-Ill, type-1V, Beddington—DeAngelis type, and ratio-dependent type, etc. Some authors investigated
and introduced several open questions for the structured prey-predator models using different types of
functional responses, [12, 13, 15, 16]. In this paper, however, Sokol-Howell type of functional response

[17] that is expressed as g(N) = a“jrll\\']z is used, which is simply a modified version of the Holling type
2
alN

Il that is represented by g(N) T
2 3

modification represented by Sokol-Howell type are similar to type Il at high levels of prey density,
where the saturation occurs, at low prey density levels, the graphical relationship of the number of prey
consumed by predators and the density of the prey population is an increasing function. The
deacceleration property of Sokol-Howell type of functional response at the high levels of prey density
can be used to describing the group defense property of some types of prey, such as buffalo against their
predators such as lions or tigers.
Allee [18] was the first to describe the Allee effect in 1931. He reviewed the evidence regarding the
impacts of population density on demographic and life-history attributes, demonstrating that the growth
rate is not always positive for small densities, and it may not be decreasing as predicted by the logistic
model. In other words, the Allee effect might reduce the intrinsic growth at low population densities,
making the system unstable. There are a lot of factors that may cause the Allee effect; for example,
difficulties in finding mates, predator avoidance of defense, social dysfunction in small population sizes,
genetic drift, food exploitation, and several other causes. These effects can be observed in various
species, including vertebrates, invertebrates, and plants. The effect usually saturates or fades with
increasing population size [19]. There are two types of Allee effect: (i) The strong Allee effect has a
negative per capita growth rate at a low population level and implies the existence of a threshold level
of the population, so that the species become extinct below this level, causing an unstable equilibrium
at some small, non-zero population size. The population must exceed this threshold to grow and avoid
extinction. (ii) The weak Allee effect that has a decreasing per capita growth rate but remains positive
at a low population level, which causes an unstable equilibrium [20].
The goal of this work is to investigate the Sokol-Howell prey-predator system, which has a strong Allee
effect on the prey species. The existence and stability of equilibria are examined theoretically and
numerically. Also, a rich investigation of the effects of varying the parameter values is given.
2. Mathematical Model Formulation

A mathematical model that simulates the dynamics of the prey-predator system involving the strong
Allee effect in prey species and harvesting is formulated mathematically. It is supposed that the prey
grows logistically in the absence of the predator, while the predator consumes the prey according to the
Sokol-Howell type of functional response. Therefore, the dynamics of such a system can be defined as

Although type 1ll functional response and their

follows:
dN _ N(l N) (N 1) amNP EN
ar ~ " k) \M b+ymznz  DE M
dpP _ amNP P E.p
d’['_'eb-Jr-ymZN2 2527
where

N(t) = 0: the density of prey at time T,

P(t) = 0: the density of predator at time T

r: the prey-intrinsic growth rate,

k: the environment-carrying capacity,

M K< k: the Allee threshold of the prey population in the absence of predators,
a: the maximum attack (predation) rate,
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(1 —m) € (0,1): the prey-refuge rate, such that mN is the available prey for predation,
b: the half-saturation constant,
qi , (i = 1,2): the catchability constant,
e € (0,1): the food-conversion efficiency,
d: the predator-natural death rate,
y: the inverse measure of inhibitory effect,
E;, (i = 1,2): the harvesting effort.
All the above parameters are positive constants.

Note that, using the scaling parameters rT = t, x = %and y= m‘% in the system (1) reduces the number
of parameters from 13 to 7 and the system (1) takes the following dimensionless form:

dx my

T =x|a-0x-1- —ws| = xf )
dy w,amx

Py [m — (ws + We)] =yg(x,y),

where the dimensionless parameters are given by:
Esziwqu—ElW:ﬂwzngqz—EZ.
M’ yk2' 3 r AT ey S T 6 r
Note that, since the right-hand side of the interaction functions of the system (2) are continuous and
have continuous partial derivatives, then system (2) has a unique solution that belongs to the positive
quadrant R2.
3. Positivity and Boundedness

The positivity of the solution ensures that any solution of the system (2) with positive initial
conditions remains at all times positive. While the boundedness confirms that the solution of the system
(2) cannot increase without limit and hence it converges to an attractor.
Theorem 1: All solutions of the system (2) that start in R% remain positive forever.

Proof: Let (x(t), y(t)) be any solution of the system (2). Then it is clear that:
x(£) = x(0)eko FEE®YENAs 5 ¢

w, + m?x?

(2)

wi, =

and

Y(t) = y(0)elo IED¥)ds > o g
Theorem 2: All the solutions of the system (2) that start in RZ are uniformly bounded.
Proof: Consider the function G(x) = x[1 + (1 — x)(wyx — 1)]. Hence it is easy to show that G (x)

reaches its maximum value at x = ¥ = Z(LWWQ and then the maximum value of G(x) is given by
1
_4(1+wq)®
Gmax = 27w? > 0. Let

W = Ax(t) + By(t),
where A = ;, and B = 2. Then
G Wy

W=Ax+By=1—Ax — Awsx — B(ws + wg)y = 1 — A(1 + w3)x — B(ws + wg)y
=1—-(1+w3)(Ax+ Boy) <1—-(1+w3)lW,
where o = 256 and t = min{1, o}.
1+W3

That is

W+ 1+w)W < 1.
So, we obtain that

0 <W(x(t),y(®) <
Therefore, as t — oo, yields

0<W<—

— (14wt
Thus all the solutions of the system (2) enter into the region:
Q={(x,y):0 <W<——

- (14w3)T

1
(1+w3)T

+ e—(1+W3)TtW(x(O)’ y(O)),

+ ¢, for any € > 0}. ]
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4. Qualitative Analysis of Equilibria

In this section, the existence of the equilibria of the system (2) and the qualitative study of their
stability are carried out. The computation shows that system (2) has five equilibria. The trivial
equilibrium point E,(0,0) always exists. The axial equilibrium points, say E;(x;,0) for i = 1,2, where
x; is given in equation (3), exist under the condition (4).

x; _ 1+wqF (w1—1)2—4w1w3. (3)
2W1
(wy — 12 > 4w, ws. (4)

While E (0, y) cannot exist due to the fact that the predators cannot coexist without the availability
of their food given by the prey. The coexistence equilibrium points, say E;(x;,y*) for i = 3,4, where
x; and y*, are given by equation (5) and they exist together provided that the conditions (6a)-(6b) are

satisfied simultaneously.
Wyt w2 —4w, (Ws+wg)? Wy— /wf—4w2(w5+w6)2

X3 = 2m(ws+we) X4 = 2m(ws+we) . (5)
* +m? ;2 * *

y = %[(1 —x)(wix; —1) —ws]

wi = 4w, (ws + wg)?. (6a)

(1 —x)(wyxi — 1) > ws, (6b)

Note that, in the case of satisfying condition (6a) but not condition (6b), then we may or may not
have a unique coexistence equilibrium point. However, when equality occurs in the condition (6a), both
the coexistence equilibrium points are coincided with each other and the system (2) has a unique

2 2
coexistence point, so that E; = E, = E(x*,y*) = E( Wa  AWaWstWe) tWa 1y, gyt —
wyx*t — (1 + w3)]).
The Jacobian matrix of the system (2) about an arbitrary point (x, y) is determined by:
xa—f +f xa—f

2m(ws+wg)’  am(ws+wg)?

0x dy
jen =" W7 | ™
Yox Yoy +g
where
of _ _ 2m®xy  Of _  -m g _ mwy(wy-m?x?) g _
ax 1+w; —2wyx + (Wo+m2x2)2’ 3y~ wy+m2x2’ dx  (wp+m2x2)2 ' and ay 0.

Recall that, if all the eigenvalues of the Jacobian matrix at an equilibrium point have negative real parts,
then this point is locally asymptotically stable. Accordingly, the following theorems present the local
stability conditions for each of the above equilibria.
Theorem 3: The trivial equilibrium point E; is always a locally asymptotically stable equilibrium point.
Proof: Depending on the general Jacobian matrix that is given by (7), the Jacobian matrix at E,(0,0) is
given by:

—(1+ws) 0
Since the eigenvaluesare 1, = —(1 + w3) < 0and A, = —(ws + wg) < 0, the trivial equilibrium point
is local asymptotical stable.
Theorem 4: The axial equilibrium point E; (x1, 0) of the system (2) is a locally asymptotically stable
equilibrium point if condition (9) holds, while it is a saddle-node when this condition is reflected.

x] Ws+Wwg
wy+m2x;? mwy ©)
Proof: At E; (x7,0), the Jacobian matrix can be written as

x1[1+wy — 2w, x7] %

J(x1,0) = S , (10)
wyamx;y
0 s (Ws + we)
* 1+wi /i 2 H * H
where x7 = e and u = (w; — 1)“ — 4w, w3. Therefore, the eigenvalues of J(x7, 0) are given by
1

A= x1[14+w; — 2wyxy] = x7 [1+w1 — 2w11+:’%] = —xj/u < 0. (11a)

1
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WWmexlz — (W5 + w). (11b)
Hence, the two eigenvalues are negative according to the given condition and the equilibrium points are
locally asymptotically stable. However, 4, will be positive if condition (9) is reflected, and hence the
axial equilibrium point E; (x7, 0) becomes a saddle node.

Theorem 5: The equilibrium point E,(x3,0) of the system (2) is an unstable node if the following

condition holds, while it is a saddle-node when this condition is reflected.

2=

x5 Wg+Wwg
wy+m2x;? mw, (12)
Proof: At E, (x5, 0), the Jacobian matrix is given by
x3[14+wy — 2wy x3] s
J(x2,0) = , o : (13)
wy+m2x3? 5 6
where x5 = %ﬁ Clearly, the eigenvalues of J(x;, 0) are:
1
Ay = x3[14wy — 2wix3] = 3 [ 14wy — 2w1%ﬁ | =x3vi>o. (14a)
wamxy

Hence, the two eigenvalues are positive according to the condition (12) and the equilibrium point is an
unstable node. However, 1, will be negative if condition (12) is reflected, and hence the axial
equilibrium point E, (x5, 0) becomes a saddle node.

Theorem 6: The coexistence equilibrium point E,(x;,y*) of the system (2) is locally asymptotically
stable, while E5(x3,y*) is a saddle point provided that the following conditions hold.

" 2m3xiy*
2wyix; > 1+wq + m (15a)

wy > m2x;2. (15b)
Proof: Depending on the general Jacobian matrix given by equation (7), the Jacobian matrix at
E;(x;,y*) fori = 3,4 is given by:

3Kk *
.. x; [1+W1 —2wyx; + (WZmezléz)z Wz_,_r:;;;z
J(xi,yi) = , mwa(wp—m2x]?) 0 ' (16)
(Wp+m2x}?)2

where x; and y* are given in equation (5).
Therefore, the eigenvalues of J(x;,y*) are the roots of the characteristic equation given by:

AZ + Olll + a, = 0, (17)

* ok * ok *2

where a; = —x; [1+w1 — 2wy x} + % and a, = mzx"(j‘:v :fr‘*rgigz’;fx‘ ). Recall that, according

to the Routh-Hurwitz criterion [21], when the coefficients a; and a, are positive, then the equilibrium
point is locally asymptotically stable, while if a; is positive and a, is negative, then the equilibrium
point is a saddle point. Straightforward computation shows that «; > 0 and a, > 0 under the conditions
(15a)-(15b) at the point E, (x4, y*), however a; > 0 and a, < 0 under the conditions (15a)-(15b) at the
point E5(x3,y*). Hence the coexistence equilibrium point E,(x3,y*) is locally asymptotically stable
and E5(x3,y™) is a saddle point. m
5. Bifurcation Analysis

The occurrence of the local bifurcation of the system (2) is discussed in this section using
Sotomayor's theorem [22],[23], which gives the necessary and sufficient conditions for three types ( (i)
saddle-node, (ii) transcritical, and (iii) pitchfork) of local bifurcations to occur. Since the existence of
non-hyperbolic equilibria is a necessary but not sufficient condition for the occurrence of the bifurcation
near the equilibrium point [22], the candidate bifurcation parameter is chosen to ensure that the studied
point will be non-hyperbolic for a specific parameter value. In other words, it is chosen to ensure that
one of the Jacobian's eigenvalues at the bifurcation point is zero.
System (2) can be rewritten in the following vector forms to simplify the notations:

ax

& = F OO, with X = [}] and F = [;g]
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Then the second derivate of F with respect to X can be expressed as:

2.2 3 242 T
1 —vazz("; X V:Z) + 2v; (1 +wy —3wyx + 2 2 ) "y?“z“ msx ))

2 (m?2x2+wy) (m2x2+4+w,)
D2F(X)(V,V) = (18a)

2muiw, (vz (w3-m*x*)+m2v; xy(m?2x? —3w2))

(m2x24w,)3
where V = (v,,v,)Tis a general vector. Furthermore, we have
m3v2x(3w2—m2x2)) n m3v,y(wi—6m2w,x2+m*x?)]
(m2x2+w,)3 (Mm2x24+w,)*
—6m3viw, (v,x(3wy—m2x2)(m2x2+w, ) +v; (Wi—6m2w,x2+mixt)y)
(Mm2x24w,)* ]
It is clear from the Jacobian matrix at the trivial equilibrium point E, given by equation (8) that there
is no possibility to obtain a zero eigenvalue. Hence the trivial equilibrium point is not a non-hyperbolic
point, which implies that no bifurcation may occur.

Theorem 7: If the parameter w, passes through the value w; = %, where B =

6v? (—v1w1 +

D3F(X)(V,V,V) = (18b)

2mw4f8
m2B2+4wiw,
f=0Q4+a+w;),and a = \/(W1 — 1)? — 4w, wy, then the system (2) at the axial equilibrium point
E; has

, with

i. No saddle-node bifurcation.
ii. Transcritical bifurcation provided that
m2B? # 4wiw,. (19)
iii. A pitchfork bifurcation otherwise.
Proof: At E;, the Jacobian matrix of system (2) with w, = w; becomes:

B3, __EmwiB
J1 = DF(E;,wy) = [(X twy wi 4w, W3 m2[>’2+4wfw2].
0 0

Clearly J; has a zero eigenvalue, and the corresponding eigenvector for this eigenvalue can be written
as:

U1:

B (m2B2+4w?w,)(3a2—(wy—1)2+2a(1+w;)+4wyws)
1
While the eigenvector corresponding to the zero eigenvalue of J;” is determined as:

0
Wl == [1].
Differentiating F with respect to w, gives:
0
ot ]
wy+m2x?2
Therefore, straightforward computation shows that:
WlTFW4(E1JWI) = 0.
Consequently, by Sotomayor’s theorem, the system (2) has no saddle-node bifurcation near E; and
w, = wy. Moreover, direct computation gives that:

N 2
W[ [DE,, (By, wi)U;| = —miaf

Rz Z =B * O
m2B2+4wiw,
Also, using the form of D2F given by equation (18a) and the eigenvectors U, and W, gives that:
Trn2 " _ 32mw3(m?B2—awiw,)(ws+wg)
Wi D F(El'w4)(U1' Ul)] - (mzﬁz+4w%w2)2(3a2—(w1—1)2+2a(1+w1)+4wlw3).
Therefore, condition (19) guarantees that W [D?F (E;,w;)(U;,U;)] # 0. Hence, by Sotomayor’s
theorem, a transcritical bifurcation takes place.
Moreover, if the condition (19) is not satisfied, then we have W[ [D?F(E,,w;)(Uy,U;)] = 0. In
addition, using the form of D3F given by equation (18b) and the eigenvectors U; and W, gives that:
Trn3 N _ 1536m*wéB(m2p2—12wiw,)(ws+wg)
Wi D F(Ey,wi)(Uy, Uy, Un)] = (mzﬁ?z+4w%w2)4(3a2—(w1—1)2+20z(1+w1)+4w1w3)2
Hence, a pitchfork bifurcation takes place and the proof is complete. m
Theorem 8: Assume that condition (15a) holds, then if the parameter w, passes through the value w,* =
2w, (ws + wg), the system (2) at the coexistence equilibrium points E; (i = 3,4) has

smw?p ]
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i. A saddle-node bifurcation provided that
2
m(l +w,) # %ﬂw) (20)
2
ii. Otherwise, system (2) undergoes a pitchfork bifurcation but not a transcritical bifurcation.
Proof: Obviously, as w, = wy", then the system (2) has a unique coexistence equilibrium point so that
E; = E, = E(x",y"). The Jacobian matrix of the system (2), at E (x*, y*) with w, = wy™, can be written
as:

2m(1+wq)\/wo 3w w, 1

J, = DF(E,w;*) = [ me —(A+wy) -
0 0
2m(1+wq)\/wy 3w w,

Therefore, J, has two eigenvalues; one negative A, = — — (1 + ws), which is

negative under the condition (15a), while the other one is a zero eigenvalue A1, =0, and the
corresponding eigenvector of A, = 0 can be written as:

mZ
U, = [_ 2\/w_2(m2(1+w3)—2m\/w_2(1+w1)+3w1w2)].
1
Clearly m?(1+ w3) — 2myw, (1 + w;) + 3wyw, > 0 under the condition (15a), while the

eigenvector corresponding to the A, = 0 of /,” is written as:

0
Therefore, a simple calculation shows that under the condition (20) we obtain
mwz(1+w1)—<w1w§/2+m2\/w_2(1+w3))

W,"E,, (E,wi™) =

m3
and

m3 (mwz (1+w1)—(w1w§/2 +m2Jw_2(1+w3))(w5 +w6)>

W,T[D?F(E,w;")(Uy, Uy)] = — # 0.

2w (3wywy+m? (14ws)—2myw; (14+w;))”
Hence, system (2) has a saddle-node bifurcation.

Moreover, when the condition (20) is not satisfied, the following is obtained:
T K% _ 1
W,"[DR,, (E,w;)U,| = Tt O

While: W,T[D2F(E,w;*)(U,,U,)] = 0.
Therefore, by Sotomayor’s theorem, there is no transcritical bifurcation at E.
Moreover, using the form of D3F given by equation (18b) and the eigenvectors U, and W, gives that:

6
W T D3F E %k U U U — 3m (m(1+wl)_2W1\/W_2)(W5W6)
2 [ ( »y Wy )( 2Y2, 2)] 4-W§/2(3W1W2+m2(1+W3)—2m\/W_2(1+W1))3

Hence, a pitchfork bifurcation takes place and this completes the proof. m
6. Numerical Analysis

In this section, the general dynamics of the system (2) are studied numerically for various sets of
initial values with various sets of parameter values. The goals of this study are to show the effects of
varying parameter values on the dynamical behavior of the system (2) as well as to approve the obtained
theoretical results. The combination of parameter values, listed in Table 1, is used to carry out the
numerical simulations.
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Table 1- Parameters’ values of system (2)

Parameters Value
wq 3.6
wy 0.1
w3 0.1
Wy 0.7
Ws 0.6
Wg 0.5
m 0.4

Now, using the parameters given in Table (1) with various sets of initial points, system (2) is solved
numerically and then the trajectories that have been obtained are drawn in the form of phase portrait, as
shown in Figure-1b, which coincides with line segments of the direction field of the system (1) given in
Figure-1a, that is defined as the collection of small line segments passing through various points having
a slope that will satisfy the given differential equation at that point. It is clear that Figure-1 shows the
general dynamical behaviors of the system (2); in fact, the domain is divided into three disjoint regions
(basins of attraction). The points in the first region approach asymptotically to the E,, while the points
in the second and third regions approach E; and E,, respectively.

0.20F [pyp e 0.2
[." AR P W =
nye =
]"{ ’/ / ’ / Y
0.15 [NEESENEEE LIV 7 S P e s
e @ = ,
(/o . . ip cfiffcccrery| A
= 0.10 u / / e ' e — S o1 (i g /ffrrr;k\r"*“
x 0. {/ /, A = Y W vece r/ﬂ\:;qéqaaéd_.
[// > BB R
0057 ¢ / / \\._ — _.- '3 \\:» c b
7 / e 0.05 .
oy i o 1‘
a//,///' / v o -
. - - - — | WE L ey g maAa -5 -
OOD_ / g ® ° 0 12 et-'r','éE :-f-b-f—f—f—f:—a—a—a—a—a—:—o—»—o—»i.g
0 0.2 0.4 0.6 0.8 1
0.0 0.2 04 0.6 0.8 1.0 x(t)
x(¢)
(@ (b)

Figure 1- For the parameters given in Table (1) with different initial points. (a) The
direction field of the system (2). (b) The phase portrait of the trajectories of the system
(2) in which the system approaches asymptotically to three different points Ey, E;, and E,
depending on their initial points. (Red points are the equilibrium points and blue points
are the initial points).

Three different initial points in each region are selected and then the time series for the obtained

trajectories of system (2) are drawn in Figures- (2), (3), and (4). Clearly, the trajectories of system (2)
approach to the Ey, E;, and E, in Figures- (2), (3), and (4), respectively.
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0.2
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Figure 2- The system (2) approaches asymptotically to E, using parameters in Table (1).
(a) Prey trajectories (b) Predator trajectories as a functions of time.

1 L
0.8 (
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o
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Figure 3-The system (2) approaches asymptotically to E;(0.9592,0) using parameters in
Table (1). (a) Prey trajectories (b) Predator trajectories as a functions of time.
Obviously, for the parameters given in Table (1), the system (2) has five equilibrium points, as shown
in Figure-1. Moreover, the local stability condition (9) for the axial equilibrium point E; (x7, 0), and the
conditions (15a) and (15b) for the coexistence point E,(x}, y*), are satisfied. Therefore, Figures- (2),
(3) and (4) confirm the obtained theoretical finding and the system approaches asymptotically to E,, E;,
and E,, respectively, depending on the initial point’s position.
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Figure 4- The system (2) approaches asymptotically to FE,(0.7074,0.1587) using
parameters in Table (1). (a) Prey trajectories (b) Predator trajectories as a functions of

time.
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Now, the effect of the varying in the parameters set on the dynamical behavior of the system (2) is also
investigated numerically. It is observed that as w, increases reaching the value w, = 0.70875, then
E; = E; and the equilibrium points E; and E, lose their stability so that all the trajectories of system (2)
approach asymptotically to the origin E,, as shown in Figure-5. Moreover for w, > 0.70875, keeping
other parameters as given in Table-1, then E5 dose not exist anymore and all the trajectories of system
(2) approach E, as shown in Figure-6. These results are in agreement with what was proven in theorem

7).
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Figure 5- For w, = 0.70875 and the rest of the parameters as given in Table (1) with
different initial points. (a) The direction field of the system (2). (b) Phase portrait of the
trajectories of the system (2) in which the system approaches asymptotically to E, for all
initial points, while E,, E3, and E, are unstable. (Red points are the equilibrium points
and blue points are the initial points)
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Figure 6- The system (2) approaches asymptotically to E, using the parameters in Table
(1) with w, > 0.70875 starting from different initial points. (a) Prey trajectories (b)
Predator trajectories as a functions of time.

On the other hand, if we decrease w, reaching the value w,;* = 0.6957, it is observed that E; = E,, and
the coexistence equilibrium point loses its stability, as shown in Figure-7. Moreover, for w, < 0.6957,
both E5 and E, do not exist anymore. This result agrees with what was proven in theorem (8).
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Figure 7- For w, = 0.6957 and the rest of the parameters given in Table (1) with different
initial points. (a) The direction field of the system (2). (b) Phase portrait of the
trajectories of the system (2) in which the system approaches asymptotically to E, and E;
depending on the initial points, while E, and E, are unstable. (Red points are the
equilibrium points and blue points are the initial points)

While Figure-1 showed the dynamic behaviors of the system when w; > 2.103269, Figure-8 shows
that when w; < 2.103269, the system has a unique equilibrium point E,. Moreover, E; does not exist
anymore.
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Figure 8- For w; < 2.10329 and the rest of the parameters given in Table-1 with different
initial points. (a) The direction field of the system (2). (b) Phase portrait of the
trajectories of the system (2) in which the system approaches asymptotically to E,, while
E,, E,, and E, are unstable and E; does not exist. (Red points are the equilibrium points
and blue points are the initial points)

The dynamics of the system (2) are further investigated with varying other parameters and Table-2
summarizes the obtained results.
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Table 2-The effects of varying the parameters' values on the dynamics of the system
(2).(S=Stable, U=Unstable, and N=Not existing)

The dynamic behavior of the equilibria
Parameter Value Eq E A I I
wy < 2.103269 S U U N U
" 2.103269 < w, S S U u S
w, < 0.0649 S U U N N
0.0649 < w, < 0.0969 S U U N U
" 0.0969 < w, < 0.1012 S S U U S
0.1012 < w, S S u N N
wy < 0.07 S S u U U
A 0.07 < ws < 0.2541 S S U U S
0.2541 < wy S u U N S
w, < 0.6957 S S U N N
W, 0.6957 < w, < 0.70875 S S U u S
0.70875 < w, S u U N U
we < 0.2674 S U u N N
0.2674 < ws < 0.5865 S U U N u
" 0.5865 < ws < 0.6068 S S U u S
0.6068 < ws S S u N N
we < 0.16734 S U U N N
We 0.16734 < wg < 0.5681 S S U U S
0.5681 < wg S S u N N
m < 0.295 S S u N N
0.295 < m < 0.3683 S U U N S
" 0.3683 < m < 0.8925 S S U u S
0.8925 < m S S u u N
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7. Discussion and Conclusions

This paper proposed and studied the dynamical behavior of an ecological system consisting of the
Sokol-Howell prey-predator model with a Strong Allee effect on prey species. The proportional
harvesting throughout the system is also included. The existence, uniqueness, and boundedness of its
solution are discussed. All the possible equilibria of this system with their local stability conditions are
obtained. It is observed that the system has at most five equilibria; the extinction equilibrium point that
always exists and is locally asymptotically stable point, two axial equilibria, one is a saddle point while
the other is locally asymptotically stable under some conditions, and two coexistent equilibria so that
one of them is locally asymptotically stable under given conditions and the second is a saddle point.
Finally, the local bifurcation that may occur near the equilibrium points is also investigated using
Sotomayor's theorem. The proposed system is also investigated numerically in order to understand the
global behavior of the system and detect the effects of the values of the parameter on the dynamical
behavior of the system.
For the data given in Table-1, a different set of data may be used, it is observed that as the prey
population crosses the Allee threshold value that is given by w; = 2.103269, the system becomes
asymptotically stable at the coexistence equilibrium, otherwise the system approaches to the extinction
equilibrium point asymptotically. When the prey’s harvesting rate crosses a specific value, then the axial
equilibrium points become unstable and the system approaches asymptotically to the extinction
equilibrium point and the coexistence equilibrium point, depending on the initial point. However, when
the predator’s harvesting rate crosses a specific value, the system loses its persistence, due to the
extinction of the predator, and the solution approaches asymptotically to the extinction equilibrium point
and axial equilibrium point, depending on the initial point. The system has two bifurcation points
regarding the conversion rate; at the first one, two coexistence equilibrium points were born, while at
the second one the axial equilibrium point loses its stability, and the system approaches the extinction
equilibrium point. Finally, increasing the availability of food (or decreasing the prey’s refuge rate) leads
first to create the coexistence equilibrium points, so that the system transfers its stability from the axial
point to the coexistence point; however, increasing the availability of food further leads to an exchange
in the stability of the system so that the coexistence equilibrium points lose their stability and the axial
point becomes stable. According to the above conclusions and discussions, there is the possibility to
control the system by choosing the ranges of its parameters’ suitability.
Keeping the above in mind, the existence of a strong Allee effect in the prey population leads to specify
the region of the persistence of the system through specifying the Allee threshold value. However,
increasing the harvesting rate from the prey keeps the system persisting, while increasing the predator
harvesting leads to losing the persistence of the system. Finally, decreasing slightly the refuge rate of
the prey has a stabilizing effect on the system at first; however, further decreasing the refuge rate leads
to destabilizing the system at the coexistence equilibrium point.
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