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Abstract  

In this paper,  a Sokol-Howell prey-predator model involving strong 

Allee effect is proposed and analyzed. The existence, uniqueness, and 

boundedness are studied. All the five possible equilibria have been are 

obtained and their local stability conditions are established. Using 

Sotomayor's theorem, the conditions of local saddle-node and transcritical 

and pitchfork bifurcation are derived and drawn. Numerical simulations are 

performed to clarify the analytical results. 
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تضمن تأثير آلي من النوع القوي الم المفترس  – هاويل للفريسة - ديناميكية نموذج سوكول   
 

محمد علي المؤمن*، رائد كامل ناجي سعد    
الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق قسم    

 الخلاصة 
تأثير آلي من النوع    يتضمنالذي    للفريسة والمفترسهاول  - في هذه الورقة، تم اقتراح وتحليل نموذج سوكول      

،  نقاط التوازن الخمسة المحتملة   جميع   ايجاد. تم  قيد الحل  لإيجادته إضافة  الحل ووحداني   القوي. تمت دراسة وجود
  ايجاد شروط التشعب تم    . باستخدام نظرية سوتومايوربهذه النقطوتم وضع شروط الاستقرار المحلية الخاصة  

تم إجراء عمليات المحاكاة  تشعب المذراة. كما  عقدة السرج المحلية والتشعب الحرج و تقديم رسوم لكل من تشعب  و 
 .النتائج التحليليةالعددية لتوضيح  

1. Introduction 

      The study of prey-predator dynamics is important in both theoretical ecology and applied 

mathematics. It is used to descript the relationships between species and their surrounding environment 

in addition to the connections between different species. Therefore, the prey-predator models have been 

receiving great interest in population dynamics. Consequently, varieties of mathematical models have 

been studied by many researchers. These models were written in the framework of the traditional work 

given by Lotka [1] and Volterra [2]. In fact, the traditional Lotka-Volterra model serves as the basis for 

many models used today to analyze population dynamics. Many of the well-known proposed classical 

models were developed by many researchers taking into consideration various environmental factors 

that affect the existence and stability of this system, such as prey refuge [3-5], disease,[6, 7], delay [8], 

harvesting [9] and many other factors [10-13]. 

Note that, the Lotka-Volterra prey-predator model in its general form can be expressed by  [14]: 
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𝑑𝑁

𝑑𝑡
= 𝑓(𝑁)𝑁 − 𝑎1𝑔(𝑁)𝑃, 

𝑑𝑃

𝑑𝑡
= −𝑑𝑃 + 𝑎2𝑔(𝑁)𝑃, 

where 𝑁(𝑡) and 𝑃(𝑡) denote the prey and predator individuals. While 𝑓(𝑁) is the prey's growth rate per 

capita, d is the predator's death rate in the absence of prey and 𝑎1 and 𝑎2 are the prey and predator 

interaction rates, respectively. The function 𝑔(𝑁) is the functional response of the predators, which 

corresponds to the saturation of their appetites and reproductive capacity. In theoretical ecology, several 

known functional responses in the prey-predator system exist, which include Holling type-I, type-II, 

type-III, type-IV, Beddington–DeAngelis type, and ratio-dependent type, etc. Some authors investigated 

and introduced several open questions for the structured prey-predator models using different types of 

functional responses, [12, 13, 15, 16]. In this paper, however, Sokol-Howell type of functional response 

[17] that is expressed as 𝑔(𝑁) =
𝛼1𝑁

𝛼2+𝑁2 is used, which is simply a modified version of the Holling type 

III that is represented by 𝑔(𝑁) =
𝛼1𝑁

𝛼2+𝑁+𝛼3𝑁2. Although type III functional response and their 

modification represented by Sokol-Howell type are similar to type II at high levels of prey density, 

where the saturation occurs, at low prey density levels, the graphical relationship of the number of prey 

consumed by predators and the density of the prey population is an increasing function. The 

deacceleration property of  Sokol-Howell type of functional response at the high levels of prey density 

can be used to describing the group defense property of some types of prey, such as buffalo against their 

predators such as lions or tigers. 

Allee [18] was the first to describe the Allee effect in 1931. He reviewed the evidence regarding the 

impacts of population density on demographic and life-history attributes, demonstrating that the growth 

rate is not always positive for small densities, and it may not be decreasing as predicted by the logistic 

model. In other words, the Allee effect might reduce the intrinsic growth at low population densities, 

making the system unstable. There are a lot of factors that may cause the Allee effect; for example, 

difficulties in finding mates, predator avoidance of defense, social dysfunction in small population sizes, 

genetic drift, food exploitation, and several other causes. These effects can be observed in various 

species, including vertebrates, invertebrates, and plants. The effect usually saturates or fades with 

increasing population size [19]. There are two types of Allee effect: (i) The strong Allee effect has a 

negative per capita growth rate at a low population level and implies the existence of a threshold level 

of the population, so that the species become extinct below this level, causing an unstable equilibrium 

at some small, non-zero population size. The population must exceed this threshold to grow and avoid 

extinction. (ii) The weak Allee effect that has a decreasing per capita growth rate but remains positive 

at a low population level, which causes an unstable equilibrium [20]. 

The goal of this work is to investigate the Sokol-Howell prey-predator system, which has a strong Allee 

effect on the prey species. The existence and stability of equilibria are examined theoretically and 

numerically. Also, a rich investigation of the effects of varying the parameter values is given. 

2. Mathematical Model Formulation 

     A mathematical model that simulates the dynamics of the prey-predator system involving the strong 

Allee effect in prey species and harvesting is formulated mathematically.  It is supposed that the prey 

grows logistically in the absence of the predator, while the predator consumes the prey according to the 

Sokol-Howell type of functional response. Therefore, the dynamics of such a system can be defined as 

follows: 
𝑑𝑁

𝑑𝑇
= 𝑟𝑁 (1 −

𝑁

𝑘
) (

𝑁

𝑀
− 1) −

𝑎𝑚𝑁𝑃

𝑏 + 𝛾𝑚2𝑁2
− 𝑞1𝐸1𝑁, 

𝑑𝑃

𝑑𝑇
= 𝑒

𝑎𝑚𝑁𝑃

𝑏 + 𝛾𝑚2𝑁2
− 𝑑𝑃 − 𝑞2𝐸2𝑃, 

(1) 

where  

𝑁(𝑡) ≥ 0: the density of prey at time 𝑇, 

𝑃(𝑡) ≥ 0: the density of predator at time 𝑇 

𝑟: the prey-intrinsic  growth rate,  

𝑘: the environment-carrying capacity,  

𝑀 ≪ 𝑘: the Allee threshold of the prey population in the absence of predators,  

𝑎: the maximum attack (predation) rate,  
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(1 − 𝑚) ∈ (0,1): the prey-refuge rate, such that 𝑚𝑁 is the available prey for predation,  

𝑏: the half-saturation constant,  

𝑞𝑖 , (𝑖 = 1,2): the catchability constant,  

𝑒 ∈ (0,1): the food-conversion efficiency,  

𝑑: the predator-natural death rate,  

𝛾: the inverse measure of inhibitory effect,  

𝐸𝑖 , (𝑖 = 1,2):  the harvesting effort.  

All the above parameters are positive constants. 

Note that, using the scaling parameters 𝑟𝑇 = 𝑡, 𝑥 =
𝑁

𝑘
 and 𝑦 =

𝑎𝑃

𝑟𝛾𝑘2 in the system (1) reduces the number 

of parameters from 13 to 7 and the system (1) takes the following dimensionless form: 
𝑑𝑥

𝑑𝑡
= 𝑥 [(1 − 𝑥)(𝑤1𝑥 − 1) −

𝑚𝑦

𝑤2 + 𝑚2𝑥2
− 𝑤3] = 𝑥𝑓(𝑥, 𝑦), 

𝑑𝑦

𝑑𝑡
= 𝑦 [

𝑤4𝑚𝑥

𝑤2 + 𝑚2𝑥2
− (𝑤5 + 𝑤6)] = 𝑦𝑔(𝑥, 𝑦),  

(2) 

where the dimensionless parameters are given by: 

𝑤1 =
𝑘

𝑀
,  𝑤2 =

𝑏

𝛾𝑘2,  𝑤3 =
𝑞1𝐸1

𝑟
,  𝑤4 =

𝑒𝑎

𝑟𝛾𝑘
,  𝑤5 =

𝑑

𝑟
,  𝑤6 =

𝑞2𝐸2

𝑟
. 

Note that, since the right-hand side of the interaction functions of the system (2) are continuous and 

have continuous partial derivatives, then system (2) has a unique solution that belongs to the positive 

quadrant ℝ+
2 . 

3. Positivity and Boundedness 

     The positivity of the solution ensures that any solution of the system (2) with positive initial 

conditions remains at all times positive. While the boundedness confirms that the solution of the system 

(2) cannot increase without limit and hence it converges to an attractor. 

Theorem 1: All solutions of the system (2) that start in ℝ+
2  remain positive forever. 

Proof: Let (𝑥(𝑡), 𝑦(𝑡)) be any solution of the system (2). Then it is clear that: 

𝑥(𝑡) = 𝑥(0)𝑒∫ 𝑓(𝑥(𝑠),𝑦(𝑠))
𝑡

0
𝑑𝑠 ≥ 0. 

and 

𝑦(𝑡) = 𝑦(0)𝑒∫ 𝑔(𝑥(𝑠),𝑦(𝑠))
𝑡

0
𝑑𝑠 ≥ 0.■              

Theorem 2: All the solutions of the system (2) that start in ℝ+
2  are uniformly bounded. 

Proof: Consider the function 𝐺(𝑥) = 𝑥[1 + (1 − 𝑥)(𝑤1𝑥 − 1)]. Hence it is easy to show that 𝐺(𝑥) 

reaches its maximum value at 𝑥 = �̃� =
2(1+𝑤1)

3𝑤1
, and then the maximum value of 𝐺(𝑥) is given by  

𝐺𝑚𝑎𝑥 =
4(1+𝑤1)3

27𝑤1
2 > 0. Let  

𝑊 = 𝐴𝑥(𝑡) + 𝐵𝑦(𝑡), 

where 𝐴 =
1

𝐺𝑚𝑎𝑥
, and 𝐵 =

𝐴

𝑤4
. Then 

�̇� = 𝐴�̇� + 𝐵�̇� = 1 − 𝐴𝑥 − 𝐴𝑤3𝑥 − 𝐵(𝑤5 + 𝑤6)𝑦 = 1 − 𝐴(1 + 𝑤3)𝑥 − 𝐵(𝑤5 + 𝑤6)𝑦 
= 1 − (1 + 𝑤3)(𝐴𝑥 + 𝐵𝜎𝑦) < 1 − (1 + 𝑤3)𝜏𝑊, 

where 𝜎 =
𝑤5+𝑤6

1+𝑤3
 and 𝜏 = 𝑚𝑖𝑛{1, 𝜎}. 

That is 

�̇� + (1 + 𝑤3)𝜏𝑊 ≤ 1. 
So, we obtain that 

0 ≤ 𝑊(𝑥(𝑡), 𝑦(𝑡)) ≤
1

(1+𝑤3)𝜏
+ 𝑒−(1+𝑤3)𝜏𝑡𝑊(𝑥(0), 𝑦(0)). 

Therefore, as 𝑡 → ∞, yields 

0 ≤ 𝑊 ≤
1

(1+𝑤3)𝜏
. 

Thus all the solutions of the system (2) enter into the region: 

Ω = {(𝑥, 𝑦): 0 ≤ 𝑊 ≤
1

(1+𝑤3)𝜏
+ 𝜀, for any 𝜀 > 0}. ■ 

        



Al-Momen and Naji                                  Iraqi Journal of Science, 2021, Vol. 62, No. 9, pp: 3114-3127 
 

3117 

4. Qualitative Analysis of Equilibria 

     In this section, the existence of the equilibria of the system (2) and the qualitative study of their 

stability are carried out. The computation shows that system (2) has five equilibria. The trivial 

equilibrium point 𝐸0(0,0) always exists. The axial equilibrium points, say  𝐸𝑖(𝑥𝑖
∗, 0) for 𝑖 = 1,2, where 

𝑥𝑖
∗ is given in equation (3), exist under the condition (4).  

𝑥𝑖
∗ =

1+𝑤1∓√(𝑤1−1)2−4𝑤1𝑤3

2𝑤1
.                            (3) 

(𝑤1 − 1)2 > 4𝑤1𝑤3.                          (4) 

     While 𝐸(0, 𝑦) cannot exist due to the fact that the predators cannot coexist without the availability 

of their food given by the prey. The coexistence equilibrium points, say 𝐸𝑖(𝑥𝑖
∗, 𝑦∗) for 𝑖 = 3,4, where 

𝑥𝑖
∗ and 𝑦∗, are given by equation (5) and they exist together provided that the conditions (6a)-(6b) are 

satisfied simultaneously.  

𝑥3
∗ =

𝑤4+√𝑤4
2−4𝑤2(𝑤5+𝑤6)2

2𝑚(𝑤5+𝑤6)
, 𝑥4

∗ =
𝑤4−√𝑤4

2−4𝑤2(𝑤5+𝑤6)2

2𝑚(𝑤5+𝑤6)

𝑦∗ =
𝑤2+𝑚2𝑥𝑖

∗2

𝑚
[(1 − 𝑥𝑖

∗)(𝑤1𝑥𝑖
∗ − 1) − 𝑤3]                   

 .                                                  (5) 

 𝑤4
2 ≥ 4𝑤2(𝑤5 + 𝑤6)

2.                           (6a)  

 (1 − 𝑥𝑖
∗)(𝑤1𝑥𝑖

∗ − 1) > 𝑤3.             (6b) 

     Note that, in the case of satisfying condition (6a) but not condition (6b), then we may or may not 

have a unique coexistence equilibrium point. However, when equality occurs in the condition (6a), both 

the coexistence equilibrium points are coincided with each other and the system (2) has a unique 

coexistence point, so that 𝐸3 = 𝐸4 = 𝐸(𝑥∗, 𝑦∗) = 𝐸 (
𝑤4

2𝑚(𝑤5+𝑤6)
,
4𝑤2(𝑤5+𝑤6)2+𝑤4

2

4𝑚(𝑤5+𝑤6)2
[(𝑤1 + 1)𝑥∗ −

𝑤1𝑥
∗2 − (1 + 𝑤3)]). 

The Jacobian matrix of the system (2) about an arbitrary point (𝑥, 𝑦) is determined by: 

𝐽(𝑥, 𝑦) = [
𝑥

𝜕𝑓

𝜕𝑥
+ 𝑓 𝑥

𝜕𝑓

𝜕𝑦

𝑦
𝜕𝑔

𝜕𝑥
𝑦

𝜕𝑔

𝜕𝑦
+ 𝑔

], (7) 

where 
𝜕𝑓

𝜕𝑥
= 1+𝑤1 − 2𝑤1𝑥 +

2𝑚3𝑥𝑦

(𝑤2+𝑚2𝑥2)2
, 

𝜕𝑓

𝜕𝑦
=

−𝑚

𝑤2+𝑚2𝑥2, 
𝜕𝑔

𝜕𝑥
=

𝑚𝑤4(𝑤2−𝑚2𝑥2)

(𝑤2+𝑚2𝑥2)2
, and 

𝜕𝑔

𝜕𝑦
= 0. 

Recall that, if all the eigenvalues of the Jacobian matrix at an equilibrium point have negative real parts, 

then this point is locally asymptotically stable. Accordingly, the following theorems present the local 

stability conditions for each of the above equilibria. 

Theorem 3: The trivial equilibrium point 𝐸0 is always a locally asymptotically stable equilibrium point. 

Proof: Depending on the general Jacobian matrix that is given by (7), the Jacobian matrix at 𝐸0(0,0) is 

given by: 

𝐽(0,0) = [
−(1 + 𝑤3) 0

0 −(𝑤5 + 𝑤6)
].                     (8) 

Since the eigenvalues are 𝜆1 = −(1 + 𝑤3) < 0 and 𝜆2 = −(𝑤5 + 𝑤6) < 0, the trivial equilibrium point 

is local asymptotical stable.         

Theorem 4: The axial equilibrium point 𝐸1(𝑥1
∗, 0) of the system (2) is a locally asymptotically stable 

equilibrium point if condition (9) holds, while it is a saddle-node when this condition is reflected.  
𝑥1

∗

𝑤2+𝑚2𝑥1
∗2 <

𝑤5+𝑤6

𝑚𝑤4
.                         (9) 

Proof: At 𝐸1(𝑥1
∗, 0), the Jacobian matrix can be written as 

𝐽(𝑥1
∗, 0) = [

𝑥1
∗[1+𝑤1 − 2𝑤1𝑥1

∗]
−𝑚𝑥1

∗

𝑤2+𝑚2𝑥1
∗2

0
𝑤4𝑚𝑥1

∗

𝑤2+𝑚2𝑥1
∗2 − (𝑤5 + 𝑤6)

],         (10) 

where 𝑥1
∗ =

1+𝑤1+√𝜇

2𝑤1
 and 𝜇 = (𝑤1 − 1)2 − 4𝑤1𝑤3. Therefore, the eigenvalues of 𝐽(𝑥1

∗, 0) are given by 

𝜆1 = 𝑥1
∗[1+𝑤1 − 2𝑤1𝑥1

∗] = 𝑥1
∗ [1+𝑤1 − 2𝑤1

1+𝑤1+√𝜇

2𝑤1
 ] = −𝑥1

∗
√𝜇 < 0.             (11a)    
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𝜆2 =
𝑤4𝑚𝑥1

∗

𝑤2+𝑚2𝑥1
∗2 − (𝑤5 + 𝑤6).         (11b) 

Hence, the two eigenvalues are negative according to the given condition and the equilibrium points are 

locally asymptotically stable. However, 𝜆2 will be positive if condition (9) is reflected, and hence the 

axial equilibrium point 𝐸1(𝑥1
∗, 0) becomes a saddle node.    

Theorem 5: The equilibrium point 𝐸2(𝑥2
∗, 0) of the system (2) is an unstable node if the following 

condition holds,  while it is a saddle-node when this condition is reflected. 

 
𝑥2

∗

𝑤2+𝑚2𝑥2
∗2 >

𝑤5+𝑤6

𝑚𝑤4
.               (12) 

Proof: At 𝐸2(𝑥2
∗, 0), the Jacobian matrix is given by 

𝐽(𝑥2
∗, 0) = [

𝑥2
∗[1+𝑤1 − 2𝑤1𝑥2

∗]
−𝑚𝑥2

∗

𝑤2+𝑚2𝑥2
∗2

0
𝑤4𝑚𝑥2

∗

𝑤2+𝑚2𝑥2
∗2 − (𝑤5 + 𝑤6)

],          (13) 

where 𝑥2
∗ =

1+𝑤1−√𝜇

2𝑤1
. Clearly, the eigenvalues of 𝐽(𝑥2

∗, 0) are: 

𝜆1 = 𝑥2
∗[1+𝑤1 − 2𝑤1𝑥2

∗] = 𝑥2
∗ [1+𝑤1 − 2𝑤1

1+𝑤1−√𝜇

2𝑤1
 ] = 𝑥2

∗
√𝜇 > 0.                          (14a) 

𝜆2 =
𝑤4𝑚𝑥2

∗

𝑤2+𝑚2𝑥2
∗2 − (𝑤5 + 𝑤6).                       (14b) 

Hence, the two eigenvalues are positive according to the condition (12) and the equilibrium point is an 

unstable node. However, 𝜆2 will be negative if condition (12) is reflected, and hence the axial 

equilibrium point 𝐸2(𝑥2
∗, 0) becomes a saddle node.                

Theorem 6: The coexistence equilibrium point 𝐸4(𝑥4
∗, 𝑦∗) of the system (2) is locally asymptotically 

stable, while 𝐸3(𝑥3
∗, 𝑦∗) is a saddle point provided that the following conditions hold. 

2𝑤1𝑥𝑖
∗ > 1+𝑤1 +

2𝑚3𝑥𝑖
∗𝑦∗

(𝑤2+𝑚2𝑥𝑖
∗2)2

 .            (15a) 

𝑤2 > 𝑚2𝑥𝑖
∗2.                (15b) 

Proof: Depending on the general Jacobian matrix given by equation (7), the Jacobian matrix at 

𝐸𝑖(𝑥𝑖
∗, 𝑦∗) for 𝑖 = 3,4 is given by:  

𝐽(𝑥𝑖
∗, 𝑦𝑖

∗) = [
𝑥𝑖

∗ [1+𝑤1 − 2𝑤1𝑥𝑖
∗ +

2𝑚3𝑥𝑖
∗𝑦∗

(𝑤2+𝑚2𝑥𝑖
∗2)2

]
−𝑚𝑥𝑖

∗

𝑤2+𝑚2𝑥𝑖
∗2

𝑦∗ 𝑚𝑤4(𝑤2−𝑚2𝑥𝑖
∗2)

(𝑤2+𝑚2𝑥𝑖
∗2)2

0
],                  (16) 

where 𝑥𝑖
∗ and 𝑦∗ are given in equation (5).  

Therefore, the eigenvalues of 𝐽(𝑥𝑖
∗, 𝑦∗) are the roots of the characteristic equation given by: 

𝜆2 + 𝛼1𝜆 + 𝛼2 = 0,             (17) 

where 𝛼1 = −𝑥𝑖
∗ [1+𝑤1 − 2𝑤1𝑥𝑖

∗ +
2𝑚3𝑥𝑖

∗𝑦∗

(𝑤2+𝑚2𝑥𝑖
∗2)2

] and 𝛼2 =
𝑚2𝑥𝑖

∗𝑦∗𝑤4(𝑤2−𝑚2𝑥𝑖
∗2)

(𝑤2+𝑚2𝑥𝑖
∗2)3

. Recall that, according 

to the Routh-Hurwitz criterion [21], when the coefficients 𝛼1 and 𝛼2 are positive, then the equilibrium 

point is locally asymptotically stable, while if 𝛼1 is positive and 𝛼2 is negative, then the equilibrium 

point is a saddle point. Straightforward computation shows that 𝛼1 > 0 and 𝛼2 > 0  under the conditions 

(15a)-(15b) at the point E4(x4
∗ , 𝑦∗), however 𝛼1 > 0 and 𝛼2 < 0 under the conditions (15a)-(15b) at the 

point E3(x3
∗ , 𝑦∗). Hence the coexistence equilibrium point 𝐸4(𝑥4

∗, 𝑦∗) is locally asymptotically stable 

and 𝐸3(𝑥3
∗, 𝑦∗) is a saddle point. ■            

5. Bifurcation Analysis 

     The occurrence of the local bifurcation of the system (2) is discussed in this section using 

Sotomayor's theorem [22],[23], which gives the necessary and sufficient conditions for three types ( (i) 

saddle-node, (ii) transcritical, and (iii) pitchfork) of local bifurcations to occur.  Since the existence of 

non-hyperbolic equilibria is a necessary but not sufficient condition for the occurrence of the bifurcation 

near the equilibrium point [22], the candidate bifurcation parameter is chosen to ensure that the studied 

point will be non-hyperbolic for a specific parameter value. In other words, it is chosen to ensure that 

one of the Jacobian's eigenvalues at the bifurcation point is zero. 

System (2) can be rewritten in the following vector forms to simplify the notations: 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋), with 𝑋 = [

𝑥
𝑦], and 𝐹 = [

𝑥𝑓
𝑦𝑔

]. 
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Then the second derivate of 𝐹 with respect to 𝑋 can be expressed as: 

𝐷2𝐹(𝑋)(𝑉, 𝑉) =

[
 
 
 
 𝑣1 (

2𝑚𝑣2(𝑚2𝑥2−𝑤2)

(𝑚2𝑥2+𝑤2)2
+ 2𝑣1 (1 + 𝑤1 − 3𝑤1𝑥 +

𝑚3𝑥𝑦(3𝑤2−𝑚2𝑥2)

(𝑚2𝑥2+𝑤2)
3 ))

2𝑚𝑣1𝑤4(𝑣2(𝑤2
2−𝑚4𝑥4)+𝑚2𝑣1𝑥𝑦(𝑚2𝑥2−3𝑤2))

(𝑚2𝑥2+𝑤2)3 ]
 
 
 
 

     (18a) 

where 𝑉 = (𝑣1, 𝑣2)
𝑇is a general vector. Furthermore, we have  

𝐷3𝐹(𝑋)(𝑉, 𝑉, 𝑉) = [
6𝑣1

2 (−𝑣1𝑤1 +
𝑚3𝑣2𝑥(3𝑤2−𝑚2𝑥2)

(𝑚2𝑥2+𝑤2)3
) +

𝑚3𝑣1𝑦(𝑤2
2−6𝑚2𝑤2𝑥2+𝑚4𝑥4)

(𝑚2𝑥2+𝑤2)4

−6𝑚3𝑣1
2𝑤4(𝑣2𝑥(3𝑤2−𝑚2𝑥2)(𝑚2𝑥2+𝑤2)+𝑣1(𝑤2

2−6𝑚2𝑤2𝑥2+𝑚4𝑥4)𝑦)

(𝑚2𝑥2+𝑤2)4

]     (18b) 

     It is clear from the Jacobian matrix at the trivial equilibrium point 𝐸0  given by equation (8) that there 

is no possibility to obtain a zero eigenvalue. Hence the trivial equilibrium point is not a non-hyperbolic 

point, which implies that no bifurcation may occur. 

Theorem 7: If the parameter 𝑤4 passes through the value 𝑤4
∗ =

𝑤5+𝑤6

𝐵
, where 𝐵 =

2𝑚𝑤1𝛽

𝑚2𝛽2+4𝑤1
2𝑤2

 , with 

𝛽 = (1 + 𝛼 + 𝑤1), and 𝛼 = √(𝑤1 − 1)2 − 4𝑤1𝑤3, then the system (2) at the axial equilibrium point 

𝐸1 has 

i. No saddle-node bifurcation. 

ii. Transcritical bifurcation provided that 

 𝑚2𝛽2 ≠ 4𝑤1
2𝑤2.                        (19) 

iii. A pitchfork bifurcation otherwise.  

Proof: At 𝐸1, the Jacobian matrix of system (2) with 𝑤4 = 𝑤4
∗ becomes: 

𝐽1 = 𝐷𝐹(𝐸1, 𝑤4
∗) = [

𝛼 + 𝑤1 +
𝛽

𝑤1
−

3𝛽2

4𝑤1
− 𝑤3 −

2𝑚𝑤1𝛽

𝑚2𝛽2+4𝑤1
2𝑤2

0 0
]. 

Clearly 𝐽1 has a zero eigenvalue, and the corresponding eigenvector for this eigenvalue can be written 

as:   

𝑈1 = [
−

8𝑚𝑤1
2𝛽

(𝑚2𝛽2+4𝑤1
2𝑤2)(3𝛼2−(𝑤1−1)2+2𝛼(1+𝑤1)+4𝑤1𝑤3)

1
]. 

While the eigenvector corresponding to the zero eigenvalue of 𝐽1
𝑇 is determined as: 

𝑊1 = [
0
1
].  

Differentiating 𝐹 with respect to 𝑤4 gives:   

𝐹𝑤4
= [

0
𝑚𝑥𝑦

𝑤2+𝑚2𝑥2
]. 

Therefore, straightforward computation shows that: 

𝑊1
𝑇𝐹𝑤4

(𝐸1, 𝑤4
∗) = 0. 

Consequently, by Sotomayor’s theorem, the system (2) has no saddle-node bifurcation near 𝐸1 and  

𝑤4 = 𝑤4
∗. Moreover, direct computation gives that: 

𝑊1
𝑇[𝐷𝐹𝑤4

(𝐸1, 𝑤4
∗)𝑈1] =

2𝑚𝑤1𝛽

𝑚2𝛽2+4𝑤1
2𝑤2

= 𝐵 ≠ 0. 

Also, using the form of 𝐷2𝐹 given by equation (18a) and the eigenvectors 𝑈1 and 𝑊1 gives that: 

𝑊1
𝑇[𝐷2𝐹(𝐸1, 𝑤4

∗)(𝑈1, 𝑈1)] =
32𝑚𝑤1

3(𝑚2𝛽2−4𝑤1
2𝑤2)(𝑤5+𝑤6)

(𝑚2𝛽2+4𝑤1
2𝑤2)

2
(3𝛼2−(𝑤1−1)2+2𝛼(1+𝑤1)+4𝑤1𝑤3)

. 

Therefore, condition (19) guarantees that 𝑊1
𝑇[𝐷2𝐹(𝐸1, 𝑤4

∗)(𝑈1, 𝑈1)] ≠ 0. Hence, by Sotomayor’s 

theorem, a transcritical bifurcation takes place. 

Moreover, if the condition (19) is not satisfied, then we have 𝑊1
𝑇[𝐷2𝐹(𝐸1, 𝑤4

∗)(𝑈1, 𝑈1)] = 0. In 

addition, using the form of 𝐷3𝐹 given by equation (18b) and the eigenvectors 𝑈1 and 𝑊1 gives that: 

𝑊1
𝑇[𝐷3𝐹(𝐸1, 𝑤4

∗)(𝑈1, 𝑈1, 𝑈1)] =
1536𝑚4𝑤1

6𝛽(𝑚2𝛽2−12𝑤1
2𝑤2)(𝑤5+𝑤6)

(𝑚2𝛽2+4𝑤1
2𝑤2)

4
(3𝛼2−(𝑤1−1)2+2𝛼(1+𝑤1)+4𝑤1𝑤3)2

≠ 0. 

Hence, a pitchfork bifurcation takes place and the proof is complete. ■                 

Theorem 8: Assume that condition (15a) holds, then if the parameter 𝑤4 passes through the value 𝑤4
∗∗ =

2√𝑤2(𝑤5 + 𝑤6), the system (2) at the coexistence equilibrium points 𝐸𝑖  (𝑖 = 3,4) has  
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i. A saddle-node bifurcation provided that 

 𝑚(1 + 𝑤1) ≠
𝑤1𝑤2+𝑚2(1+𝑤3)

√𝑤2
.                                      (20) 

ii. Otherwise, system (2) undergoes a pitchfork bifurcation but not a transcritical bifurcation. 

Proof: Obviously, as w4 = w4
∗∗, then the system (2) has a unique coexistence equilibrium point so that 

E3 = E4 = 𝐸(𝑥∗, 𝑦∗). The Jacobian matrix of the system (2), at 𝐸(𝑥∗, 𝑦∗) with 𝑤4 = 𝑤4
∗∗, can be written 

as: 

𝐽2 = 𝐷𝐹(𝐸,𝑤4
∗∗) = [

2𝑚(1+𝑤1)√𝑤2−3𝑤1𝑤2

𝑚2 − (1 + 𝑤3) −
1

2√𝑤2

0 0
]. 

Therefore, 𝐽2 has two eigenvalues; one negative 𝜆1 =
2𝑚(1+𝑤1)√𝑤2−3𝑤1𝑤2

𝑚2 − (1 + 𝑤3), which is 

negative under the condition (15a), while the other one is a zero eigenvalue 𝜆2 = 0, and the 

corresponding eigenvector of 𝜆2 = 0 can be written as: 

𝑈2 = [
−

𝑚2

2√𝑤2(𝑚2(1+𝑤3)−2𝑚√𝑤2(1+𝑤1)+3𝑤1𝑤2)

1
]. 

Clearly 𝑚2(1 + 𝑤3) − 2𝑚√𝑤2(1 + 𝑤1) + 3𝑤1𝑤2 > 0 under the condition (15a), while the 

eigenvector corresponding to the 𝜆2 = 0  of 𝐽2
𝑇 is written as: 

𝑊2 = [
0
1
]. 

Therefore, a simple calculation shows that under the condition (20)  we obtain 

𝑊2
𝑇𝐹𝑤4

(𝐸,𝑤4
∗∗) =

𝑚𝑤2(1+𝑤1)−(𝑤1𝑤2
3/2

+𝑚2
√𝑤2(1+𝑤3))

𝑚3 ≠ 0. 

and 

𝑊2
𝑇[𝐷2𝐹(𝐸,𝑤4

∗∗)(𝑈2, 𝑈2)] = −
𝑚3(𝑚𝑤2(1+𝑤1)−(𝑤1𝑤2

3/2
+𝑚2

√𝑤2(1+𝑤3))(𝑤5+𝑤6))

2𝑤2
3/2

(3𝑤1𝑤2+𝑚2(1+𝑤3)−2𝑚√𝑤2(1+𝑤1))
2 ≠ 0. 

Hence, system (2) has a saddle-node bifurcation. 

Moreover, when the condition (20) is not satisfied, the following is obtained: 

𝑊2
𝑇[𝐷𝐹𝑤4

(𝐸, 𝑤4
∗∗)𝑈2] =

1

2√𝑤2
≠ 0. 

While:            𝑊2
𝑇[𝐷2𝐹(𝐸,𝑤4

∗∗)(𝑈2, 𝑈2)] = 0.  

Therefore, by Sotomayor’s theorem, there is no transcritical bifurcation at 𝐸. 
Moreover, using the form of 𝐷3𝐹 given by equation (18b) and the eigenvectors 𝑈2 and 𝑊2 gives that: 

𝑊2
𝑇[𝐷3𝐹(𝐸,𝑤4

∗∗)(𝑈2, 𝑈2, 𝑈2)] =
3𝑚6(𝑚(1+𝑤1)−2𝑤1√𝑤2)(𝑤5𝑤6)

4𝑤2
3/2

(3𝑤1𝑤2+𝑚2(1+𝑤3)−2𝑚√𝑤2(1+𝑤1))
3 ≠ 0. 

Hence, a pitchfork bifurcation takes place and this completes the proof. ■ 

6. Numerical Analysis  

     In this section, the general dynamics of the system (2) are studied numerically for various sets of 

initial values with various sets of parameter values. The goals of this study are to show the effects of 

varying parameter values on the dynamical behavior of the system (2) as well as to approve the obtained 

theoretical results. The combination of parameter values, listed in Table 1, is used to carry out the 

numerical simulations. 
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Table 1- Parameters’ values of system (2) 

Parameters Value 

𝑤1 3.6 

𝑤2 0.1 

𝑤3 0.1 

𝑤4 0.7 

𝑤5 0.6 

𝑤6 0.5 

𝑚 0.4 

     Now, using the parameters given in Table (1) with various sets of initial points, system (2) is solved 

numerically and then the trajectories that have been obtained are drawn in the form of phase portrait, as 

shown in Figure-1b, which coincides with line segments of the direction field of the system (1) given in 

Figure-1a, that is defined as the collection of small line segments passing through various points having 

a slope that will satisfy the given differential equation at that point. It is clear that Figure-1 shows the 

general dynamical behaviors of the system (2); in fact, the domain is divided into three disjoint regions 

(basins of attraction). The points in the first region approach asymptotically to the 𝐸0, while the points 

in the second and third regions approach 𝐸1 and 𝐸4, respectively.  

 

 

(a) (b) 

Figure 1- For the parameters given in Table (1) with different initial points. (a) The 

direction field of the system (2). (b) The phase portrait of the trajectories of the system 

(2) in which the system approaches asymptotically to three different points 𝐸0, 𝐸1, and 𝐸4 

depending on their initial points. (Red points are the equilibrium points and blue points 

are the initial points) . 

 

     Three different initial points in each region are selected and then the time series for the obtained 

trajectories of system (2) are drawn in Figures- (2), (3), and (4). Clearly, the trajectories of system (2) 

approach to the 𝐸0, 𝐸1, and 𝐸4 in Figures- (2), (3), and (4), respectively.     
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(a) (b) 

Figure 2- The system (2) approaches asymptotically to 𝐸0 using parameters in Table (1). 

(a) Prey trajectories (b) Predator trajectories as a functions of time. 

  
(a) (b) 

Figure 3-The system (2) approaches asymptotically to 𝐸1(0.9592, 0) using parameters in 

Table (1). (a) Prey trajectories (b) Predator trajectories as a functions of time.  

Obviously, for the parameters given in Table (1), the system (2) has five equilibrium points, as shown 

in Figure-1. Moreover, the local stability condition (9) for the axial equilibrium point 𝐸1(𝑥1
∗, 0), and the 

conditions (15a) and (15b) for the coexistence point 𝐸4(𝑥4
∗, 𝑦∗), are satisfied. Therefore, Figures- (2), 

(3) and (4) confirm the obtained theoretical finding and the system approaches asymptotically to 𝐸0, 𝐸1, 

and 𝐸4, respectively, depending on the initial point’s position.  

  
(a) (b) 

Figure 4- The system (2) approaches asymptotically to 𝐸4(0.7074, 0.1587) using 

parameters in Table (1). (a) Prey trajectories (b) Predator trajectories as a functions of 

time. 
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Now, the effect of the varying in the parameters set on the dynamical behavior of the system (2) is also 

investigated numerically. It is observed that as 𝑤4 increases reaching the value 𝑤4 = 0.70875, then 

𝐸3 ≡ 𝐸1 and the equilibrium points 𝐸1 and 𝐸4 lose their stability so that all the trajectories of system (2) 

approach asymptotically to the origin 𝐸0, as shown in Figure-5. Moreover for 𝑤4 > 0.70875, keeping 

other parameters as given in Table-1, then 𝐸3 dose not exist anymore and all the trajectories of system 

(2) approach 𝐸0, as shown in Figure-6. These results are in agreement with what was proven in theorem 

(7). 

 
 

(a) (b) 

Figure 5- For 𝑤4 = 0.70875 and the rest of the parameters as given in Table (1) with 

different initial points. (a) The direction field of the system (2). (b) Phase portrait of the 

trajectories of the system (2) in which the system approaches asymptotically to 𝐸0 for all 

initial points, while 𝐸2, 𝐸3, and 𝐸4 are unstable. (Red points are the equilibrium points 

and blue points are the initial points)  

  
(a) (b) 

Figure 6- The system (2) approaches asymptotically to 𝐸0 using the parameters in Table 

(1) with 𝑤4 > 0.70875 starting from different initial points. (a) Prey trajectories (b) 

Predator trajectories as a functions of time.  

On the other hand, if we decrease 𝑤4 reaching the value 𝑤4
∗∗ = 0.6957, it is observed that 𝐸3 ≡ 𝐸4, and 

the coexistence equilibrium point loses its stability, as shown in Figure-7. Moreover, for 𝑤4 < 0.6957, 

both 𝐸3 and 𝐸4 do not exist anymore. This result agrees with what was proven in theorem (8). 
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(a) (b) 

Figure 7- For 𝑤4 = 0.6957 and the rest of the parameters given in Table (1) with different 

initial points. (a) The direction field of the system (2). (b) Phase portrait of the 

trajectories of the system (2) in which the system approaches asymptotically to 𝐸0 and 𝐸1 

depending on the initial points, while 𝐸2 and 𝐸4 are unstable. (Red points are the 

equilibrium points and blue points are the initial points)  

 

     While Figure-1 showed the dynamic behaviors of the system when 𝑤1 > 2.103269, Figure-8 shows 

that when 𝑤1 < 2.103269,  the system has a unique equilibrium point 𝐸0. Moreover, 𝐸3 does not exist 

anymore.  

 
 

(a) (b) 

Figure 8- For 𝑤1 < 2.10329 and the rest of the parameters given in Table-1 with different 

initial points. (a) The direction field of the system (2). (b) Phase portrait of the 

trajectories of the system (2) in which the system approaches asymptotically to 𝐸0, while 

𝐸1, 𝐸2, and 𝐸4 are unstable and 𝐸3 does not exist. (Red points are the equilibrium points 

and blue points are the initial points)  

The dynamics of the system (2) are further investigated with varying other parameters and Table-2 

summarizes the obtained results. 
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Table 2-The effects of varying the parameters' values on the dynamics of the system 

(2).(S=Stable, U=Unstable, and N=Not exist ing) 

Parameter Value 

The dynamic behavior of the equilibria 

𝑬𝟎 𝑬𝟏 𝑬𝟐 𝑬𝟑 𝑬𝟒 

𝑤1 
𝑤1 < 2.103269 

S U U N U 

2.103269 < 𝑤1 
S S U U S 

𝑤2 

𝑤2 < 0.0649 
S U U N N 

0.0649 < 𝑤2 < 0.0969 
S U U N U 

0.0969 < 𝑤2 < 0.1012 
S S U U S 

0.1012 < 𝑤2 
S S U N N 

𝑤3 

𝑤3 < 0.07 
S S U U U 

0.07 < 𝑤3 < 0.2541 
S S U U S 

0.2541 < 𝑤3 
S U U N S 

𝑤4 

𝑤4 < 0.6957 
S S U N N 

0.6957 < 𝑤4 < 0.70875 
S S U U S 

0.70875 < 𝑤4 
S U U N U 

𝑤5 

𝑤5 < 0.2674 
S U U N N 

0.2674 < 𝑤5 < 0.5865 
S U U N U 

0.5865 < 𝑤5 < 0.6068 
S S U U S 

0.6068 < 𝑤5 
S S U N N 

𝑤6 

𝑤6 < 0.16734 
S U U N N 

0.16734 < 𝑤6 < 0.5681 
S S U U S 

0.5681 < 𝑤6 
S S U N N 

𝑚 

𝑚 < 0.295 
S S U N N 

0.295 < 𝑚 < 0.3683 
S U U N S 

0.3683 < 𝑚 < 0.8925 
S S U U S 

0.8925 < 𝑚 
S S U U N 
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7. Discussion and Conclusions 

     This paper proposed and studied the dynamical behavior of an ecological system consisting of the 

Sokol-Howell prey-predator model with a Strong Allee effect on prey species. The proportional 

harvesting throughout the system is also included. The existence, uniqueness, and boundedness of its 

solution are discussed. All the possible equilibria of this system with their local stability conditions are 

obtained. It is observed that the system has at most five equilibria; the extinction equilibrium point that 

always exists and is locally asymptotically stable point, two axial equilibria, one is a saddle point while 

the other is locally asymptotically stable under some conditions, and two coexistent equilibria so that 

one of them is locally asymptotically stable under given conditions and the second is a saddle point. 

Finally, the local bifurcation that may occur near the equilibrium points is also investigated using 

Sotomayor's theorem. The proposed system is also investigated numerically in order to understand the 

global behavior of the system and detect the effects of the values of the parameter on the dynamical 

behavior of the system.   

For the data given in Table-1, a different set of data may be used, it is observed that as the prey 

population crosses the Allee threshold value that is given by 𝑤1 = 2.103269, the system becomes 

asymptotically stable at the coexistence equilibrium, otherwise the system approaches to the extinction 

equilibrium point asymptotically. When the prey’s harvesting rate crosses a specific value, then the axial 

equilibrium points become unstable and the system approaches asymptotically to the extinction 

equilibrium point and the coexistence equilibrium point, depending on the initial point. However, when 

the predator’s harvesting rate crosses a specific value, the system loses its persistence, due to the 

extinction of the predator, and the solution approaches asymptotically to the extinction equilibrium point 

and axial equilibrium point, depending on the initial point. The system has two bifurcation points 

regarding the conversion rate; at the first one, two coexistence equilibrium points were born, while at 

the second one the axial equilibrium point loses its stability, and the system approaches the extinction 

equilibrium point. Finally, increasing the availability of food (or decreasing the prey’s refuge rate) leads 

first to create the coexistence equilibrium points, so that the system transfers its stability from the axial 

point to the coexistence point; however, increasing the availability of food further leads to an exchange 

in the stability of the system so that the coexistence equilibrium points lose their stability and the axial 

point becomes stable. According to the above conclusions and discussions, there is the possibility to 

control the system by choosing the ranges of its parameters’ suitability.  

Keeping the above in mind, the existence of a strong Allee effect in the prey population leads to specify 

the region of the persistence of the system through specifying the Allee threshold value. However, 

increasing the harvesting rate from the prey keeps the system persisting, while increasing the predator 

harvesting leads to losing the persistence of the system. Finally, decreasing slightly the refuge rate of 

the prey has a stabilizing effect on the system at first; however, further decreasing the refuge rate leads 

to destabilizing the system at the coexistence equilibrium point. 
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