

ISSN: 0067-2904

On the Dynamics of One Parameter Family of Functions $\boldsymbol{f}_{\boldsymbol{k}}(\boldsymbol{x})=\boldsymbol{k c s c}(\boldsymbol{x})$

Iman A. Hussain* ${ }^{1}$, Zeana Z. Jamil ${ }^{2}$, Nuha H. Hamada ${ }^{3}$
${ }^{1}$ Department of Mathematics and Computer Applications College of Science, Al-Nahrain University, Iraq
${ }^{2}$ Department of Math., College of Science University of Baghdad, Iraq
${ }^{3}$ Al Ain University, Abu Dhabi, UAE

Received: 22/8/2021
Accepted: 1/11/2021

Abstract

In this research, we study the dynamics of one parameter family of meromorphic functions $H=\left\{f_{k}(x)=k \csc (x): k \in \mathbb{R}\right.$ andx $\left.\in \mathbb{R}\right\}$. Furthermore, we describe the nature of fixed points of the functions in H, and we explain the numbers of real fixed points depending on the critical point k. So, we develop some necessary conditions for the convergence of the sequence $\left\{f_{k}^{n}(x)\right\}$ when $n \rightarrow \infty$.

Keywords: soft Picard iteration processes

$$
\begin{aligned}
& f_{k}(x)=k c s c(x) \text { ديناميكية عائلة الدوال ذات المعلمة الواحدة } \\
& \text { ايمان عبدالوهاب حسين 1", زينة زكي جميل², نهى حامد حمادة3 } \\
& \text { 1ـقس الرياضيات وتطبيقات الحاسوب, كيلة العلوم, جامعة النهرين, بغداد, العراق } \\
& \text { 2² }{ }^{2} \text { الرياضيات, كيلة العلوم, جامعة بغداد, بغداد, العراق } \\
& \text { 33امعة العين, أبو ظبي, الإمارات العربية المتحدة } \\
& \text { في هذا البحث, قمنا بدراسة ديناميكية الدوال الميرومورفية ذات المعلمة الواحدة } k \text { الم } \\
& H=\left\{f_{k}(x)=k \csc (x): k \in \mathbb{R} \text { and } x \in \mathbb{R}\right\} \\
& \text {. بالأضافة إلى ذلك قمنا بإعطاء وصف كامل للنقاط الثابتة للدوال في H, وبينا أن النقاط الحرجة } k \text { ت تؤثرعلى } \\
& \text { عدد النقاط الثابتة الحقيقية. كما وأعطينا بعض الثروط الضرورية الجديدة لتقارب المتتابعة } \\
& . n \rightarrow \infty
\end{aligned}
$$

1-Introduction

Fixed point theory works as an essential tool for different branches of mathematical analysis and its applications. One of these applications is the study of real or complex dynamic function. The real dynamics of functions has been explained by Devaney [1], [2], Fadil [3] and Sajid [4],while, Akbari and Rabii [5], Magrenan and Gutierrez [6] and Radwan [7] have suggested and analyzed the real dynamics of the cubic polynomials, generalized logistic maps and one parameter family of transcendental functions. Faris [8] has discussed the dynamics of one parameter families $H=\left\{h_{k}(z)=k e^{z} /(z-1): k \in \mathbb{R}\right\}$ and $H=$ $\left\{g_{k}(z)=\frac{k \cosh (z)}{z^{2}}: k>0\right\}$ of critically and finite non-critically finite transcendental meromorphic functions respectively. For more details see [9], [10].

[^0]In this paper we present the real dynamics of the one parameter family $H=$ $\left\{f_{k}(x)=k \csc (x): k \in \mathbb{R}\right.$ andx $\left.\left.\in \mathbb{R}\right)\right\}$. A distinction is made between points for which $f_{k}^{n}(x)$ remains bounded as $n \rightarrow \infty$ and points for which $f_{k}^{n}(x)$ diverges. We will prove the following result.

Theorem 1:

Let $f_{k} \in H$; then there are $k_{1}, k_{2}, k_{3} \in \mathbb{R}$ such that $k_{1}<k_{2}<0<k_{3}$ such that:

1) At k_{1}, there exists a fixed point x_{1} and $b_{1} \in \mathbb{R}$ where $f_{k_{1}}\left(b_{1}\right)=x_{1}$ satisfies :as $n \rightarrow \infty$, i. $f_{k_{1}}^{n}(x) \rightarrow x_{1}$ when $x \in\left(b_{1}, x_{1}\right)$,
ii. $f_{k_{1}}^{n}(x) \rightarrow \infty$ when $x \in\left(\pi, b_{1}\right) \cup\left(x_{1}, 2 \pi\right)$,
iii. $f_{k_{1}}^{n}(x) \rightarrow-\infty$ when $x \in(0, \pi)$.
2) At k_{2}, there exist two fixed points x_{2} and $r_{1} \in\left(x_{1}, 2 \pi\right)$, and $b_{2} \in \mathbb{R}$ where $f_{k_{2}}\left(b_{2}\right)=x_{2}$ satisfies: asn $\rightarrow \infty$,
i. $f_{k_{2}}^{n}(x) \rightarrow x_{2}$ when $x \in\left(b_{2}, r_{1}\right)$,
ii. $f_{k_{2}}^{n}(x) \rightarrow \infty$ when $x \in\left(\pi, b_{2}\right) \cup\left(r_{1}, 2 \pi\right)$,
iii. $f_{k_{2}}^{n}(x) \rightarrow-\infty$ when $x \in(0, \pi)$.
3) At k_{3}, there exist a fixed point x_{3} and $b_{3} \in \mathbb{R}$ where $f_{k_{3}}\left(b_{3}\right)=x_{3}$ satisfies : as $n \rightarrow \infty$,
i. $f_{k_{3}}^{n}(x) \rightarrow x_{3}$ when $x \in\left(b_{3}, x_{3}\right)$,
ii. $f_{k_{3}}^{n}(x) \rightarrow \infty$ when $x \in\left(0, b_{3}\right) \cup\left(x_{3}, \pi\right)$,
iii. $f_{k_{3}}^{n}(x) \rightarrow-\infty$ when $x \in(\pi, 2 \pi)$.
4) At $k \in\left(k_{1}, k_{2}\right)$, there exist two fixed points $a_{1} \in\left(x_{2}, x_{1}\right), r_{2} \in\left(x_{1}, r_{1}\right)$ and $b_{4} \in \mathbb{R}$ where $f_{k}\left(b_{4}\right)=r_{2}$ satisfies : as $n \rightarrow \infty$,
i. $f_{k}^{n}(x) \rightarrow a_{2}$ when $x \in\left(b_{4}, r_{2}\right)$,
ii. $f_{k}^{n}(x) \rightarrow \infty$ when $x \in\left(\pi, b_{4}\right) \cup\left(r_{2}, 2 \pi\right)$,
iii. $f_{k}^{n}(x) \rightarrow-\infty$ when $x \in(0, \pi)$.
5) At $k \in\left(k_{2}, 0\right)$, there exists two fixed points $r_{3} \in\left(\pi, x_{2}\right), r_{4} \in\left(r_{1}, 2 \pi\right)$ and $b_{5} \in \mathbb{R}$ where $f_{k}\left(b_{5}\right)=r_{4}$ satisfy: as $n \rightarrow \infty$,
i. $f_{k}^{n}(x) \rightarrow \infty$ when $x \in\left(\pi, b_{5}\right) \cup\left(r_{4}, 2 \pi\right)$,
ii. $f_{k}^{n}(x) \rightarrow-\infty$ when $x \in(0, \pi)$,
iii. The orbit $\left\{f_{k}^{n}(x)\right\}$ is periodic or chaotic for $x \in\left(r_{3}, r_{4}\right)$.
6) At $k \in\left(0, k_{3}\right)$, there exist two fixed points $a_{2} \in\left(0, x_{3}\right), r_{5} \in\left(x_{3}, \pi\right)$ and $b_{6} \in \mathbb{R}$ where $f_{k}\left(b_{6}\right)=r_{5}$ satisfy: as $n \rightarrow \infty$,
i. $f_{k}^{n}(x) \rightarrow a_{2}$ when $x \in\left(b_{6}, r_{5}\right)$,
ii. $f_{k}^{n}(x) \rightarrow \infty$ when $x \in\left(0, b_{6}\right) \cup\left(r_{5}, \pi\right)$,
iii. $f_{k}^{n}(x) \rightarrow-\infty$ when $x \in(\pi, 2 \pi)$.
7) At $k \in\left(-\infty, k_{1}\right) \cup\left(k_{3}, \infty\right), f_{k}^{n} \rightarrow \infty$ as $n \rightarrow \infty$, for all $x \in(0,2 \pi) \backslash\{\pi\}$.

2- Preliminary Results

In this section, we describe the behavior of the fixed points of the one parameter family H of transcendental meromorphic functions. Let $\phi(x): \mathbb{R} \rightarrow \mathbb{R}$ be a mapping which is defined by $\phi(x)=x \sin x$.
Now for all $f_{k} \in H$, a fixed point of f_{k} must satisfy the equation $\phi(x)=k$. By solving this equation, we can find that f_{k} has two fixed points $x_{1} \simeq 4.913$ and $x_{3} \simeq 2.029$. So ϕ has two critical values $k_{1} \simeq-4.814$ and $k_{3} \simeq 1.82$. Since ϕ is even and continuous then we can reduce the domain of ϕ to $(0, \pi)$.
The following propositions describe the number of fixed points of f_{k} with respect to k.
Proposition 2: Let $f_{k} \in H$, then there are three cases for the number of fixed points for f_{k} with respect to k :
1- f_{k} has no fixed point if $k<k_{1}$ or $k>k_{3}$.
2- f_{k} has one fixed point at k_{1} and at k_{3}.

3- f_{k} has two fixed points on $\left(k_{1}, 0\right)$ and on $\left(0, k_{3}\right)$.

Proof: -

let $\phi(x)=x \sin x$ and $\emptyset^{\prime}(x)=\sin x+x \cos x$ then:
1- $\phi^{\prime \prime}(x)=2 \cos x-x \sin x, \phi^{\prime \prime}\left(x_{3}\right)<0, \phi^{\prime \prime}\left(x_{1}\right)>0$ where $x_{1} \simeq 4.913$ and $x_{3} \simeq 2.029$. Thus x_{3} is a maximum point and x_{1} is a minimum point for $\phi(x)$ in the $(0,2 \pi)$. Then $\phi(x)=$ k has no solutions for $k<k_{1}\left(k>k_{3}\right)$. So that f_{k} have no fixed points in this step.
2- When $k=k_{1}\left(k=k_{3}\right)$, because of $k_{1}=\phi\left(x_{1}\right)\left(k_{3}=\phi\left(x_{3}\right)\right)$ is the minimum(maximum) value of $\phi(x)$ in $(0,2 \pi)$.Then f_{k} has only one fixed point at $x=x_{1}\left(x=x_{3}\right)$.
3- When $k \in\left(k_{1}, 0\right)$, the point $x=x_{1}$ is a minimum value in $(0,2 \pi)$. Since ϕ is strictly decreasing in $\left(x_{3}, x_{1}\right)$ and it is strictly increasing in $\left(x_{1}, 2 \pi\right)$, then the line $k=c$ intersects the plot of ϕ at exactly one point in all of the intervals $\left(x_{3}, x_{1}\right)$ and $\left(x_{1}, 2 \pi\right)$. Similarly, when $k \in$ $\left(0, k_{3}\right)$ the point $x=x_{3}$ is a maximum value in $(0,2 \pi)$. Hence ϕ is strictly increasing ($0, x_{3}$) and it is strictly decreasing in $\left(x_{3}, 2 \pi\right)$, so the line $k=c$ intersects the plot of ϕ at exactly one point in interval $\left(0, x_{3}\right)$ and $\left(x_{3}, 2 \pi\right)$. Then f_{k} has two fixed points on $\left(k_{1}, 0\right)$ and on ($0, k_{3}$).
The purpose of the following proposition is to study the nature of fixed points of the function f_{k} on \mathbb{R}. That is, we must study the equation $\left|f^{\prime}{ }_{k}(x)\right|=1$, since $f^{\prime}{ }_{k}\left(x_{1}\right)=1=$ $f^{\prime}{ }_{k}\left(x_{3}\right)$, then x_{1}, x_{3} are indifferent fixed points of f_{k}. While the positive solution of the equation $f^{\prime}{ }_{k}(x)=\tan x-x=-1$, is $x_{2} \simeq 4.493$, hence $k_{2}=\phi\left(x_{2}\right) \simeq-4.385$.
Proposition 3:Let $f_{k} \in H$,then if:
1- $k=k_{2}$, the two fixed points of f_{k} are: x_{2} is indifferent, and $r_{1} \in\left(x_{2}, 2 \pi\right)$ is repelling,
2- $k \in\left(k_{1}, k_{2}\right)$, the two fixed points of f_{k} are: $a_{1} \in\left(x_{1}, x_{2}\right)$ is attracting, and $r_{2} \in\left(x_{1}, r_{1}\right)$ is repelling,
3- $k \in\left(k_{2}, 0\right)$,the two fixed points of f_{k} are: $r_{3} \in\left(\pi, x_{2}\right)$ is repelling and $r_{4} \in\left(r_{1}, 2 \pi\right)$ is repelling,
4- $k \in\left(0, k_{3}\right)$,the two fixed points of f_{k} are: $a_{2} \in\left(0, x_{3}\right)$ is attracting and $r_{5} \in\left(x_{3}, \pi\right)$ is repelling.
Proof: let $f_{k}(x)=k \csc x$, hence ${f^{\prime}}^{\prime}(x)=-k \csc x \cot x$ and the solutions of equation $k=\frac{x}{\csc x}=\phi(x)$ are the fixed points of f_{k}.

So $f^{\prime}{ }_{k}(x)$ at fixed point x is obtained by

$$
\left|f^{\prime}{ }_{k}(x)\right|=\left|\frac{-x}{\csc x} \csc x \cot x\right|=|-x \cot x|=\frac{|x \cos x|}{|\sin x|}
$$

Now, we define the function $\mu(x)$ as follows:
$\mu(x)=|x \cos x|-|\sin x|$, it is continuous and has 3 zeros when $x=x_{1}, x_{2}$ and x_{3}. From the graph we can show that $\mu(x)$ is decreasing in the intervals $\left(0, x_{3}\right)$ and $\left(x_{2}, x_{1}\right)$, while it is increasing in the intervals (x_{3}, x_{2}) and ($x_{1}, 2 \pi$). So $\mu(x)$ has maximum point at π and it has minimum point at $\mathrm{x}=-1$. From the above statements that $\mu(x)>0$;
when $x \in\left(x_{3}, x_{2}\right) \cup\left(x_{1}, 2 \pi\right), \mu(x)=0$; when $x=x_{1}, \quad x_{2}, x_{3}$ and $\mu(x)<0$ when $x \in$ $\left(0, x_{3}\right) \cup\left(x_{2}, x_{1}\right)$ see $\operatorname{Fig}(1)$.
Thus
1- If $k=k_{2}$, the fixed point $r_{1} \in\left(x_{2}, 2 \pi\right)$ satisfies $\left|f^{\prime}{ }_{k}\left(r_{1}\right)\right|>1$, then r_{1} is repelling fixed point.
2- If $k \in\left(k_{1}, k_{2}\right)$, the fixed point $a_{1} \in\left(x_{2}, x_{1}\right)$ satisfies $\left|f^{\prime}{ }_{k}\left(a_{1}\right)\right|<1$, then a_{1} is an attracting fixed point. While, if the fixed point $r_{2} \in\left(x_{1}, r_{1}\right)$ satisfies $\left|f^{\prime}{ }_{k}\left(r_{2}\right)\right|>1$; then r_{2} is repelling fixed point.
3- If $k \in\left(k_{2}, 0\right)$, the fixed points $r_{3} \in\left(\pi, x_{2}\right)$, and $r_{4} \in\left(r_{1}, 2 \pi\right)$ satisfy $\left|f^{\prime}{ }_{k}\left(r_{i}\right)\right|>1, \mathrm{i}=3,4$, then r_{i} are repelling fixed points for $\mathrm{i}=3,4$.

4- If $k \in\left(0, k_{3}\right)$, the fixed points $a_{2} \in\left(0, x_{3}\right)$ and $r_{5} \in\left(x_{3}, \pi\right)$ satisfy $\left|f^{\prime}{ }_{k}\left(a_{2}\right)\right|<1$ and $\left|f^{\prime}{ }_{k}\left(r_{5}\right)\right|>1$ respectively. Then a_{2} is an attracting fixed point and r_{5} is a repelling fixed point.

Figure 1- $\mu(x)=|x \cos x|-|\sin x|, \phi(x)=\frac{x}{\csc x}$

3-The Proof of the Main result

The proof of the main result is described as follows:

Proof of the main results:

Let $T_{k}(x)=f_{k}(x)-x$ then

1) whenk $=\boldsymbol{k}_{1}, f_{k}$ has an indifferent fixed point x_{1} by proposition (3). $T^{\prime}{ }_{k}\left(x_{1}\right)=0$ and $T^{\prime \prime}{ }_{k}\left(x_{1}\right)>0$, then T_{k} has minimum at x_{1}. Because of $T_{k}\left(x_{1}\right)=0$, it follows that $T_{k}(x)>0$ for each x in a neighborhood of x_{1}. Hence by continuity of T_{k}, for sufficiently small $m_{1}>0$, $T_{k}(x)>0$ in $\left(x_{1}-m_{1}, x_{1}\right) \cup\left(x_{1}, x_{1}+m_{1}\right)$. From Fig.(2) we have $T_{k}(x) \neq 0$ in $\left(\pi, x_{1}\right) \cup$ $\left(x_{1}, 2 \pi\right), T_{k}(x)>0$ for all $x \in\left(\pi, x_{1}\right) \cup\left(x_{1}, 2 \pi\right)$ and $T_{k}(x)<0$ for $x \in(0, \pi)$.

Next, we will study the dynamics of f_{k} as follows:
Case(1):For $x \in\left(b_{1}, x_{1}\right) ; b_{1} \in\left(\pi, x_{1}\right) . \quad x_{1}$ is a minimum point for $T_{k} \cdot T_{k}(x)>0$ in $x \in$ $\left(\pi, x_{1}\right) \cup\left(x_{1}, 2 \pi\right)$, hence when $x \in\left(b_{1}, x_{1}\right), T^{\prime}{ }_{k}(x)<0$, so ${f^{\prime}}^{\prime}(x)-1<0$, then $f^{\prime}{ }_{k}(x)<$ 1. Thus by the mean value theorem $\left|f_{k}(x)-f_{k}\left(x_{1}\right)\right|={f^{\prime}}^{\prime}(c)\left|x-x_{1}\right|$ such that $c \in\left(b_{1}, x_{1}\right)$. that is implies $\left|f_{k}(x)-f_{k}\left(x_{1}\right)\right|<\left|x-x_{1}\right|$ for all $x \in\left(b_{1}, x_{1}\right)$. Since x_{1} is a fixed point of f_{k}, Thus $f_{k}^{n}(x) \rightarrow x_{1}$ as $n \rightarrow \infty$, for all $x \in\left(b_{1}, x_{1}\right)$.
Case (2):For $x \in\left(\pi, b_{1}\right) \cup\left(x_{1}, 2 \pi\right)$, then $T_{k}(x)>0$, hence $f_{k}(x)>x$, but $f_{k}\left(b_{1}\right)=x_{1}$, thus f_{k} maps the interval $\left(\pi, b_{1}\right)$ into ($x_{1}, 2 \pi$), then it is enough to prove that $f_{k}^{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$ when $x \in\left(x_{1}, 2 \pi\right)$,

Since $f_{k}(x)>x$, then $\left\{f_{k}^{n}(x)\right\}$ is unbounded above and strictly increasing sequence in $x \in\left(x_{1}, 2 \pi\right)$, so $f_{k}^{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$, for all $x \in\left(x_{1}, 2 \pi\right)$.
Case (3):When $x \in(0, \pi), T_{k}(x)<0$ and $f_{k}(x)<x$, therefore f_{k} is strictly decreasing in this interval then $\left\{f_{k}^{n}(x)\right\}$ is decreasing sequence and it is unbounded below. So for $x \in$ $(0, \pi), f_{k}^{n}(x) \rightarrow-\infty$ as $n \rightarrow \infty$.

Figure 2- $T_{k}(x)=f_{k}(x)-x, k=k_{1}$
2)when $\boldsymbol{k}=\boldsymbol{k}_{2}$, it is clear from Fig. (3) $T_{k}(x)>0$, for all $x \in\left(\pi, x_{2}\right) \cup\left(r_{1}, 2 \pi\right)$ and $T_{k}(x)<0$ for all $x \in\left(x_{2}, r_{1}\right) \cup(0, \pi)$.
Now, we can describe the dynamic of f_{k}.
Case (1): For $x \in\left(b_{2}, r_{1}\right)$, we will show that $f_{k}^{n}(x) \rightarrow x_{2}$ since $T_{k}(x)<0$ for $x \in\left(x_{2}, r_{1}\right)$ then $f_{k}(x)<x$. Since f_{k} is decreasing and by continuity forward iteration process we get $x>f_{k}(x)>f_{k}^{2}(x)>\cdots>f_{k}^{n}(x)>x_{2}$.
Therefore, the sequence $\left\{f_{k}^{n}(x)\right\}$ is decreasing and bounded below by x_{2}. So $f_{k}^{n}(x) \rightarrow x_{2}$ as $n \rightarrow \infty$ for $x \in\left(x_{2}, r_{1}\right)$.
Further since $f_{k}\left(b_{2}\right)=r_{1}$, and it is decreasing in $\left(b_{2}, r_{1}\right), f_{k}$ maps the interval $\left(b_{2}, r_{1}\right)$ into $\left(x_{2}, r_{1}\right)$.It follows that byusing the previous arguments, $f_{k}^{n}(x) \rightarrow x_{2}$ as $n \rightarrow \infty$ for $x \in\left(b_{2}, r_{1}\right)$.
Case (2):For $x \in\left(r_{1}, 2 \pi\right), f_{k}(x)>x$. Moreover f_{k} is strictly increasing in this interval, then

$$
0<x<f_{k}(x)<f_{k}^{2}(x)<\cdots<f_{k}^{n}(x)<\cdots
$$

Thus, the sequence $\left\{f_{k}^{n}(x)\right\}$ is increasing and it is unbounded above. Hence $f_{k}^{n}(x) \rightarrow-\infty$ as $n \rightarrow \infty$ for $x \in\left(r_{1}, 2 \pi\right)$.
Now, for $x \in\left(\pi, b_{2}\right) ; b_{2} \in\left(\pi, x_{2}\right)$, we have $f_{k}(x)>x . f_{k}\left(b_{2}\right)=r_{1}$. Then f_{k} maps the interval $\left(\pi, b_{2}\right)$ into $\left(r_{1}, 2 \pi\right)$. Thus $f_{k}^{n}(x) \rightarrow-\infty$ as $n \rightarrow \infty$ for $x \in\left(\pi, b_{2}\right) \cup\left(r_{1}, 2 \pi\right)$.
Case (3): For $x \in(0, \pi)$ from Fig.(3), we have $T_{k}(x)<0$ then $f_{k}(x)<x$ so that f_{k} is strictly decreasing in this interval, and hence

$$
x>f_{k}(x)>f_{k}^{2}(x)>f_{k}^{3}(x)>\cdots>f_{k}^{n}(x)>\cdots
$$

Thus $\left\{f_{k}^{n}(x)\right\}$ is decreasing sequence, which is unbounded below. Therefore, for $x \in(0, \pi)$ we have $f_{k}^{n}(x) \rightarrow-\infty$ as $n \rightarrow \infty$.

Figure 3- $T_{k}(x)=f_{k}(x)-x, k=k_{2}$
3)when $\boldsymbol{k}=\boldsymbol{k}_{3}, f_{k}$ has an indifferent fixed point x_{3} by proposition (3). $T^{\prime}{ }_{k}\left(x_{3}\right)=0$, and $T^{\prime \prime}{ }_{k}\left(x_{3}\right)>0$, then T_{k} has minimum at x_{3}. Because of $T^{\prime}{ }_{k}\left(x_{3}\right)=0$, it follows that $T_{k}(x)>0$ for each x in a neighborhood of x_{3}. Hence by continuity of T_{k}, for sufficiently small $m_{1}>0$, $T_{k}(x)>0$ in $x \in\left(x_{3}-m_{1}, x_{3}\right) \cup\left(x_{3}, x_{3}+m_{1}\right)$. From Fig.(4) we have $T_{k}(x) \neq 0$ in $x \in\left(0, x_{3}\right) \cup\left(x_{3}, \pi\right)$, so $T_{k}(x)>0$ for all $x \in\left(0, x_{3}\right) \cup\left(x_{3}, \pi\right)$, and $T_{k}(x)<0$ for $x \in$ ($\pi, 2 \pi$).

Next, we will study the dynamics of f_{k} as follow:
Case(1):For $x \in\left(b_{3}, x_{3}\right) ; b_{3} \in\left(0, x_{3}\right), x_{3}$ is a minimum point for $T_{k} . T_{k}(x)>0$ in $\left(0, x_{3}\right) \cup$ $\left(x_{3}, \pi\right)$, hence when $x \in\left(b_{3}, x_{3}\right), T^{\prime}{ }_{k}(x)<0$, so $T_{k}(x)<0$, then ${f^{\prime}}^{\prime}(x)<1$. For $x>x_{3}$, $f^{\prime}(x)>1$. Thus by the mean value theorem $\left|f_{k}(x)-f_{k}\left(x_{1}\right)\right|=f^{\prime}{ }_{k}(c)\left|x-x_{1}\right|$ such that $c \in\left(b_{3}, x_{3}\right)$. Since x_{3} is a fixed point of f_{k}, that is implies $\left|f_{k}(x)-f_{k}\left(x_{3}\right)\right|<\left|x-x_{3}\right|$ for all $x \in\left(b_{3}, x_{3}\right)$. Thus $f_{k}^{n}(x) \rightarrow x_{3}$ as $n \rightarrow \infty$, for all $x \in\left(b_{3}, x_{3}\right)$.
Case (2):for $x \in\left(0, b_{3}\right) \cup\left(x_{3}, \pi\right)$ then $T_{k}(x)>0$ for all $x \in\left(x_{3}, \pi\right)$, hence $f_{k}(x)>x$, since f_{k} is strictly increasing in this interval, and

$$
0<x<f_{k}(x)<f_{k}^{2}(x)<\cdots<f_{k}^{n}(x)<.
$$

Then $\left\{f_{k}^{n}(x)\right\}$ is increasing sequence which it is unbounded, above so $f_{k}^{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$, for all $x \in\left(x_{3}, \pi\right)$. Since $f_{k}\left(b_{3}\right)=x_{3}$ and f_{k} maps the interval $\left(0, b_{3}\right)$ into $\left(x_{3}, \pi\right)$ hence we can use the same arguments to prove $f_{k}^{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$ when $x \in\left(0, b_{3}\right)$.
Case (3):when $x \in(\pi, 2 \pi), T_{k}(x)<0$ then $f_{k}(x)<x$, therefore f_{k} is strictly decreasing in this interval and
$x_{3}>f_{k}(x)>f_{k}^{2}(x)>\cdots>f_{k}^{n}(x)>\cdots$.
Then $\left\{f_{k}^{n}(x)\right\}$ is decreasing sequence and it is unbounded below. So for $x \in(\pi, 2 \pi) f_{k}^{n}(x) \rightarrow$ $-\infty$ as $n \rightarrow \infty$.

Figure 4- $T_{k}(x)=f_{k}(x)-x, k=k_{3}$
4)when $\boldsymbol{k} \in\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{\mathbf{2}}\right)$, by proposition (3) f_{k} has an attracting fixed point $a_{1} \in\left(x_{2}, x_{3}\right)$ and repelling fixed point $r_{2} \in\left(x_{1}, r_{1}\right)$. From Fig. (5) $T_{k}(x) \neq 0$ in $\left(\pi, r_{2}\right) \cup\left(r_{2}, 2 \pi\right), T_{k}(x)>0$ for all $x \in\left(\pi, a_{1}\right) \cup\left(r_{2}, 2 \pi\right)$ and $T_{k}(x)<0$ for $x \in(0, \pi) \cup\left(a_{2}, r_{2}\right)$.
To describe the dynamics of f_{k}, we have three cases:-
Case(1) when $x \in\left(b_{4}, r_{2}\right) . f_{k}(x)<x$ for all $x \in\left(a_{1}, r_{2}\right)$ and it is decreasing, so $x>f_{k}(x)>f_{k}^{2}(x)>\cdots>f_{k}^{n}(x)>a_{1}$.
Hence the sequence $\left\{f_{k}^{n}(x)\right\}$ is decreasing and bounded below by a_{1}, and there is no fixed point larger than a_{1}. Therefore $f_{k}^{n}(x) \rightarrow a_{1}$ as $n \rightarrow \infty$ for all $x \in\left(b_{4}, r_{2}\right)$.
Case (2):-For $x \in\left(\pi, b_{4}\right) \cup\left(r_{2}, 2 \pi\right), f_{k}(x)>x$ for all $x \in\left(r_{2}, 2 \pi\right)$. Since f_{k} is increasing and by continuing forward iteration process, it follows $0<x<f_{k}(x)<f_{k}^{2}(x)<\cdots<f_{k}^{n}(x)<\cdots$
Hence, the sequence $\left\{f_{k}^{n}(x)\right\}$ is increasing and there is no fixed point larger than r_{2}, the orbit must go to ∞ as $n \rightarrow \infty$. Then $f_{k}^{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$ for all $x \in\left(r_{2}, 2 \pi\right) . f_{k}\left(b_{4}\right)=r_{2}, f_{k}$ maps the interval $\left(\pi, b_{4}\right)$ into $\left(r_{2}, 2 \pi\right)$. Then by using the above arguments $f_{k}^{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$ for all $x \in\left(\pi, b_{4}\right)$.
Case (3): for $x \in(0, \pi), T_{k}(x)<0$, hence $f_{k}(x)<x$, therefore f_{k} is strictly decreasing in this interval and
$x>f_{k}(x)>f_{k}^{2}(x)>\cdots>f_{k}^{n}(x)>\cdots$.
Then $\left\{f_{k}^{n}(x)\right\}$ is decreasing sequence and it is unbounded below. So for $x \in(0, \pi) f_{k}^{n}(x) \rightarrow$ $-\infty$ as $n \rightarrow \infty$.

Figure 5- $T_{k}(x)=f_{k}(x)-x, \mathrm{k} \in\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$
5)when $\boldsymbol{k} \in\left(\boldsymbol{k}_{2}, \mathbf{0}\right), f_{k}$ has two fixed points $r_{3} \in\left(\pi, x_{2}\right)$ and $r_{4} \in\left(r_{1}, 2 \pi\right)$ which are repelling by proposition (3). From $\operatorname{Fig}(6)$ we have $T_{k}(x)>0$ for all $x \in\left(\pi, b_{5}\right) \cup\left(r_{4}, 2 \pi\right)$ and $T_{k}(x)<0$ for $x \in(0, \pi) \cup\left(r_{3}, r_{4}\right)$.
To describe the dynamics of f_{k}, we have three cases:-
Case (1):- for $x \in\left(r_{4}, 2 \pi\right), f_{k}(x)>x$. Hence f_{k} is strictly increasing in $\left(r_{4}, 2 \pi\right)$, then $0<r_{4}<x<f_{k}(x)<f_{k}^{2}(x)<\cdots<f_{k}^{n}(x)<\cdots$.
So the sequence $\left\{f_{k}^{n}(x)\right\}$ is increasing sequence which is unbounded above. So $f_{k}^{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$ for $x \in\left(r_{4}, 2 \pi\right)$. Then $f_{k}^{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$ for all $x \in\left(\pi, r_{4}\right)$. Because $f_{k}\left(b_{6}\right)=$ r_{5}, and f_{k} maps the interval (π, r_{4}) into $\left(r_{4}, 2 \pi\right)$. By using the above arguments $f_{k}^{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$ for all $x \in\left(\pi, r_{4}\right)$.
Case (2):- for $x \in\left(r_{3}, r_{4}\right)$ the system of dynamics of f_{k} has no point attractors. Thus dynamical system will move indefinitely, and the orbit $\left\{f_{k}^{n}(x)\right\}$ will be periodic or chaotic in these intervals.
Case (3):-when $\in(0, \pi), T_{k}(x)<0$ then $f_{k}(x)<x$. Therefore f_{k} is strictly decreasing in this interval and

$$
x_{1}>f_{k}(x)>f_{k}^{2}(x)>\cdots>f_{k}^{n}(x)>\cdots
$$

Then $\left\{f_{k}^{n}(x)\right\}$ is decreasing sequence and it is unbounded below. So for $x \in(0, \pi), f_{k}^{n}(x) \rightarrow$ $-\infty$ as $n \rightarrow \infty$.

Figure 6- $T_{k}(x)=f_{k}(x)-x, \mathrm{k} \in\left(\mathrm{k}_{2}, 0\right)$
6) when $\boldsymbol{k} \in\left(\mathbf{0}, \boldsymbol{k}_{\mathbf{3}}\right)$, so f_{k} has an attracting fixed point $a_{2} \in\left(0, x_{3}\right)$ and repelling fixed point $r_{5} \in\left(x_{3}, \pi\right)$ by proposition (3). From Fig. (7) we have $T_{k}(x)>0$ for all $x \in\left(0, b_{6}\right) \cup\left(r_{5}, \pi\right)$ and $T_{k}(x)<0$ for $x \in(\pi, 2 \pi) \cup\left(a_{2}, r_{5}\right)$.
To describe the dynamics of f_{k}, we have three cases:-
Case(1) when $x \in\left(b_{6}, r_{5}\right)$, then $f_{k}(x)<x$ and it is decreasing, so

$$
x>f_{k}(x)>f_{k}^{2}(x)>\cdots>f_{k}^{n}(x)>\cdots>a_{2}
$$

Hence the sequence $\left\{f_{k}^{n}(x)\right\}$ is decreasing and bounded below by a_{2}, and there is no fixed point larger than a_{2}. Therefore $f_{k}^{n}(x) \rightarrow a_{2}$ as $n \rightarrow \infty$ for all $x \in\left(b_{6}, r_{5}\right)$.
Case (2):- for $x \in\left(0, b_{6}\right) \cup\left(r_{5}, \pi\right), f_{k}(x)>x$ for all $x \in\left(r_{5}, \pi\right)$. Since f_{k} is increasing and by continuing forward iteration process, it follows that

$$
0<x<f_{k}(x)<f_{k}^{2}(x)<\cdots<f_{k}^{n}(x)<\cdots
$$

Hence, the sequence $\left\{f_{k}^{n}(x)\right\}$ is increasing and there is no fixed point larger than r_{5}, the orbit must go to ∞ as $n \rightarrow \infty$. Then $f_{k}^{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$ for all $x \in\left(r_{5}, \pi\right) \cdot f_{k}\left(b_{6}\right)=r_{5}$ and f_{k} maps the interval $\left(r_{5}, \pi\right)$ into $\left(0, b_{6}\right)$. So by using the above arguments we can getting $f_{k}^{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$ for all $x \in\left(0, b_{6}\right)$.
Case (3):for $x \in(\pi, 2 \pi), T_{k}(x)<0$ then $f_{k}(x)<x$, therefore f_{k} is strictly decreasing in this interval and

$$
x>f_{k}(x)>f_{k}^{2}(x)>\cdots>f_{k}^{n}(x)>\cdots
$$

Then $\left\{f_{k}^{n}(x)\right\}$ is decreasing sequence and it is unbounded below. So for all $x \in(\pi, 2 \pi), f_{k}^{n}(x) \rightarrow-\infty$ as $n \rightarrow \infty$.

Figure 7- $T_{k}(x)=f_{k}(x)-x, \mathrm{k} \in\left(0, \mathrm{k}_{3}\right)$
7)when $\mathbf{k}<k_{\mathbf{1}}\left(\boldsymbol{k}>\boldsymbol{k}_{3}\right), f_{k}$ has no fixed point by proposition (2). Since f_{k} is continues and differential for $x \in(0,2 \pi)$ then T_{k} is continuous and differentiable. From Fig. (8) the sequence $\left\{f_{k}^{n}(x)\right\}$ is increasing and it is unbounded below for all $x \in(0,2 \pi)$. Hence $f_{k}^{n}(x) \rightarrow \infty$ as $n \rightarrow-\infty$ for all $x \in(0,2 \pi)$. When $k>k_{3}$ the proof is similar to the previous arguments.

Figure 8- $\left.T_{k}(x)=f_{k}(x)-x, \mathrm{k}>\mathrm{k}_{3}\right)$

References

[1] Devaney, R.L., "Dynamics Topology, and Bifurcations of Complex exponentials", Topology Appl., vol. 110, pp. 133-161, 2001.
[2] Devaney, R.L., "A survey of exponential dynamics ", Chapman and Hall/CRC, pp. 105-122, 2004.
[3] Al-Husseiny, H., F.," A Study of the Dynamics of the family $\lambda \frac{\sinh ^{m} z}{z^{2 m}}$ ", Iraqi Journal of Science, vol. 4, no. 52, pp. 494-503, 2011.
[4] Sajid, M., "Real and Complex Dynamics of One Parameter Family of Meromorphic Functions", Far East .Dyn. Syst., vol. 19, no. 2, pp. 89-105, 2012.
[5] Akbari, M., Rabii, M., "Real Cubic Polynomials With a Fixed Point of Multiplicity Two", Indagationes Mathematicate, vol. 26, pp. 64-74, 2015.
[6] Magrenan, A., Gutierrez, J., "Real Dynamics for Damped Newtons Method Applied to Cubic Polynomials", Comput. Appl. Math., vol. 275, pp. 527-538, 2015.
[7] Radwan, A. G., "On Some Generalized Discrete Logistic Maps", J. Adv. Res., vol. 4, no. 2, pp. 163-171, 2013.
[8] Faris, S. M., "Dynamics of Certain Families of Transcendental Meromorphic Functions", Ph.D. thesis University of Baghdad, 2006.
[9] Jamil, Z. Z. and Hussein, Z., "Common Fixed Point of Jungck Picard Itrative for Two Weakly Compatible Self-Mappings", Iraqi Journal of Science, vol. 62, no. 5, pp. 1695-1701, 2021.
[10] Sajid, M., "Singular Values and Real Fixed Points of One-Parameter Families Assogiated with Fundamental Trigonometric Functions sinz, cos z and tan z", International Journal of Applied Mathematics, vol. 33, pp. 635-647, 2020.

[^0]: *Email: iman.a.husain@nahrainuniv.edu.iq

