Iraqi Journal of Science, 2018, Vol. 59, No.4B, pp: 2100-2106 DOI:10.24996/ijs.2018.59.4B.15





ISSN: 0067-2904

الخلاصة

# On Skew Left \*-*n*-Derivations of \*-Ring

### Anwar Khaleel Faraj\*, Ruqaya Saadi Hashem

Department of Applied Sciences, University of Technology, Baghdad, Iraq

#### Abstract

In this paper, the commutativity of \*-ring and some related results are obtained by introducing the new concept which is called skew left \*-n-derivations.

**Keywords:** Prime \*-ring, semiprime \*-ring, \*-*n*-derivation, permuting mapping, skew left \*-*n*-derivation.

حول المشتقات اليسارية الملتوية من النمط-n- «للحلقات- « انوار خليل فرج «، رقية سعدي هاشم قسم العلوم النطبيقية ، الجامعة التكنولوجيه، بغداد، العراق

في هذا البحث، ابدالية الحلقات-\* و بعض النتائج المتعلقة بها قد تم الحصول عليها من خلال اعطاء مفهوم جديد يسمى المشتقة اليسارية الملتوية من النمط -n-\* .

#### 1. Introduction

Throughout this paper  $\mathcal{R}$  will represent an associative ring with center  $\mathcal{Z}(\mathcal{R})$ . A ring  $\mathcal{R}$  is said to be *n*-torsion free if na=0 with  $a \in \mathbb{R}$  then a=0, where *n* is nonzero integer [1]. For any  $v, \gamma \in \mathbb{R}$ , the commutator  $v\gamma \gamma v$  will be denoted by  $[v, \gamma]$  and the anti-commutator  $v \circ \gamma$  will be denoted by  $v\gamma + \gamma v$ [2]. Recall that a ring  $\mathcal{R}$  is said to be prime if  $a\mathcal{R}b=0$  implies that either a=0 or b=0 for all  $a, b\in\mathcal{R}$  [3] and it is semiprime if  $a\mathcal{R}a=0$  implies that a=0 for all  $a \in \mathcal{R}$  [1]. An additive mapping  $\xi: \mathcal{R} \to \mathcal{R}$  is called a derivation if  $\xi(v\gamma) = \xi(v)\gamma + v\xi(\gamma)$  for all  $v, \gamma \in \mathcal{R}$  [4]. An additive mapping  $\xi: \mathcal{R} \to \mathcal{R}$  is called a left derivation if  $\xi(v\gamma) = \gamma \xi(v) + v\xi(\gamma)$  for all  $v, \gamma \in \mathcal{R}$  [5], it is clear that the concepts of derivation and left derivation are identical whenever  $\mathcal{R}$  is commutative. A map  $\mathcal{F}: \mathcal{R} \to \mathcal{R}$  is said to be commuting (resp. centralizing) on  $\mathcal{R}$  if  $[\mathcal{F}(v), v] = 0$  (resp.  $[\mathcal{F}(v), v] \in \mathcal{Z}(\mathcal{R})$ ) for all  $v \in \mathcal{R}$  [6]. An additive mapping  $v \to v^*$  of  $\mathcal{R}$  into itself is called an involution if the following conditions are satisfied (i)  $(v\gamma)^* = \gamma^* v^*$  (ii)  $(v^*)^* = v$  for all  $v, \gamma \in \mathcal{R}$  [2]. A ring equipped with an involution is known as ring with involution or \*-ring. Let  $\mathcal{R}$  be a \*-ring. An additive mapping  $\xi: \mathcal{R} \rightarrow \mathcal{R}$  is called a \*-derivation if  $\xi(v\gamma) = \xi(v)\gamma^* + v\xi(\gamma)$  for all  $v, \gamma \in \mathcal{R}$  [7]. An additive mapping  $\xi: \mathcal{R} \to \mathcal{R}$  is called a left \*-derivation  $\xi(v\gamma) = \gamma^* \xi(v) + v\xi(\gamma)$  for all  $v, \gamma \in \mathcal{R}$  [8]. There are many works dealing with the commutativity of prime and semi prime rings admitting certain types of derivations [4,5,9,10,11]. Bresar and Vukman [7] studied the notion of a \*-derivation of  $\mathcal{R}$ . Ali [12] defined symmetric \*-biderivation and studied some properties of prime \*-rings and semiprime \*-rings. Recently Ashraf [13] defined the concept of \*-*n*-derivation in prime \*-rings and semiprime \*-rings and studied the commutativity and some of their properties. In the present paper we introduce the notion of skew left \*-*n*-derivation and study the commutativity and some related results involving skew left \*-*n*-derivations in \*-rings.

<sup>\*</sup>Email: anwar\_78\_2004@yahoo.com

## 2. Preliminaries

Some definitions and fundamental facts of skew left \*-n-derivations are recalled in this section, which are principals of skew left \*-n-derivation.

# Proposition (2.1) [2]

Let  $\mathcal{R}$  be a ring, then for all  $v, \gamma, z \in \mathcal{R}$  we have

1-  $[v, \gamma z] = \gamma [v, z] + [v, \gamma] z$ 

2-  $[\upsilon\gamma, z] = \upsilon[\gamma, z] + [\upsilon, z]\gamma$ 

3-  $v \circ (\gamma z) = (v \circ \gamma)z - \gamma [v, z] = \gamma (v \circ z) + [v, \gamma]z$ 

4-  $(v\gamma) \circ z = v(\gamma \circ z) - [v, z]\gamma = (v \circ z)\gamma + v[\gamma, z]$ 

## **Definition** (2.2) [6]

A map  $\xi: \mathcal{R}^n \to \mathcal{R}$  is called permuting (or symmetric) if the equation  $\xi(v_1, v_2, ..., v_n) = \xi(v_{\pi(1)}, v_{\pi(2)}, ..., v_{\pi(n)})$  holds, for all  $v_i \in \mathcal{R}$  and for every permutation  $\{\pi(1), \pi(2), ..., \pi(n)\}$ .

## **Definition** (2.3) [13]

An *n*-additive mapping  $\xi: \mathbb{R}^n \to \mathbb{R}$  is said to be a \*-*n*-derivation if the following equations are identical:

$$\begin{split} \xi(v_1\gamma, v_2, \dots, v_n) =& \xi(v_1, v_2, \dots, v_n)\gamma^* + v_1\xi(\gamma, v_2, \dots, v_n) \\ \xi(v_1, v_2\gamma, \dots, v_n) =& \xi(v_1, v_2, \dots, v_n)\gamma^* + v_2\xi(v_1, \gamma, \dots, v_n) \\ \cdot & \cdot \\ \cdot & \cdot \\ \xi(v_1, v_2, \dots, v_n\gamma) =& \xi(v_1, v_2, \dots, v_n)\gamma^* + v_n\xi(v_1, v_2, \dots, \gamma), \text{ for all } v_1, \gamma, v_2, \dots, v_n \in \mathcal{R}. \end{split}$$

Now we introduce the concept of skew left \*-n-derivation to get our main results. **Definition** (2.4)

Let  $\mathcal{R}$  be a \*-ring. An *n*-additive symmetric mapping  $\xi: \mathcal{R}^n \to \mathcal{R}$  is said to be a skew left \*-*n*-derivation if

Let 
$$\mathcal{R} = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \mid a \in \mathbb{R} \right\}$$
 be a ring, and  $\mathbb{R}$  be a ring of real numbers. A map  $\xi : \mathcal{R}^n \to \mathcal{R}$  define by  $\xi \left( \begin{pmatrix} 0 & a_1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_2 \\ 0 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & a_n \\ 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} 0 & a_1 a_2 \dots a_n \\ 0 & 0 \end{pmatrix}$ , for all  $\begin{pmatrix} 0 & a_1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_2 \\ 0 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & a_n \\ 0 & 0 \end{pmatrix} \in \mathcal{R}$ . And  $\mathbf{r} \to \mathbf{r}^*$  such that  $\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}^* = \begin{pmatrix} 0 & -a \\ 0 & 0 \end{pmatrix}$   
Then it easy to check that  $\xi$  is skew left \*-*n*-derivation.

#### 3. The Main Results

We investigate the commutativity of \*-ring and some related results by using the notion of skew left \*-*n*-derivations.

**Theorem (3.1):** let  $\mathcal{R}$  be a prime \*-ring and  $\xi$  be a skew left \*-*n*-derivation. Then  $\mathcal{R}$  is commutative ring or  $\xi = 0$ 

**Proof:** 

Since  $\xi$  is a skew left \*-*n*-derivation, then  $\xi((v_1\gamma)z, v_2, ..., v_n) = z^* \xi(v_1\gamma, v_2, ..., v_n) + v_1\gamma\xi(z, v_2, ..., v_n)$   $= z^*\gamma^*\xi(v_1, v_2, ..., v_n) + z^*v_1\xi(\gamma, v_2, ..., v_n) + v_1\gamma\xi(z, v_2, ..., v_n)$ Also we have  $\xi(v_1(\gamma z), v_2, ..., v_n) = (\gamma z)^*\xi(v_1, v_2, ..., v_n) + v_1\xi(\gamma z, v_2, ..., v_n)$   $= z^*\gamma^*\xi(v_1, v_2, ..., v_n) + v_1z^*\xi(\gamma, v_2, ..., v_n) + v_1\gamma\xi(z, v_2, ..., v_n), \text{ for all } v, \gamma, z, v_2, ..., v_n \in \mathcal{R}.$ (2) Combining equations (1) and (2), to have

 $z^* v_1 \xi(\gamma, v_2, \dots, v_n) = v_1 z^* \xi(\gamma, v_2, \dots, v_n)$ Putting z instead of  $z^*$  in the last equation, we obtain  $zv_1\xi(\gamma, v_2, \dots, v_n) = v_1z\xi(\gamma, v_2, \dots, v_n)$  $[z, v_1] \xi(\gamma, v_2, ..., v_n) = 0$ Replacing z=zr in equation (4) and using it, to get  $[z, v_1]r\xi(\gamma, v_2, ..., v_n)=0$ Let  $\gamma = v_1$  in above equation, then  $[z, v_1] \mathcal{R} \xi(v_1, v_2, \dots, v_n) = 0$ Then either  $[z, v_1]=0$ , which mean that  $\mathcal{R}$  is commutative or  $\xi(v_1, v_2, \dots, v_n)=0$ . **Theorem (3.2):** Let  $\mathcal{R}$  be a 2-torsion free prime \*-ring and  $\xi_1$  be a skew left \*-n-derivation and  $\xi_2$  be a \*-*n*-derivation such that if  $\xi_1(v_1, v_2, ..., v_n)\xi_2(\gamma_1, \gamma_2, ..., \gamma_n) + \xi_2(v_1, v_2, ..., v_n)\xi_1(\gamma_1, \gamma_2, ..., \gamma_n) = 0$  for all  $v_1, v_2, \dots, v_n, \gamma_1, \gamma_2, \dots, \gamma_n \in \mathcal{R}$  then either  $\xi_1 = 0$  or  $\xi_2 = 0$ . **Proof:** Since  $\xi_1(v_1, v_2, ..., v_n)\xi_2(\gamma_1, \gamma_2, ..., \gamma_n) + \xi_2(v_1, v_2, ..., v_n)\xi_1(\gamma_1, \gamma_2, ..., \gamma_n) = 0$  (1) Replacing  $v_1 = v_1 z$  in equation (1) to get  $0 = \xi_1(v_1 z, v_2, \dots, v_n) \xi_2(\gamma_1, \gamma_2, \dots, \gamma_n) + \xi_2(v_1 z, v_2, \dots, v_n) \xi_1(\gamma_1, \gamma_2, \dots, \gamma_n)$  $= z^* \xi_1(v_1, v_2, \dots, v_n) \xi_2(\gamma_1, \gamma_2, \dots, \gamma_n) v_1 \xi_1(z, v_2, \dots, v_n) \xi_2(\gamma_1, \gamma_2, \dots, \gamma_n) +$  $z^{*}\xi_{2}(v_{1}, v_{2}, \dots, v_{n})\xi_{1}(\gamma_{1}, \gamma_{2}, \dots, \gamma_{n}) + v_{1}\xi_{2}(z, v_{2}, \dots, v_{n})\xi_{1}(\gamma_{1}, \gamma_{2}, \dots, \gamma_{n})$  $= z^{*}\xi_{1}(v_{1}, v_{2}, \dots, v_{n})\xi_{2}(\gamma_{1}, \gamma_{2}, \dots, \gamma_{n}) + \xi_{2}(v_{1}, v_{2}, \dots, v_{n})z^{*}\xi_{1}(\gamma_{1}, \gamma_{2}, \dots, \gamma_{n})\} +$  $v_1$ { $\xi_1(z, v_2, ..., v_n)$ } $\xi_2(\gamma_1, \gamma_2, ..., \gamma_n)$ + $\xi_2(z, v_2, ..., v_n)$  $\xi_1(\gamma_1, \gamma_2, ..., \gamma_n)$ From equation (1) and equation (2)  $z^{*}\xi_{1}(v_{1}, v_{2}, \dots, v_{n})\xi_{2}(\gamma_{1}, \gamma_{2}, \dots, \gamma_{n}) + \xi_{2}(v_{1}, v_{2}, \dots, v_{n})z^{*}\xi_{1}(\gamma_{1}, \gamma_{2}, \dots, \gamma_{n}) = 0$ Let  $z^* = z$  in above equation to obtain  $z\xi_1(v_1, v_2, \dots, v_n)\xi_2(\gamma_1, \gamma_2, \dots, \gamma_n) + \xi_2(v_1, v_2, \dots, v_n)z\xi_1(\gamma_1, \gamma_2, \dots, \gamma_n) = 0$ Multiplying equation (3) from the right by  $p\xi_1(r_1, r_2, ..., r_n)$  to get  $z\xi_1(v_1, v_2, ..., v_n)\xi_2(\gamma_1, \gamma_2, ..., \gamma_n)p\xi_1(r_1, r_2, ..., r_n)+$  $\xi_2(v_1, v_2, \dots, v_n)z\xi_1(\gamma_1, \gamma_2, \dots, \gamma_n)p\xi_1(r_1, r_2, \dots, r_n)=0$ , for all  $v_1, v_2, \dots, v_n, \gamma_1, \gamma_2, \dots, \gamma_n, r_1, r_2, \dots, r_n \in \mathcal{R}$ (4) Equation (3) gives us  $z\xi_1(v_1, v_2, ..., v_n)\xi_2(\gamma_1, \gamma_2, ..., \gamma_n) = -\xi_2(v_1, v_2, ..., v_n)z\xi_1(\gamma_1, \gamma_2, ..., \gamma_n)$ Since  $\mathcal{R}$  is a 2-torsion, then equation (4) becomes  $\xi_2(v_1, v_2, \dots, v_n) \mathcal{R} \xi_1(\gamma_1, \gamma_2, \dots, \gamma_n) \mathcal{R} \xi_1(\mathfrak{r}_1, \mathfrak{r}_2, \dots, \mathfrak{r}_n) = 0$ By \*-primeness of  $\mathcal{R}$ , either  $\xi_2(v_1, v_2, ..., v_n) = 0$  or  $\xi_1(r_1, r_2, ..., r_n) = 0$ , for all  $v_1, v_2, ..., v_n, r_1, r_2, ..., r_n \in \mathbb{R}$ . That is, either  $\xi_1 = 0$  or  $\xi_2 = 0.$ **Theorem (3.3):** Let  $\mathcal{R}$  be a semiprime \*-ring admitting a non-zero skew left \*-*n*-derivation  $\xi$ . Then  $\xi(\mathcal{R}, \mathcal{R}, \dots, \mathcal{R}) \subseteq \mathbb{Z}.$ **Proof:** Replacing  $v_1$  by  $\xi(v_1, v_2, ..., v_n)$ r in equation (3) of theorem (3.1), to get  $z\xi(v_1, v_2, \dots, v_n)\mathbf{r}\xi(\gamma, v_2, \dots, v_n) = \xi(v_1, v_2, \dots, v_n)\mathbf{r}z\xi(\gamma, v_2, \dots, v_n)$ That is,  $0=z\xi(v_1,v_2,\ldots,v_n)\mathbf{r}\xi(\gamma,v_2,\ldots,v_n)-\xi(v_1,v_2,\ldots,v_n)\mathbf{r}z\xi(\gamma,v_2,\ldots,v_n)$  $= [z, \xi(v_1, v_2, \dots, v_n)\mathbf{r}]\xi(\gamma, v_2, \dots, v_n)$  $= [z, \xi(v_1, v_2, \dots, v_n)] \mathfrak{r}\xi(\gamma, v_2, \dots, v_n) + \xi(v_1, v_2, \dots, v_n)[z, \mathfrak{r}]\xi(\gamma, v_2, \dots, v_n)$ By using equation (4) of theorem (3.1) in the last equation to get  $[z, \xi(v_1, v_2, ..., v_n)]$ r $\xi(\gamma, v_2, ..., v_n)=0$ ... (1) Multiply equation (1) from the right by z, to get  $[z, \xi(v_1, v_2, ..., v_n)]$ r $\xi(\gamma, v_2, ..., v_n)z=0$ ... (2) Replacing r=rz in equation (1) where  $r, z \in \mathcal{R}$ , to get ... (3)  $[z, \xi(v_1, v_2, ..., v_n)]$ r $z\xi(\gamma, v_2, ..., v_n)z=0$ Comparing equation (2) and (3) to obtain  $[z, \xi(v_1, v_2, \dots, v_n)] \mathfrak{r}\xi(\gamma, v_2, \dots, v_n) z = [z, \xi(v_1, v_2, \dots, v_n)] \mathfrak{r}z\xi(\gamma, v_2, \dots, v_n)$ This means that  $[z, \xi(v_1, v_2, \dots, v_n)]$ **r** $[z, \xi(\gamma, v_2, \dots, v_n)]=0$ , for all  $z, \gamma, \mathbf{r}, v_1, v_2, \dots, v_n \in \mathcal{R}$ . Now put  $\gamma = v_1$  to get  $[z, \xi(v_1, v_2, \dots, v_n)] \mathcal{R}[z, \xi(v_1, v_2, \dots, v_n)] = 0$ 

This gives  $[z, \xi(v_1, v_2, \dots, v_n)]^* \mathcal{R}[z, \xi(v_1, v_2, \dots, v_n)]^* = 0$ By the \*-semiprime of  $\mathcal{R}$ , yields that  $[z, \xi(v_1, v_2, \dots, v_n)] = 0$  and this means that,  $\xi(\mathcal{R}, \mathcal{R}, \dots, \mathcal{R}) \subseteq \mathbb{Z}$ . Recall that an additive mapping  $\xi : \mathcal{R} \to \mathcal{R}$  is called a left multiplier if  $\xi(v\gamma) = \xi(v)\gamma$  [12]. **Theorem (3.4):** Let  $\mathcal{R}$  be a semiprime \*-ring and  $\xi$  be a skew left \*-*n*-derivation such that  $\xi(v_1, v_2, \dots, v_n)\gamma_1 = v_1\xi(\gamma_1, \gamma_2, \dots, \gamma_n)$  for all  $v_1, v_2, \dots, v_n, \gamma_1, \gamma_2, \dots, \gamma_n \in \mathcal{R}$ . Then  $\xi$  is a left multiplier. **Proof:** By hypothesis, Replacing  $\gamma_1$  by  $\gamma_1 z$  in equation (1) and since  $\xi$  is a skew left \*-*n*-derivation, then  $\xi(v_1, v_2, \dots, v_n)\gamma_1 z = v_1 z^* \xi(\gamma_1, \gamma_2, \dots, \gamma_n) + v_1 \gamma_1 \xi(z, \gamma_2, \dots, \gamma_n)$ Again by using equation (1) in the last equation  $v_1\xi(\gamma_1, \gamma_2, ..., \gamma_n)z = v_1z^*\xi(\gamma_1, \gamma_2, ..., \gamma_n) + v_1\gamma_1\xi(z, \gamma_2, ..., \gamma_n)$ Using z instead of  $z^*$  to obtain  $v_1\xi(\gamma_1,\gamma_2,\ldots,\gamma_n)z = v_1z\xi(\gamma_1,\gamma_2,\ldots,\gamma_n) + v_1\gamma_1\xi(z,\gamma_2,\ldots,\gamma_n)$ By applying equation (1) on left side of last equation to get  $v_1\gamma_1\xi(z,\gamma_2,\ldots,\gamma_n) = v_1z\xi(\gamma_1,\gamma_2,\ldots,\gamma_n) + v_1\gamma_1\xi(z,\gamma_2,\ldots,\gamma_n)$  and this mean that  $v_1 z \xi(\gamma_1, \gamma_2, \dots, \gamma_n) = 0$ , for all  $v_1, z, \gamma_1, \gamma_2, \dots, \gamma_n \in \mathcal{R}$ Replacing  $v_1$  by  $\xi(\gamma_1, \gamma_2, ..., \gamma_n)$  in equation (2) then  $\xi(\gamma_1, \gamma_2, \dots, \gamma_n) z \xi(\gamma_1, \gamma_2, \dots, \gamma_n) = 0$ , for all  $\gamma_1, \gamma_2, \dots, \gamma_n, z \in \mathcal{R}$  and this gives  $\xi(\gamma_1, \gamma_2, \dots, \gamma_n) \mathcal{R} \xi(\gamma_1, \gamma_2, \dots, \gamma_n) = 0, \text{ for all } \gamma_1, \gamma_2, \dots, \gamma_n, \in \mathcal{R}$ This implies that  $\xi(\gamma_1, \gamma_2, \dots, \gamma_n)^* \mathcal{R} \xi(\gamma_1, \gamma_2, \dots, \gamma_n)^* = 0$ Using \*-semiprimeness leads to  $\xi$  is a left multiplier. **Theorem (3.5):** Let  $\mathcal{R}$  be a semiprime \*-ring and If  $\mathcal{R}$  admits a skew left \*-*n*-derivation  $\xi$  of  $\mathcal{R}^n$ , then  $\xi$  a maps from  $\mathcal{R}^n$  to  $\mathcal{Z}(\mathcal{R})$ . **Proof:** By hypothesis  $\xi(v\gamma, v_2, \dots, v_n) = \gamma^* \xi(v, v_2, \dots, v_n) + v \xi(\gamma, v_2, \dots, v_n)$ Let  $\gamma = \gamma z$  in equation (1), to get  $\xi(v\gamma z, v_2, \dots, v_n) = (\gamma z)^* \xi(v, v_2, \dots, v_n) + v\xi(\gamma z, v_2, \dots, v_n)$  $= z^* \gamma^* \xi(v, v_2, \dots, v_n) + z^* v \xi(\gamma, v_2, \dots, v_n) + v \gamma \xi(z, v_2, \dots, v_n), \text{ for all } v, \gamma, z, v_2, \dots, v_n \in \mathcal{R}. \quad \dots \dots \dots \dots (2)$ On the other hand  $\xi(\upsilon\gamma z,\upsilon_2,\ldots,\upsilon_n) = z^*\xi(\upsilon\gamma,\upsilon_2,\ldots,\upsilon_n) + \upsilon\gamma\xi(z,\upsilon_2,\ldots,\upsilon_n)$  $= z^* \gamma^* \xi(v, v_2, \dots, v_n) + z^* v \xi(\gamma, v_2, \dots, v_n) + v \gamma \xi(z, v_2, \dots, v_n)$ ......(3) Comparing equations (2) and (3) to have  $[v, z^*]\xi(\gamma, v_2, ..., v_n)=0$ Replacing  $z^*=z$  in last equation to obtain [v, z] $\xi(\gamma, v_2, \dots, v_n)=0$ , for all  $v, \gamma, z, v_2, \dots, v_n \in \mathcal{R}$ Replacing  $\xi(\gamma, v_2, ..., v_n)v$  instead of v in equation (4) and using it then  $[\xi(\gamma, \upsilon_2, \dots, \upsilon_n), z] \upsilon \xi(\gamma, \upsilon_2, \dots, \upsilon_n) = 0$ Let v = vz in equation (5). Then  $[\xi(\gamma, \upsilon_2, \dots, \upsilon_n), z]\upsilon z\xi(\gamma, \upsilon_2, \dots, \upsilon_n)=0$ Now, multiplying equation (5) from the right side by z $[\xi(\gamma, \upsilon_2, \dots, \upsilon_n), z] \upsilon \xi(\gamma, \upsilon_2, \dots, \upsilon_n) z = 0$ .....(7) Comparing equations (6) and (7) to get  $[\xi(\gamma, v_2, ..., v_n), z]v[\xi(\gamma, v_2, ..., v_n), z]=0$ , hence  $[\xi(\gamma, v_2, \dots, v_n), z] \mathcal{R}[\xi(\gamma, v_2, \dots, v_n), z] = 0$ . Since  $\mathcal{R}$  is semiprime \*-ring  $[\xi(\gamma, v_2, \dots, v_n), z] = 0$ , for all  $\gamma, z, v_2, \dots, v_n \in \mathcal{R}$ . Hence  $\xi$  is a map  $\mathcal{R}^n$  into  $\mathcal{Z}(\mathcal{R})$ . **Theorem (3.6):** Let  $\mathcal{R}$  be a prime \*-ring. If  $\mathcal{R}$  admits a skew left \*-*n*-derivation  $\xi$  of  $\mathcal{R}^n$  such that  $\xi(v, v_2, \dots, v_n) \neq v$  and  $\xi(v\gamma, v_2, \dots, v_n) = \xi(v, v_2, \dots, v_n) \xi(\gamma, v_2, \dots, v_n)$  for all  $v, \gamma, v_2, \dots, v_n \in \mathcal{R}$ , then

Proof:

 $\xi = 0.$ 

## By hypothesis

Let v = vz in equation (1) to get  $\gamma^* \xi(v, v_2, ..., v_n) \xi(z, v_2, ..., v_n) + vz \xi(\gamma, v_2, ..., v_n) = \xi(v, v_2, ..., v_n) \xi(z, v_2, ..., v_n) \xi(\gamma, v_2, ..., v_n) = \xi(v, v_2, ..., v_n) \xi(z, v_2, ..., v_n) \xi(z, v_2, ..., v_n) \xi(z, v_2, ..., v_n) = \xi(v, v_2, ..., v_n) \xi(z, v_n) \xi(z, v_n) \xi(z, v_n) \xi(z, v_n) \xi(z, v_n)$  $\{(v, v_2, \dots, v_n) \in \{(z\gamma, v_2, \dots, v_n) = \{(v, v_2, \dots, v_n) \mid \gamma^* \in \{(z, v_2, \dots, v_n) + z \in \{(\gamma, v_2, \dots, v_n)\}\}$ This implies that  $[\gamma^*, \xi(v, v_2, ..., v_n)]\xi(z, v_2, ..., v_n) + (v - \xi(v, v_2, ..., v_n))z\xi(\gamma, v_2, ..., v_n) = 0$ By Theorem (3.5) the above equation becomes  $(v - \xi(v, v_2, \dots, v_n))z\xi(\gamma, v_2, \dots, v_n) = 0$ , for all  $\gamma, z, v, v_2, \dots, v_n \in \mathcal{R}$ That is,  $(v - \xi(v, v_2, ..., v_n))\mathcal{R}\xi(\gamma, v_2, ..., v_n)=0$ . Since  $\mathcal{R}$  is prime \*-ring then either  $(v - \xi(v, v_1, ..., v_n))\mathcal{R}\xi(\gamma, v_2, ..., v_n)=0$ .  $\xi(v, v_2, ..., v_n) = 0$  or  $\xi(\gamma, v_2, ..., v_n) = 0$ . But  $\xi(v, v_2, ..., v_n) \neq v$ , then  $\xi(\gamma, v_2, ..., v_n) = 0$  for all  $\gamma, \upsilon_2, \ldots, \upsilon_n \in \mathcal{R}$ . **Theorem (3.7):** Let  $\mathcal{R}$  be a prime \*-ring and If  $\mathcal{R}$  admits a skew left \*-*n*-derivation  $\xi$  of  $\mathcal{R}^n$  such that  $\xi(v, v_2, \dots, v_n) \neq v^*$  and  $\xi(v\gamma, v_2, \dots, v_n) = \xi(\gamma, v_2, \dots, v_n) \xi(v, v_2, \dots, v_n)$  for all  $v, \gamma, v_2, \dots, v_n$  $\in \mathcal{R}$ , then  $\xi = 0$ . **Proof:** By hypothesis  $\xi(v\gamma, v_2, ..., v_n) = \gamma^* \xi(v, v_2, ..., v_n) + v\xi(\gamma, v_2, ..., v_n) = \xi(\gamma, v_2, ..., v_n)\xi(v, v_2, ..., v_n) \quad ... (1)$ Replacing  $\gamma = v\gamma$  in equation (1) to get  $\gamma^* v^* \xi(v, v_2, \dots, v_n) + v \xi(\gamma, v_2, \dots, v_n) \xi(v, v_2, \dots, v_n) = \xi(v\gamma, v_2, \dots, v_n) \xi(v, v_2, \dots, v_n) = \{\gamma^* \xi(v, v_2, \dots, v_n) = (\gamma^* \xi(v, v_2, \dots, v_n)) = (\gamma^* \xi(v, v_n)$  $+ v\xi(\gamma, v_2, \dots, v_n) \} \xi(v, v_2, \dots, v_n)$ This implies that  $\gamma^* v^* \xi(v, v_2, ..., v_n) - \gamma^* \xi(v, v_2, ..., v_n) \xi(v, v_2, ..., v_n) = 0$  $\gamma^*(v^* - \xi(v, v_2, ..., v_n))\xi(v, v_2, ..., v_n) = 0$ Applying Theorem (3.5) to get  $(v^* - \xi(v, v_2, ..., v_n))\gamma^*\xi(v, v_2, ..., v_n) = 0$ Hence,  $(v^* - \xi(v, v_2, \dots, v_n))\mathcal{R} \xi(v, v_2, \dots, v_n) = 0$ . Since  $\mathcal{R}$  is prime \*-ring then  $(v^* - \xi(v, v_2, \dots, v_n))\mathcal{R} \xi(v, v_2, \dots, v_n) = 0$ .  $\xi(v, v_2, ..., v_n) = 0$  or  $\xi(v, v_2, ..., v_n) = 0$ . But  $\xi(v, v_2, ..., v_n) \neq v^*$ , then  $\xi(v, v_2, ..., v_n) = 0$  for all  $v, v_2, \dots, v_n \in \mathcal{R}.$ **Theorem (3.8):** Let  $\mathcal{R}$  be a prime \*-ring and  $a \in \mathcal{R}$ . If  $\mathcal{R}$  admits a skew left \*-*n*-derivation  $\xi$  of  $\mathcal{R}^n$ and  $[\xi(v, v_2, ..., v_n), a] = 0$ , then either  $\xi(a) = 0$  or  $a \in \mathbb{Z}(\mathbb{R})$ . **Proof:** By hypothesis  $O = [\xi(v\gamma, v_2, \dots, v_n), a] = 0$  $= [\gamma^* \xi(v, v_2, \dots, v_n) + v \xi(\gamma, v_2, \dots, v_n), a] = 0, \text{ for all } v, \gamma, v_2, \dots, v_n \in \mathcal{R}$  (1) Hence  $[\gamma^*, a]\xi(v, v_2, ..., v_n) + [v, a]\xi(\gamma, v_2, ..., v_n) = 0$ Replacing v by a and  $\gamma^*$  by  $\gamma$  in equation (2) to get  $[\gamma, a]\xi(a, v_2, ..., v_n)=0$ ......(3) Replacing  $\gamma = v\gamma$  in equation (3) and using it to get  $[v, a]\gamma\xi(a, v_2, ..., v_n)=0$ , and this implies that  $[v, a]\mathcal{R}\xi(a, v_2, ..., v_n)=0$ , since  $\mathcal{R}$  is prime then either  $a \in \mathbb{Z}(\mathcal{R})$  or  $\xi(a, v_2, \dots, v_n) = 0$  for all  $a, v_2, \dots, v_n \in \mathcal{R}$ . **Theorem (3.9):** Let  $\mathcal{R}$  be a semiprime \*-ring. If  $\mathcal{R}$  admits a skew left \*-*n*-derivation  $\xi$  of  $\mathcal{R}$ then  $[\xi(v, v_2, \dots, v_n), z] = 0$  for all  $v, z, v_2, \dots, v_n \in \mathcal{R}$ . **Proof:** By hypothesis  $\xi(v_1, v_2, ..., v_n) = \gamma^* \xi(v, v_2, ..., v_n) + v \xi(y, v_2, ..., v_n)$  (1) Substituting  $\gamma = \gamma z$  in equation (1) we get  $\xi(\upsilon\gamma z,\upsilon_2,\ldots,\upsilon_n) = (\gamma z)^* \xi(\upsilon,\upsilon_2,\ldots,\upsilon_n) + \upsilon \xi(\gamma z,\upsilon_2,\ldots,\upsilon_n)$  $= z^* \gamma^* \xi(v, v_2, \dots, v_n) + v z^* \xi(\gamma, v_2, \dots, v_n) + v \gamma \xi(z, v_2, \dots, v_n)$ ......(2) Also we have  $\xi(\upsilon\gamma z,\upsilon_2,\ldots,\upsilon_n) = z^*\xi(\upsilon\gamma,\upsilon_2,\ldots,\upsilon_n) + \upsilon\gamma\xi(z,\upsilon_2,\ldots,\upsilon_n)$  $= z^* \gamma^* \xi(v, v_2, \dots, v_n) + z^* v \xi(\gamma, v_2, \dots, v_n) + v \gamma \xi(z, v_2, \dots, v_n)$ Comparing equations (2) and (3) to get  $[v, z^*]\xi(\gamma, v_2, ..., v_n)=0$ Let  $z^* = z$  in above equation to get  $[v, z]\xi(\gamma, v_2, \dots, v_n)=0$ 

| Replacing v by $\xi(\gamma, v_2,, v_n)v$ in equation (4) and using it to get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| $[\xi(\gamma, \upsilon_2, \dots, \upsilon_n), z] \upsilon \xi(\gamma, \upsilon_2, \dots, \upsilon_n) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (5)                                                                    |
| Let $v = vz$ in equations (5) then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |
| $[\xi(\gamma, v_2, \dots, v_n), z]vz\xi(\gamma, v_2, \dots, v_n) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                        |
| Now, multiplying equation (5) from the right side by $z$ we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        |
| $[\xi(\gamma, v_2,, v_n), z]\xi(\gamma, v_2,, v_n)z=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (7)                                                                    |
| Comparing equations (6) and (7) to get $[\xi(\gamma, v_2,, v_n), z]v[\xi(\gamma, v_2,, v_n), z]v[\xi(\gamma,$                            | $v_2,, v_n, z = 0$                                                     |
| Hence $[\xi(\gamma, v_2,, v_n), z] \mathcal{R}[\xi(\gamma, v_2,, v_n), z] = 0.$ Since $\mathcal{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>R</i> is semiprime *-ring then                                      |
| $[\xi(\gamma, v_2, \dots, v_n), z] = 0$ for all $\gamma, z, v_2, \dots, v_n \in \mathbb{R}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , U                                                                    |
| <b>Theorem (3.10):</b> Let $\mathcal{R}$ be a prime *-ring. If $\mathcal{R}$ admits a skew 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eft *- <i>n</i> -derivation $\xi$ of $\mathcal{R}^n$ such that         |
| $\xi([v, \gamma], v_2, \dots, v_n) = 0$ for all $v, \gamma, v_2, \dots, v_n \in \mathcal{R}$ then $\xi = 0$ or $\mathcal{R}$ is co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ommutative.                                                            |
| Proof:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |
| By hypothesis $\xi([v, \gamma], v_2, \dots, v_n) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)                                                                    |
| Let $v=v\gamma$ in equation (1) and using it to get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                        |
| $[v, v] \xi(v, v_2, \dots, v_n) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |
| Replacing $v=vz$ in equation (2) then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                        |
| $[u, v]_{z} \{(v, u_2, \dots, u_n) + u[z, v] \} \{(v, u_2, \dots, u_n) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |
| By using equation (2) the last equation to get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |
| $[u v]z\xi(v u_0, u_0)=0$ and this implies that $[u v]\mathcal{R}\xi(v u_0, u_0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )=0 Since $\mathcal{R}$ is prime then $[u \ v]=0$                      |
| and this means that $\mathcal{R}$ is commutative or $\mathcal{E}(y, y_1, y_2, y_1, y_2, \dots, y_n) = 0$ for all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $[\nu, \nu] = 0$ . Since se is prime then $[\nu, \gamma] = 0$ .        |
| <b>Theorem (3.11):</b> Let $\mathcal{R}$ be a prime *-ring. If $\mathcal{R}$ admits a skew 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eft *- <i>m</i> -derivation $\mathcal{E}$ of $\mathcal{R}^n$ such that |
| [ $\xi(u, u_1, \dots, u_n)$ , $v_1$ ] = [ $u, v_1$ ] for all $u, v_1, \dots, v_n \in \mathbb{R}$ then $\xi$ =0 or $\mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is commutative                                                         |
| <b>Proof</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is commutative.                                                        |
| By hypothesis $[\xi(u, u, u, v), v] - [u, v]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1)                                                                    |
| By hypothesis $[\zeta(0, 0_2,, 0_n), \gamma] = [0, \gamma]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |
| Let $b = b^2$ in equation (1) to get<br>$\begin{bmatrix} \zeta(u_{\text{res}}, u_{\text{ress}}, u_{\text{ress}}) \\ u_{\text{ress}} \end{bmatrix} = \begin{bmatrix} u_{\text{ress}}, u_{\text{ress}} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                        |
| $[\zeta(UZ, U_2,, U_n), \gamma] = [UZ, \gamma]$ $[\pi^* \alpha ] \zeta(u, u) = \alpha ] + \pi^* [\zeta(u, u) = \alpha ] + \alpha ] + [u, \alpha] \zeta(\pi, u) = \alpha ] + \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $u[\xi(\sigma, y), y] \rightarrow u[-[y, y]\sigma + y[\sigma, y]$      |
| $\begin{bmatrix} z & y \\ y \\ \zeta \\ 0 & z \\ 0 $ | $[0[\zeta(z, v_2,, v_n), \gamma] = [v, \gamma]z + v[z, \gamma]$        |
| By using equation (1), the fast equation can be reduced to $[-*, -]^{(n)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $] = \{ \dots [-\infty ] \} $                                          |
| $\begin{bmatrix} z & , \gamma \end{bmatrix} \xi(v, v_2, \dots, v_n) + z & \begin{bmatrix} v, \gamma \end{bmatrix} + \begin{bmatrix} v, \gamma \end{bmatrix} \xi(z, v_2, \dots, v_n) + v[z, \gamma] = \begin{bmatrix} v, \gamma \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $]z+v[z,\gamma] \qquad (2)$                                            |
| Replacing $v = \gamma$ and $z = z$ in equation (2) to get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |
| $[Z, \gamma]\xi(\gamma, v_2, \dots, v_n) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3)                                                                    |
| Replacing z by $zr$ in equation (3) and using it to get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |
| $[z, \gamma]\mathbf{r}\xi(\gamma, v_2, \dots, v_n) = 0 \text{ for all } \gamma, \mathbf{r}, z, v_2, \dots, v_n \in \mathcal{R}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        |
| This implies that $[z, \gamma] \mathcal{R} \xi(\gamma, v_2,, v_n) = 0$ . Since $\mathcal{R}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | prime then $\xi(\gamma, \upsilon_2, \dots, \upsilon_n) = 0$ for        |
| all $\gamma, v_2, \dots, v_n \in \mathcal{R}$ , or $\mathcal{R}$ is commutative.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        |
| <b>Theorem (3.12):</b> Let $\mathcal{R}$ be a prime *-ring. If $\mathcal{R}$ admits a skew left *- $\mathcal{N}$ -derivation $\zeta$ of $\mathcal{R}^{\prime\prime\prime}$ such that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |
| $\xi((v \circ \gamma), v_2, \dots, v_n) = 0$ for all $v, \gamma, v_2, \dots, v_n \in \mathcal{R}$ then $\xi = 0$ or $\mathcal{R}$ is c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | commutative.                                                           |
| Proof:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |
| By hypothesis $\xi((v \circ \gamma), v_2,, v_n) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1)                                                                    |
| Let $v=v\gamma$ in equation (1) and using it to get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                        |
| $(v \circ \gamma)\xi(\gamma, v_2, \dots, v_n) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (2)                                                                    |
| Replacing $v=sv$ in equation (2) then $(s \circ \gamma)v\xi(\gamma, v_2,, v_n)=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
| Hence $(s \circ \gamma)\mathcal{R}\xi(\gamma, v_2,, v_n)=0$ . Since $\mathcal{R}$ is prime *-ring then $(s \circ \gamma)=0$ , replace $s=sz$ we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |
| get $s[z, \gamma] = 0$ . Now let $s = vs$ then we have $vs[z, \gamma] = 0$ , that $v\mathcal{R}[z, \gamma] = 0$ for $0 \neq v \in \mathcal{R}$ and since $\mathcal{R}$ is prime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |
| *-ring then $\mathcal{R}$ is commutative, or $\xi(\gamma, v_2,, v_n) = 0$ for all $\gamma, v_2,, v_n \in \mathcal{R}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |
| <b>Theorem (3.13):</b> Let $\mathcal{R}$ be a prime *-ring. If $\mathcal{R}$ admits a skew left *- <i>n</i> -derivation $\xi$ of $\mathcal{R}$ such that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                        |
| $\xi(v, v_2,, v_n) \circ \gamma = 0$ for all $v, \gamma, v_2,, v_n \in \mathcal{R}$ then $\xi = 0$ or $\mathcal{R}$ is commutative.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                        |
| Proof:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |
| By hypothesis $\xi(v, v_2,, v_n) \circ \gamma = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1)                                                                    |
| Replacing $v=vz$ in equation (1) and using it to get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |
| $[\gamma, z^*]\xi(v, v_2,, v_n) - [v, \gamma]\xi(z, v_2,, v_n) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2)                                                                    |
| Let $v = \gamma$ and $z^* = z$ in equation (2) then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                        |
| $[\gamma, z]\xi(\gamma, v_2, \dots, v_n) = 0 \qquad \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3)                                                                    |
| Replacing $z=vz$ in equation (3) and using it to get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |

 $[\gamma, v]z\xi(\gamma, v_2, \dots, v_n)=0$  for all  $v, \gamma, z, v_2, \dots, v_n \in \mathcal{R}$ 

This implies that  $[\gamma, v]\mathcal{R}\xi(\gamma, v_2, ..., v_n)=0$ , since  $\mathcal{R}$  is prime then  $\xi(\gamma, v_2, ..., v_n)=0$  for all  $\gamma, v_2, ..., v_n \in \mathcal{R}$ , or  $\mathcal{R}$  is commutative.

### References

- 1. Herstein, I.N. 1969. Topics in Ring Theory. The University of Chicago Press, Chicago.
- 2. Kim, K. H. and Lee, Y. H. 2017. A Note on \*-Derivation of Prime \*-Rings. *International Mathematical Forum*, 12(8): 391-398.
- 3. Sharma, U. K. and Kumar, S. 2017. On Generalized \*-n-Derivation in \*-Ring. *Global Journal of Pure and Applied Math.*, 13(10): 7561-7572.
- 4. Posner, E.C. 1957. Derivations in Prime Rings. Proc. Amer. Math.Soc, 8: 1093-1100.
- 5. Bresar, M. and Vukman, J. 1990. On Left Derivations and Related Mappings. *Proc. Amer. Math. So.*, 110(1): 7-16.
- 6. Park, K.H. 2009. On Prime and Semiprime Rings with Symmetric n-Derivations. *J. Chungcheong Math.Soc.*, 22(3): 451-458.
- 7. Bresar, M. and Vukman, J. 1989. On Some Additive Mappings in Rings with involution. *Aequationes Math.*, 38: 178-185.
- 8. Rehman, N., Ansari, A.Z. and Haetinger, C. 2013. A Note on Homomorphisms and Anti-Homomorphisms on \*-Ring. *Thai Journal of Mathematics*, 11: 741-750.
- 9. Ashraf, M. and Rehman, N. 2001. On Derivation and Commutativity in Prime Rings. *East West J.Math.*, 3: 87–91.
- **10.** Faraj, A. K. and Shareef, S. J. **2016.** Generalized Permuting 3-Derivations of Prime Rings. *Iraqi Journal of Science*, **57** (3C): 2312-2317.
- **11.** Faraj, A. K. and Shareef, S. J. **2017.** On Generalized Permuting Left 3-Derivations of Prime Rings. *Engineering and Technology Journal*, **35 Part B** (1).
- **12.** Ali, S. and Khan, M. S. **2011.** On \*-Bimultipliers, Generalized \*-Biderivations and Related Mappings. *Kyungpook Math. J.*, **51**(3):301–309.
- 13. Ashraf, M. and Siddeeque, M.A. 2015. On \*-n-Derivations in Rings with involution. *Georgian Math. J.*, 22(1): 9-18.