
Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

 DOI: 10.24996/ijs.2023.64.9.33

*Email: vishwanath.k@kleit.ac.in

4704

Image Compression Using Mapping Transform with Pixel Elimination

Vishwanath S. Kamatar1*, Vishwanath P. Baligar2
1Department of Computer Science & Engineering, KLE Institute of Technology, Karnataka, India

2School of Computer Science, KLE Technological University, Karnataka, India

 Received: 12/8/2021 Accepted: 24/6/2022 Published: 30/9/2023

Abstract

 In today's world, digital image storage and transmission play an essential

role,where images are mainly involved in data transfer. Digital images usually take

large storage space and bandwidth for transmission, so image compression is

important in data communication. This paper discusses a unique and novel lossy

image compression approach. Exactly 50% of image pixels are encoded, and other

50% pixels are excluded. The method uses a block approach. Pixels of the block are

transformed with a novel transform. Pixel nibbles are mapped as a single bit in a

transform table generating more zeros, which helps achieve compression. Later,

inverse transform is applied in reconstruction, and a single bit value from the table is

remapped into pixel nibbles. With these nibbles, pixel values of the block are

reconstructed without any loss. The average method is used in reconstruction of

excluded pixels. This approach achieves better quality in reconstructed test images at

lower PSNR values ranging from 33dB to 44dB. Compression ratio achieved is more

than 2. Correctness ratio achieved by proposed method is more than 0.5.

Keywords: pixel elimination, image compression, lossless, mapping transform, lossy,

JPEG

1. Introduction

 In today's world, digital communication has a high priority in everyone's life, and digital

images have become an inevitable part of information in communication. Digital images

usually take large storage space, require high bandwidth while transmitting through channels,

and require more time to transmit. So it is very indispensable to compress images.

 Due to redundancies in data of digital images, compression of digital images is possible[1,2].

It is indispensable that reconstructed image is same as original without deviations in pixels of

image in lossless compression [3,4,5].

 In lossy compression, high-quality images are reconstructed, but visual system makes

negligible with a loss of certain information. This approach uses transforms like Discrete Cosine

Transform [6].

 Here, the work proposed is image compression for generic images using a novel transform.

Transform is applied to half the number of pixels in the image, and the transformed image data

is encoded using a Huffman encoder. Results are compared with results of JPEG compression.

 ISSN: 0067-2904

mailto:vishwanath.k@kleit.ac.in

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4705

 Literature survey outlines different image compression methods in Section 2. Section 3

describes the proposed work and algorithms. In section 4, a new metric called correctness ratio

is discussed. In section 5, results are discussed. Section 6 gives conclusion.

2. Related work

 This section provides facts and outcomes of some image compression techniques which are

lossy and lossless.

 Weinberger et al., 1996 have proposed an image compression algorithm with low

complexity (LOCO-I) and became a core part of the new ISO/ITU standard. The algorithm

achieves a high compression ratio with low complexity. This is one of the best available

methods and is standardized into JPEG-LS [5].

 Faisel Ghazi Mohammed and Hind Moutaz Al-Dabbas 2018 have proposed image

compression based on Wavelet Difference Reduction and using three different wavelet

codecs.[7]

Kumar S. N. et al., 2021 have proposed a medical image compression method. Coefficients

obtained from polynomial approximation were quantified using Lloyds, and an arithmetic

encoder was used to encode[8].

 Rui Lia et al., 2021 have developed a method to construct core tensor and factor matrices

called correlation-based Tucker decomposition that can be used in any Nth order tensor based

on TD[9].

 Faisel Ghazi Mohammed and Hind Moutaz Al-Dabbas, 2018 have proposed a method for

compressing images by wavelet transform filters based on wavelet difference reduction WDR

on the color images[10].

 Catching Ding et al., 2020 have proposed a method based on partial differential equations.

Image was compressed by segmentation with quadtree approach, encoding, and transmitting

some pixels[11].

 Although references discussed above achieve good results in different application domains,

there is still a need for generic compression algorithms that can be used on any image

irrespective of application domains.

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4706

3. Proposed methodology

Figure 1: Proposed methodology

 A simple lossy image compression algorithm is presented. Figure 1 shows block diagram of

the proposed methodology. An algorithm is developed to compress grayscale images. The

proposed image compression algorithm compresses an image in terms of blocks. Exactly 50%

of pixels are eliminated from each block, and compression is achieved with the remaining 50%

of pixels.

3.1 Compression

 Input image is divided into blocks of M×N size. From the block, predefined alternatively

positioned pixels are eliminated. The
𝑀×𝑁

2
 pixels out of M×N size block with M=4 and N=8,

used to compress, are shown as asterisks in Figure 2.

Figure 2: Context of pixels from the block

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4707

A table of (
𝑀×𝑁

2
)×(

𝑀×𝑁

2
) is created and referred to as a transform table to transform the pixels.

For each pixel block, two entries are made in the transform table. Each entry in the transform

table represents either the MSB nibble value or the LSB nibble value. MSB and LSB nibble

values of the pixel are computed by Eq. 1 and Eq. 2.

 𝑀𝑆𝐵 𝑛𝑖𝑏𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 =
𝑃[𝑀,𝑁]

16
 (1)

 𝐿𝑆𝐵 𝑛𝑖𝑏𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑃[𝑀, 𝑁] 𝑚𝑜𝑑 16 (2)

 The two entries added to the transform table represent pixel's MSB and LSB nibble values.

When making entry of MSB in transform table, column indices represent MSB nibble values,

and row indices represent the pixel order number. When making entry of LSB in transform

table, row indices represent LSB nibble values, and column indices represent pixel order

number. For the first pixel’s MSB value of the block, an entry of ‘1’ is made in

Transform_Table[0][MSB] position. For the same pixel, entry of ‘1’ for LSB value is made in

Transform_Table[LSB][0] position. In the same way, MSBs and LSBs of other pixels entries

are made in subsequent rows and columns. The transform is formulated as in Eq 3.

 𝐹′ = ⋃ ⋃ [𝐹[[𝑖, 𝑓(𝑢, 𝑣)], [𝑔(𝑢, 𝑣), 𝑖]]𝑣
4
𝑢=0 (3)

 v=0,2,4,6 when u is even

 v=1,3,5,7 when u is odd

 i=0,1,2,3,…,16

 where , 𝑓(𝑢, 𝑣) is MSB nibble and 𝑔(𝑢, 𝑣) is LSB nibble

 To illustrate how the entries are made in the transform table, an example block is considered

and shown in Figure 3. In a block, pixels in alternative positions are eliminated, and the pixels

used to compress the block are shown in Figure 4.

Figure 3: Example block

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4708

Figure 4: Sixteen pixels used to compress a block

 From the example block, first pixel value 162 is considered. For the pixel, MSB and LSB

nibbles are computed using Eq. 1 and Eq. 2.

MSB of the pixel = 162 / 16 = 10 (MSB)

LSB of the pixel = 162 mod 16 = 2 (LSB)

 These MSB and LSB nibble values entries will be inserted into the transform table. So a

table of size 16X16 is created with all positions as zeros. MSB nibble value entry is made in

the transform table in position Ttransform_Table[0][10]. LSB nibble value entry is made in the

transform table in position Ttransform_Table [2][0]. MSB and LSB nibble values entries in the

transform table are as shown in Figure 5. Similarly, other pixels are processed for making an

entry in the transform table. The transform table after making all entries is shown in Figure 6.

Figure 5: Transform table with an entry of MSB and LSB nibble values

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4709

Figure 6: Complete transform table for the example block

 There are sixteen pixels in the block, so there will be sixteen MSB nibbles and LSB nibbles,

which constitute a total of thirty-two nibbles. There may be a chance that some entries in the

transform table get overlapped because some MSB and LSB values may fit into exact position

of the transform table, and hence entries in the transform table will be less than or equal to

thirty-two. So a maximum of thirty-two entries of ones and a minimum of two hundred and

twenty-four zeros can be there in the transform table for sixteen pixels of the input block. These

transform table values are considered as bits so every transform table gives 256 bits. These 256

bits of the transform table are stored as 4X8 pixels transformed block, each pixel with 8 bits.

Every 4X8 pixels block of the input image generates a transformed block of size 4X8 pixels.

Algorithm 1 provides details to generate a transformed block from the input image block.

Algorithm 1: Generating transformed block

Input Input image block of size 4X8

Output Transformed block of size 4X8

Start

Step1: Read input block and eliminate alternatively positioned pixels from the block.

Step 2: For sixteen pixels of the block compute MSB and LSB nibble values.

Step 3: Make MSB entry in transform table as Transform table[i][MSB]=1 and LSB

entry

 in transform table as Transform table [LSB][i]=1

Step 4: Read eight bits of the Transformed table in a column-major manner and store

the

pixel value in the transformed block.

Step 5: Save the transformed block with size 4X8.

Stop.

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4710

 Bits in the transformed table shown in Figure 6 are converted into a transformed block of

4X8 pixels by converting bits into pixel values by combining the bits in the column-major

method. The transformed block is shown in Figure 7.

Figure 7: Transformed block for the example block

 After the input image is processed block-wise and transformed, a transformed image is

generated. This transformed image is encoded using Huffman encoding to generate a

compressed bitstream. Algorithm 2 provides details to generate Huffman compressed bitstream

from the input image.

Algorithm 2: Generating Huffman compressed bitstream

Input Input image

Output Huffman compressed bitstream

Start

Step 1: Divide the input image into blocks of 4X8 size.

Step 2: Read blocks in a raster scan manner.

Step 3: Convert each block into the transformed block using Algorithm 1.

Step 4: Combine all transformed blocks and save the image as a transformed image.

Step 5: Apply Huffman encoding to compress the transformed image into the bitstream.

Stop

3.2 Decompression

 During decompression of the image, Huffman encoded bitstream is decompressed using

Huffman decoder to reconstruct the transformed image. The algorithm divides the transformed

image into 4X8 size blocks. The blocks of the transformed image are processed in a raster scan

manner. Each transformed image block is read, and the transformed table is reconstructed. In

the reconstruction of the transformed table, a table of size 16X16 is created.

 Each pixel value of the transformed block is read, and the pixel value is converted into bits,

and these bits (0’s or 1’s) are stored in a transformed table in the column-major method and the

transformed table is regenerated. The steps to regenerate the transform table is given in

Algorithm 3.

Algorithm 3: Reconstruction of transform table

Input Transformed block of 4X8

Output Transform table of size 16X16

Start

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4711

Step 1: Create a transform table of size 16X16.

Step 2: Read the pixel from the block and convert it into 8 bits.

Step 3: Store the converted bits in the transform table using the column-major method.

Step 4: Repeat steps 2 and 3 for all pixels of the transformed block.

Step 5: Transform table is reconstructed.

Stop.

 The transform table column indices represent MSB nibble values, and row indices represent

LSB nibble values. Initially, all MSB nibble values are reconstructed. Row sum of the transform

table is computed. If the sum of the row is one, then a scan is made in that row to find position

of 1 (one). If the position of the transform table contains 1, then the column index is retrieved.

This column index value is the MSB nibble value.

 In the same way, all other MSB nibble values are retrieved for the rows where the row sum

is one. If the single row contains more numbers of 1's, then only one will represent MSB, and

others represent LSB's. If the row sum is more than one, there will be conflict in choosing the

correct MSB value. Hence to overcome this conflict, each column sum is computed. The

column which has the maximum sum is considered. The considered column will contain the

maximum number of MSBs as the nearby pixel values of the block are almost the same. So if

there are two 1’s in the same row, then the position that contains 1 and is also nearer to a column

with maximum sum is considered. The column index of the position is retrieved as an MSB

nibble value for the pixel. Similarly, MSB nibble values for other pixels of the block are

reconstructed.

 Similarly, after reconstruction of MSB nibble values, LSB nibble values are reconstructed.

The index of the row is retrieved as an LSB nibble value. This method is considered as the first

prediction of LSB nibble value. Also, to get the exact value of the LSB nibble, the MSB nibble

value is retrieved for the currently reconstructing pixel. This MSB nibble value is compared

with the MSB nibble value of other reconstructed pixels within the block. If the comparison

results a match, then the LSB nibble value of the matching pixel is retrieved. This method is

considered as the second prediction of LSB nibble value. If the LSB nibble value obtained in

both prediction methods is the same, the value is considered the reconstructed LSB nibble value

for the pixel. If the LSB nibble value obtained differs in both prediction methods, the LSB

nibble value obtained in the second prediction method is considered.

 Similarly, LSB nibble values for other pixels of the block are reconstructed. Using the

reconstructed MSB and LSB nibbles, the pixels are reconstructed. These reconstructed 16 pixels

are stored in the alternative positions of the block of 4X8 pixels. This block is called a partially

reconstructed block (PRB) because out of 32 pixels of the block, only 16 pixels are

reconstructed. Algorithm 4 provides the details in the reconstruction of the PRB from the

transform table. Steps in the reconstruction of the partial image are provided in Algorithm 5.

Algorithm 4: Partial Reconstruction of block

Input transform table of size 16X16

Output Partially Reconstructed Block of size 4X8

Start

Step 1: Read the transform table and search for entry one in a row where nearby column

 sum is more than other column sums.

Step 2: Extract the column index of that entry as MSB value and row index as pixel

order

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4712

 number.

Step 3: Repeat Step 1 and Step 2 to reconstruct MSB values for all 16 pixels of the

block.

Step 4: Read the transform table and search for entry one in a column where nearby row

 sum is more than other row sums.

Step 5: Extract the row index of that entry as LSB value and column index as pixel order

 number.

Step 6: Repeat Step 4 and Step 5 to reconstruct LSB values for all 16 pixels of the block.

Step 7: Using MSB and LSB values all 16 pixel values of the block are reconstructed.

Step 6: Reconstructed 16 pixels are arranged stored in alternative positions block.

Stop.

Algorithm 5: Partial Image reconstruction

Input Huffman Compressed file

Output Partially Reconstructed Image

Start

Step 1: Compressed file is decompressed using Huffman decoder, and the transformed

 image is reconstructed.

Step 2: Divide transformed the image into blocks of size 4X8.

Step 3: Transform table for each block is regenerated using algorithm 1.

Step 4: Partial block is reconstructed from each transform table using algorithm 2.

Step 5: Steps 3 and 4 are repeated for all blocks.

Step 6: Reconstructed blocks are merged to form a partially reconstructed image.

Stop.

 An average method is used to reconstruct the complete image using partially

reconstructed image. In partially reconstructed image, reconstructed pixels present

alternative positions. The image's 50% non-reconstructed pixel positions are surrounded

by four reconstructed pixels in the top, right, bottom, and left positions. The average value

of four surrounding pixels is computed. Average value is compared with surrounding four

pixels. Pixel value nearer to computed average value is considered a reconstructed pixel

value. Similarly, other pixels in the partially reconstructed image are reconstructed.

Algorithm 6 gives the steps to reconstruct the complete image.

Algorithm 6: Complete Image reconstruction

Input Partially reconstructed image

Output Reconstructed Image

Start

Step 1: Partially reconstructed image is read.

Step 2: For any non-reconstructed pixel 𝑃[𝑥, 𝑦] compute the average.

Step 3: 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
1

4
(𝑃[𝑥 − 1, 𝑦] + 𝑃[𝑥, 𝑦 − 1] + 𝑃[𝑥 + 1, 𝑦] + 𝑃[𝑥, 𝑦 + 1])

Step 4: 𝑃[𝑥, 𝑦]= Pi (if Pi ≈ average and Pi is any pixel among four surrounding pixels).

Step 5: Steps 2 to 4 are repeated for all non-reconstructed pixels.

Step 6: Image is saved as reconstructed image.

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4713

Stop.

 For the above example, the transformed block is shown in Figure 7. Figure 6 shows the

transformed table for the block with same row and column sum in decompression phase. MSB

nibble value for the first block pixel is computed by scanning the row with index 0(zero). As

the row sum is '1', the MSB nibble value is reconstructed directly by retrieving the column's

index, where '1' is present. '1' is present in the column with index 10, so the first pixel's MSB

value is 10. The MSB value of the second pixel is computed by scanning the row with index

1(one). As the row sum equals two, there is a conflict in choosing column's index where one is

present. Since position one in the column with index 10 is nearer to the column with a maximum

sum, index 10 is retrieved as the MSB nibble value of the second pixel.

 LSB nibble value for the first block pixel is computed by scanning the column with index

0(zero). As the column sum equals one, the LSB nibble value is reconstructed directly by

retrieving the row index of the position where one is present. The row index 2 contains the one,

so the LSB nibble value of the first pixel is 2. The LSB nibble value for the second pixel of the

block is computed by scanning the column with index 1(one). Here, column sum equals one,

and one is present in the row with index 2, so index 2 is retrieved as LSB nibble value for the

second pixel. Pixel values are computed by Eq. 4 using the MSB and LSB nibble values.

 Pixel value = pixel MSB value * 16 + pixel LSB value (4)

First pixel = 10 * 16+ 2 = 162

Second pixel = 10 * 16+ 2 = 162

 Similarly, 16 pixels of the block are reconstructed and stored in alternative positions of the

block. The partially reconstructed block will be same as shown in Figure 4. Other block pixels

are reconstructed using the average method, and a completely reconstructed block for the

example considered is shown in Figure 8.

Figure 8: Completely reconstructed block

4. Correctness ratio as a new quality metric

 MSE and PSNR are mainly used metrics in assessing quality of reconstructed images. The

PSNR is computed by Eq. 5, and MSE is computed by Eq. 6. The input image is represented as

I0, and the reconstructed image is represented as I1.

 PSNR= 10𝑙𝑜𝑔 (
2552𝐼0𝐼1

‖𝐼0−𝐼1‖2) 𝑑𝐵 (5)

 MSE =
‖𝐼0−𝐼1‖

𝐼0𝐼1
 (6)

 However, here is a new metric that provides a better method in testing quality of

reconstructed images. It is called correctness ratio and is computed by Eq. 7.

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4714

 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 =

 accurately reconstructed pixels count
 in reconstructed image

 original image pixels count
 (7)

 Accurately reconstructed pixels count in the reconstructed image is directly proportional to

the correctness ratio. The correctness ratio increases when the reconstructed image's accurately

reconstructed pixels count increases.

5. Results and discussion

 The proposed algorithms described in previous section are implemented using C++ and

Opencv 2.4.10. The proposed algorithm is developed to work on grayscale images. Proposed

algorithm performance is evaluated using different grayscale test images of size 512X512

pixels. However, it is possible for proposed algorithm to work on images with unequal sizes.

As the algorithm reads an image and divides the image into 4X8 pixels block, width of image

must be multiple of 8 and height must be multiple of 4. If the image size is not multiple of above

said values, then replicate the required number of last columns or rows of the image to become

multiple of the above said values. By this modification, proposed algorithm can work on

unequal size images.

 The example test image used is Barbara, and during the compression, the transformed image

generated for the test image, partially reconstructed image, and reconstructed image are shown

in Figure 9. The histograms for original and reconstructed images are shown in Figures 10 (a)

and (b), respectively. The reconstructed image histogram is almost similar to the original image

histogram as more than 50% of the pixels are accurately reconstructed.

Original Image

Transformed Image

Partially reconstructed image

Reconstructed Image

Figure 9: Original Barbara image, transformed image, and reconstructed image

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4715

(a)

(b)

Figure 10: Histograms (a) Original image (b) Reconstructed image.

5.1. Performance and comparison of accurately reconstructed pixels

 The compressed image size and the compression ratio are computed for performance

evaluation. The PSNR of reconstructed images is also computed. These computed values

are depicted in Table 1.

Table 1: Compression Ratio, PSNR for the proposed method

Image Compression Ratio PSNR in dB

Baboon 1.93 32.84

Barbara 2.03 34.98

Cameraman 2.20 40.01

House 2.35 43.59

Jetplane 2.13 38.9

Lena 2.06 37.78

Living room 2.01 36.22

Peppers 2.13 36.9

Bridge 2.05 34.75

Aerial 2.01 34.95

Truck 2.09 37.06

Tanker 2.06 36.23

Boat 2.03 35.57

 The quality of the reconstructed images from the proposed method and JPEG method

are compared. The PSNR value is computed for the reconstructed images from the

proposed algorithm. JPEG images with the same PSNR are obtained by adjusting the

quality. By keeping the PSNR of images constant in both methods, and accurately

reconstructed number of pixels as the original image in both methods is computed. Table

2 shows the results.

5.2. Comparison by Correctness Ratio

 The correctness ratio is computed for both methods using the accurately reconstructed

number of pixels from Table 2. The increase in the accurately reconstructed pixels by the

proposed method compared to the JPEG method and the correctness ratio obtained from

both methods is given in Table 3. From the correctness ratio of the proposed method, it is

clear that the quality of the reconstructed images by the proposed method is superior.

Table 2: Comparison of accurately reconstructed pixels at same PSNR for Proposed and

JPEG method

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4716

Image PSNR in dB

Accurately reconstructed

Number of pixels same as that of Original

Proposed JPEG

Baboon 32.84 136278 19163

Barbara 34.98 143635 30937

Cameraman 40.01 173379 57587

House 43.59 191603 111751

Jetplane 38.9 154891 49493

Lena 37.78 147913 39053

Living room 36.22 144151 30335

Peppers 36.9 143806 33187

Bridge 34.75 161661 27085

Aerial 34.95 145722 31261

Truck 37.06 151762 33712

Tanker 36.23 151869 29240

Boat 35.57 141238 27723

Table 3: Comparison of correctness ratio for Proposed and JPEG method

Image

Increased number of accurately

reconstructed pixels as per proposed

method than JPEG

Correctness Ratio

of proposed

Correctness Ratio

of JPEG

Baboon 117115 0.52 0.07

Barbara 112698 0.55 0.12

Cameraman 115792 0.66 0.22

House 79852 0.73 0.43

Jetplane 105398 0.59 0.19

Lena 108860 0.56 0.15

Living

room
113816 0.55 0.12

Peppers 110619 0.55 0.13

Bridge 134576 0.62 0.10

Aerial 114461 0.56 0.12

Truck 118050 0.58 0.13

Tanker 122629 0.58 0.11

Boat 113515 0.54 0.11

5.3. Comparative Study of Compressed Image size

 Comparative analysis is made for the compressed file sizes from proposed and JPEG

methods. Comparison is made based on the correctness ratio. In the comparison, the

accurately reconstructed number of pixels from the proposed method is considered

constant. JPEG image quality is adjusted such that, JPEG image contains the same number

of accurately reconstructed pixels as that of the proposed method. The image sizes from

both methods are compared. In the comparison, the accurately reconstructed number of

pixels of images in both methods is constant. Results are shown in Figure 11.

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4717

Figure 11: Image size comparison from both methods at the same accurately reconstructed

number of pixels

5.4. Computational Cost

 The evaluation of the performance of the proposed algorithm in terms of execution

time is carried out with different test images. The proposed algorithm is implemented

using C++ and Opencv 2.4.10 and is tested on Intel Core i5 with a 2.1 GHz processor,

4GB RAM, and Windows 10 Operating System machine. The results are shown in Figure

12.

Figure 12: Comparison of execution time for compression and decompression of proposed

method

6. Conclusion

 The proposed image compression algorithm has low complexity. To achieve high

compression of images, half of the pixels from an image are excluded from encoding. Mapping

nibbles into a single bit within the table helps generate more zeros to compress. The novel

transform is lossless and accurately reconstructs the pixels without any loss. The excluded

pixels in the encoding are reconstructed with the average method. The results show that the

reconstructed image quality obtained from the proposed algorithm is good. The correctness

ratio justifies that reconstructed image quality is good. The compressed image size from the

proposed method is less than the JPEG image when both methods contain the same accuratel

0

50000

100000

150000

200000

250000

Si
ze

 in
 B

yt
es

Test Images

Proposed JPEG

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Ti
m

e
in

 S
ec

o
n

d
s

Test Images

Compression Decompression

Kamatar and Baligar Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4704- 4718

4718

References

[1] R. Kaur and P. Choudhary, “A Review of Image Compression Techniques,” Int. J. Comput. Appl.,

vol. 142, no. 1, pp. 8–11, 2016.

[2] Anju and A. Ahlawat, “Performance analysis of image compression technique,” International

Journal of Recent Research Aspects, vol. 3, no. 2, pp. 2349–7688, 2016.

[3] R. C. Gonzalez and P. Wintz, Digital Image Processing. Boston, MA: Addison-Wesley

Educational, 1978.

[4] V. P. Baligar, L. M. Patnaik, and G. R. Nagabhushana, “High compression and low order linear

predictors for lossless coding of grayscale images,” Image Vis. Comput., vol. 21, no. 6, pp. 543–

550, 2003.

[5] M. J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: A low complexity, context-based, lossless

image compression algorithm,” 1996, pp. 140–149.

[6] G. K. Wallace, "The JPEG still picture compression standard," in IEEE Transactions on Consumer

Electronics, vol. 38, no. 1, pp. xviii-xxxiv, Feb. 1992, doi: 10.1109/30.125072.

[7] Mohammed, F. G., & Al-Dabbas, H. M., “Application of WDR Technique with different Wavelet

Codecs for Image Compression,” Iraqi Journal of Science, vol. 59, no. 4B, pp. 2128–2134, 2018.

[8] S. N. Kumar, A. Ahilan, A. K. Haridhas, and J. Sebastian, “Gaussian Hermite polynomial based

lossless medical image compression,” Multimed. Syst., vol. 27, no. 1, pp. 15–31, 2021.

[9] R. Li, Z. Pan, Y. Wang, and P. Wang, “The correlation-based tucker decomposition for

hyperspectral image compression,” Neurocomputing, vol. 419, pp. 357–370, 2021.

[10] Mohammed, F. G., & Al-Dabbas, H. M., “The Effect of Wavelet Coefficient Reduction on Image

Compression Using DWT and Daubechies Wavelet Transform,” Science International., vol. 30 no.

5, pp. 757-762, 2018 ISSN 1013-5316, 2018.

[11] C. Ding, Y. Chen, Z. Liu, and T. Liu, “Implementation of grey image compression algorithm based

on variation partial differential equation,” Alex. Eng. J., vol. 59, no. 4, pp. 2705–2712, 2020.

