Physiological and Immunological Study for the Effects of Onopordum acanthium L. Seeds Oil in Male Rats Treated with CCL₄

Husni Abdulla Mhammad*, Malika Kassim Najeeb, Amad M. Saleh Jubrail
Department of Biology, College of Science, University of Duhok, Duhok,

Received: 30/7/2021 Accepted: 18/9/2021 Published: 30/5/2022

Abstract
In this study, the attention was focused on the protective role of seeds oil from local Onopordum acanthium L. (cotton thistle) against tissues damage in the liver, kidney and spleen in male albino rats. Forty adult male rats were randomly divided into four equal groups including control group, rats were treated orally with seeds oil (0.5ml/kg), carbon tetrachloride (CCL₄) injected group, and last group was intoxicated with CCL₄ and daily treated with seed oil (0.5ml/kg). After four weeks of the experiment, rats were anaesthetized and blood was taken directly by cardiac puncture for the evaluation of studied parameters. Samples of liver, kidneys and spleen were fixed in 10% formalin for histological studies.

From the obtained results, no significant changes were seen in the estimated parameters in the group treated with oil only. In the group injected with CCL₄ and treated with oil extract, the level of serum lipids, liver enzymes, total serum bilirubin (TSB), tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP) and white blood cells (WBCs) were significantly reduced in comparison with untreated CCL₄ intoxicated group. The toxicity of CCL₄ on the level of fasting blood sugar (FBS), angiotensin-converting enzyme (ACE), high-density lipoprotein (HDL), renal function parameters, hemoglobin and body weight were ameliorated with seeds oil. These effective roles were further supported by the histopathological improvement of the liver, kidney and spleen tissues of rats against CCl₄. Conclusion: from the results of this study, it can be concluded that the extracted oil from local Iraqi Onopordum acanthium L. seeds reduced the tissue damages with an improvement of biochemical, hematological and immunological parameters during the four weeks of the experiment.

Keywords: Cotton thistle, Rats, Seed oil, CCL₄, Tissues damage, TNF-α, ACE, Histopathological improvement.

*Email: amad.sofi@uod.ac
Introduction

Several toxins are able to affect tissues in the vital organs such as the liver and kidney causing variable structural damages that lead to planned events such as cellular necrosis, apoptosis, autophagy, mitochondrial defects, inflammation and immune responses. The first inflammatory responses is the release of TNF-α, as a main component of the immune-mediated inflammation, and injury in acute and chronic conditions that regulate some physiological and pathological processes such as differentiation, development, apoptosis and cell death [1-2]. Chemicals that cause liver injuries are called hepatotoxins [3] such as CCl₄ that has been frequently used in experimental rodent animals for inducing liver damage [4]. It has been recently reported, that in addition to the liver, CCl₄ can induce damages in other organs such as the kidney and spleen [5-6]. However, this deterioration can be avoided naturally by some essential oils obtained from different plants [7].

In folk medicine, some plants were found to be effective in certain disorders. It is based on experience in the use of plant products or consumption as food that contain various compounds which can protect the body against common diseases. Therefore, herbal remedy has become increasingly popular, and many patients with liver disease use these botanicals [8-9]. Onopordum acanthium L. that is known as cotton thistle or Scotch thistle is one of the important genera within the family Asteraceae which is widely distributed over the world with long traditional uses [10]. Some experimental studies revealed its antioxidant, ACE inhibitory and hypotensive effects, Besides the ability to activate natural killer cells against tumor cells [11-12]. Moreover, the cotton thistle becomes interesting as an important novel commercial crop with multiple uses [13]. Its seeds oil has been used for cooking, burning and biodiesel production [14]. Cotton thistle seeds contain 12.35% of fat and major components of fatty acids such as linoleic, oleic, palmitic and stearic acids [15]. However, the role of seed oil has not been well identified yet. Therefore, in this study we evaluated the role of local Onopordum acanthium L. seeds oil against intoxicated tissues by CCl₄ by monitoring some important biochemical, hematological and immunological parameters with histopathological examination of liver, kidney and spleen during four weeks of the experiment.

In the current study, the cotton thistle oil was studied for its protective effect. From our results, we can conclude that the cotton thistle oil was for its protective effect. From our results, we can conclude that the cotton thistle oil was effective against intoxication induced by CCl₄ via lowering the serum markers of liver function, such as ALT, AST and ALP. The oil also reduced the concentration of TNF-α and IL-1β, which are cytokines responsible for the induction of inflammation. Moreover, the cotton thistle oil was very effective in reducing the inflammatory markers, such as CRP and IL-6, which are involved in the propagation of inflammation. Additionally, the oil was able to reduce the expression of the inflammatory genes, such as TNF-α and IL-1β, which are responsible for the induction of inflammation. Furthermore, the oil was able to reduce the expression of the inflammatory markers, such as CRP and IL-6, which are involved in the propagation of inflammation. Overall, these results suggest that the oil of the cotton thistle has a significant protective effect against liver injury induced by CCl₄.

References

Materials and methods

Animal and housing:
Animals were acclimated to the laboratory conditions for 10 days then mixed for breeding in the animal house, Department of Biology, College of Science, University of Duhok. The animals were placed in clean white ventilated polypropylene cages (30×25×17cm). Four rats were put in each cage with free access to standard diet and water under ethical and standard laboratory conditions (12h light: 12h dark photoperiod, at 24±2ºC) with a frequent changing of cages bedding [16]. Adult males weighing 160-166gm were used for the experimental study.

Collection and identification of the plant species:
Plant seeds were collected locally during ripening season (June 2019) in Duhok City. The dry ripped seeds were ground in a coffee grinder for 5min, and the powdered seeds were stored in a clean glass container in a dark place until the time of the experiment. The plant was authenticated and morphologically described by Professor Dr. Saleem E. Shahbaz, Ataxonomist at the College of Agriculture Engineering Science, Department of the Forestry, University of Duhok.

Oil extraction:
Dry powder seeds (40g) were placed in a clean thimble tube and inserted into the soxhlet apparatus (Bionics- India). N-hexane (Scharlau-Spain) solvent (200ml) was poured into a bottom flask that was joined with soxhlet. A flask was connected along on the top with the condenser. The bottom flask containing solvent was placed in an electronic water bath heating (Eyela-UK) with controlled temperature (67ºC) for 24hrs. Cold water was allowed to continually drain into the upper flask avoiding the evaporation of the solvent. At the end of extraction time, the mixture of solvent and oil were separated by a rotary evaporator (Eyela-UK) under a vacuum at a temperature of 47ºC. Using soxhlet, fresh oil was daily extracted for the use in the experiment. The average of obtained oil after evaporation was weighted and calculated according to the equation used previously [17].

\[
\text{Oil yield (wt%) = \frac{\text{Mass of extracted seed oil}}{\text{Mass of powdered seeds}} \times 100}
\]

Injection of CCL₄:
Twenty rats were intoxicated with CCL₄ (Riwdel-De Haen, Germany) 1.0 ml/kg/bodyweight of CCL₄ mixed with 1:1 of olive oil (vehicle) twice a week via intra-peritoneal injection [5].

Standard diet:
Standard diet contents for 1kg: wheat 665.5g, soya 256.2g, oil sunflower 43.5g, limestone 14.9g, Ca₃(PO₄) 6.42, salt 6.34g, lysine 2.44g, methionine 1.56g, enzymes 0.8g, choline chloride 0.62g, vitamins 0.58g, and trace elements 0.5g [18].

Experimental Designs:
After the adaptation period, forty male rats were randomly divided into four equal groups, and the seeds oil was orally administrated (0.5 ml/kg) during 4 weeks as follows:

Group 1: Rats were fed a standard diet and were served as a normal control group.

Group 2: Rats were fed a standard diet and were treated with seeds oil only.

Group 3: Rats received CCL₄ (1.0 ml/kg) and served as the untreated CCL₄ group.

Group 4: Rats intoxicated with CCL₄ (1.0 ml/kg) and were treated with seeds oil.

Hematological analysis:
On the last day of the experiment, rats were deprived of food overnight with free access to water. Animals were anesthetized with diethyl ether (Scharlab S.L-Spain). 7 ml of blood samples were obtained directly by heart puncture in which 2 ml of blood was collected in
heparinized tubes (Arzer Grande- Italy) for the determination of hematological parameters by using an automated Hematological analyzer (Horiba-France).

Estimation biochemical

To obtain serum, 5ml of blood was placed in sterile gel tube (Arzer Grande- Italy) and was allowed to clot for 30 minutes before centrifugation at 4000 rpm for 15 minutes. Biochemical parameters such as FBS, serum lipids, renal, liver function tests and ACE were estimated by Cobas 600(C501) automated chemistry analyzer (Roche/Germany). The estimated tests were measured according to their kits procedures (Roche/Germany) that depended on the absorbance photometry (enzymes, substrates and specific proteins).

Estimation of Tumor Necrosis Factor Alpha (TNF-α):

TNF-α was determined by enzyme-linked immunosorbent assay according to steps in the kit (Mybiosource- USA).

Histopathological study:

After the dissection animals, sections of liver, kidney and spleen were immediately removed and cleaned with distilled water, and were fixed in 10% formalin. After processes of dehydration with ethanol, xylene clearing agent and fixing with paraffin wax, thin sections (4 µM) were stained with haematoxylin (H) and eosin (E) (Atom Scientific-England) by using Auto Staining Apparatus (Leica/Germany). The mounted slides were identified by a light microscope (Olympus/Japan) and the pointed field was taken by a specialized camera (Dino-Taiwan) connected with the microscope [19].

Ethics:

The study protocol was signed by the scientific committee of the Biology Department, College of Science, University of Duhok.

Statistical analysis:

Data was analysed statistically by Microsoft Excel 2010 and GraphPad Prism 5 (California- USA) using analysis of variance (ANOVA) followed by Tukey test. Firstly, all groups were compared with the control group (pointed as *) and then the intoxicated rats with seeds oil treatment, were compared to the untreated intoxicated group (pointed as capital letters; A, B, C, and D). Results were expressed as mean ± standard errors. P-values < 0.05 were considered statistically significant values. Each letters represent significant values as follow: A = non-significant, B = (P < 0.05), C = (P < 0.01), and D = (P < 0.001).

Results

The results represent the impact of extracted seeds oil on tissue damaged in rats on blood glucose and serum lipids:

FBS and serum lipids showed no obvious changes in rats treated with cotton thistle oil only as compared to the control group. The level of serum lipids (P<0.01) and FBS (P<0.05) were significantly higher in the treated CCl4 group in comparison with the control group. However, the level of low-density lipoprotein (LDL) significantly (P<0.05) reduced. Triglycerides (TG), very low density-lipoprotein (VLDL) levels became significantly (P<0.001) more improved in the intoxicated rats treated with seed oil as related to the untreated liver damaged rats (Figure 3-1). The significant (P<0.01) decreased level of HDL in the group having CCL4 significantly (P<0.01) increased with oral administration of seeds oil.

Table 3-1: Effect of onopordum oil on glucose level and serum lipids

<table>
<thead>
<tr>
<th>Groups Parameter</th>
<th>Control</th>
<th>Oil extract</th>
<th>CCL4</th>
<th>CCL4+ Oil extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose mg/dl</td>
<td>112.1±4.37</td>
<td>118.6±4.81</td>
<td>150.1±3.49* A</td>
<td>137.4±2.42A</td>
</tr>
<tr>
<td>Cholesterol mg/dl</td>
<td>57.50±2.46</td>
<td>54.90±4.28</td>
<td>73.77±2.73**A</td>
<td>69.46±3.80A</td>
</tr>
<tr>
<td>TG mg/dl</td>
<td>59.13±3.043</td>
<td>59.80±3.447</td>
<td>103.8±4.99***A</td>
<td>71.8±1.96D</td>
</tr>
</tbody>
</table>
HDL mg/dl 28.0±0.88 25.80±1.890 20.13±1.35**A 28.89±0.79C

VLDL mg/dl 11.83±0.60 11.96±0.6895 21.05±1.90***A 13.89±0.46D

LDL mg/dl 15.17±0.55 15.55±1.068 24.45±1.33***A 16.93±0.67B

Values are mean ± SE, *= (P< 0.05), **= (P< 0.01), ***= (P< 0.001) for comparison all groups with control group. Renal and liver function parameters, ACE level and body weight:

As shown in (Table 3.2), serum levels of urea, creatinine, ACE and serum proteins significantly increased in the untreated CCL4 group and ameliorated almost toward the level of the control group when treated with cotton thistle oil. The significant (P<0.001) high level of aspartate transaminase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT) and TSB in the group received CCL4 significantly (P<0.001) improved with administration of seed oil (Figure 3.1). The significant (P<0.001) reduction of the final body weight (FBW) in CCL4 injected group improved with oil treatment but statistically was non-significant up. Capital letters represent comparison between intoxicated groups.

Table 3.2- Effect of seeds oil on renal and liver function parameters, ACE and body weight

<table>
<thead>
<tr>
<th>Groups Parameter</th>
<th>Control</th>
<th>Oil extract</th>
<th>CCL4</th>
<th>CCL4+ Oil extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea mg/dl</td>
<td>35.81±0.92</td>
<td>32.70±1.26</td>
<td>48.52 ± 1.39**A</td>
<td>38.20±2.87A</td>
</tr>
<tr>
<td>Creatinine mg/dl</td>
<td>0.36±0.019</td>
<td>0.32±0.016</td>
<td>0.56±0.03***A</td>
<td>0.45±0.024A</td>
</tr>
<tr>
<td>AST (GOT) IU/L</td>
<td>123.6±2.03</td>
<td>124.6±4.91</td>
<td>337.0±7.37***A</td>
<td>243.0±7.67***D</td>
</tr>
<tr>
<td>ALT (GPT) IU/L</td>
<td>38.63±1.38</td>
<td>34.50±0.76</td>
<td>208.5±4.74***A</td>
<td>153.3±2.31***D</td>
</tr>
<tr>
<td>ALP IU/L</td>
<td>179.2±11.28</td>
<td>172.4±3.21</td>
<td>334.0±14.50***A</td>
<td>267.0±14.94***D</td>
</tr>
<tr>
<td>GGT IU/L</td>
<td>1.56±0.16</td>
<td>2.80±0.42</td>
<td>20.22±2.36***A</td>
<td>12.09±0.34C</td>
</tr>
<tr>
<td>TSB mg/dl</td>
<td>0.18±0.016</td>
<td>0.16±0.013</td>
<td>0.72±0.06***A</td>
<td>0.19±0.019C</td>
</tr>
<tr>
<td>Total Protein g/dl</td>
<td>6.54±0.11</td>
<td>6.06±0.072</td>
<td>5.6±0.058***A</td>
<td>6.11±0.072A</td>
</tr>
<tr>
<td>Albumin g/dl</td>
<td>3.64±0.02</td>
<td>3.60±0.098</td>
<td>3.19±0.11*A</td>
<td>3.47±0.097A</td>
</tr>
<tr>
<td>Globulin g/dl</td>
<td>2.89±0.11</td>
<td>2.70±0.08</td>
<td>2.36±0.06*A</td>
<td>2.65±0.099A</td>
</tr>
<tr>
<td>ACE U/L</td>
<td>192.1±3.90</td>
<td>186.7±2.48</td>
<td>210.3±3.47*A</td>
<td>203.2±1.71A</td>
</tr>
<tr>
<td>FBW (g)</td>
<td>304.3±2.1</td>
<td>294.2±7.29</td>
<td>217.4±1.67***A</td>
<td>223.7±4.16***A</td>
</tr>
</tbody>
</table>

Values are mean ± SE, *= (P< 0.05), **= (P< 0.01), ***= (P< 0.001) for comparison all groups with control group. Capital letters represent comparison between intoxicated groups.

Some immunological and hematological parameters:

TNF-α level in the group treated only with CCL4 significantly (P<0.001) increased while it became significantly (P<0.001) lower with seeds oil treatment (Figure 3.1, d). The level of serum CRP was significantly increased (P<0.001), and significantly (P<0.05) improved with co-treatment of seed oil (Figure 3.1, E). The significant (P<0.001) increase of WBCs (Figure 3.1, E) and monocytes% (P<0.05) in the treated CCL4 group improved significantly (P<0.05), (P<0.001) in respectively when treated with oil in comparison with the untreated liver damaged rats. Granulocyte and lymphocyte %ages in all groups showed no significant changes in comparison with the control group.

Hemoglobin decreased significantly (P<0.05) in the group that received CCL4 and was improved with oil treatment. In other groups, no significant changes were observed in hematological parameters in comparison with the control group.
Table 3.3- Effect of onopordum oil on some immunological and hematological parameters

<table>
<thead>
<tr>
<th>Groups Parameter</th>
<th>Control</th>
<th>Oil extract</th>
<th>CCL₄</th>
<th>CCL₄+ Oil extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-α pg/ml</td>
<td>7.85±1.12</td>
<td>7.65±0.99</td>
<td>35.07±1.86***A</td>
<td>18.79±1.01D</td>
</tr>
<tr>
<td>CRP mg/l</td>
<td>0.149±0.02</td>
<td>0.1445±0.01</td>
<td>6.02±0.24***A</td>
<td>5.08±0.06***B</td>
</tr>
<tr>
<td>WBC (x10⁶/mm³)</td>
<td>8.32±0.61</td>
<td>8.15±0.7</td>
<td>12.89±0.58***A</td>
<td>9.14±1.04D</td>
</tr>
<tr>
<td>Granulocyte %</td>
<td>8.88±0.94</td>
<td>8.150±0.70</td>
<td>12.03±0.67A</td>
<td>9.140±1.01A</td>
</tr>
<tr>
<td>Lymphocyte%</td>
<td>80.40±1.74</td>
<td>79.21±0.41</td>
<td>73.81±3.44A</td>
<td>83.45±3.26A</td>
</tr>
<tr>
<td>Monocytes%</td>
<td>10.74±0.86</td>
<td>9.84±0.53</td>
<td>14.62±1.13*A</td>
<td>9.37±0.39B</td>
</tr>
<tr>
<td>RBC (x10⁶/mm³)</td>
<td>6.41±0.52</td>
<td>6.39±0.13</td>
<td>6.42±0.58A</td>
<td>6.50±0.36A</td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>13.3±0.08</td>
<td>13.29±0.09</td>
<td>12.4±0.21*A</td>
<td>12.95±0.15A</td>
</tr>
<tr>
<td>PCV (%)</td>
<td>41.4±0.41</td>
<td>40.5±0.65</td>
<td>38.9±0.64A</td>
<td>40.18±0.89A</td>
</tr>
<tr>
<td>MCV (fL)</td>
<td>57.1±1.76</td>
<td>55.9±1.59</td>
<td>53.2±1.44A</td>
<td>55.5±1.49A</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>18.7±0.77</td>
<td>18.76±0.73</td>
<td>15.1±0.35A</td>
<td>16.78±0.34A</td>
</tr>
<tr>
<td>MCHC (g/dL)</td>
<td>32.8±0.6595</td>
<td>33.88±0.44</td>
<td>30.1±0.38A</td>
<td>30.69±0.27A</td>
</tr>
<tr>
<td>Platelets (10³/mm³)</td>
<td>568.6±15.02</td>
<td>567.6±16.87</td>
<td>513.6±26.91A</td>
<td>563.5±46.80A</td>
</tr>
</tbody>
</table>

Values are mean ± SE, *= (P< 0.05), **= (P< 0.01), ***= (P< 0.001) for comparison all groups with control group. Capital letters represent comparison between intoxicated groups.

Figure 3.1-Efffective role of cotton thistle seeds oil on some serum parameters, in which * = comparison of all groups with control group, capital letters = comparison between intoxicated...
groups. CT = control, OT = oil extract, CCL$_4$ = carbon tetrachloride, CCL$_4$+O. = carbon tetrachloride + oil. Significance values is shown as *** (P<0.001), ** (P<0.01), * (P<0.05).

Histological examination of the kidney, liver, and spleen:

Kidney

In the group treated with seed oil only (Figure 3.2 B), kidney sections revealed the almost normal histological appearance of glomeruli and renal tubules as in the control group (Figure 3.2 A. Kidney sections in the group treated with CCL$_4$ only (Figure 3.2 C) showed variable damages through congestion, dilation, and hemorrhage in glomeruli, focal necrosis of epithelial tissues that line the renal tubules. In the group receiving CCL$_4$ and treated with seeds oil (Figure 3.2 D), kidney damage was reduced by improving degeneration, hemorrhage, and necrosis in glomeruli, and renal tubules.

Liver

Liver sections in control (Figure 3.3 A), and oil-treated rats (Figure 3.3 B), showed normal structures of hepatic lobules. On the contrary, liver of rats intoxicated with CCL$_4$ (Figure 3-3 C), showed various pathological alterations such as congestion, hemorrhage and necrosis in the central vein, and hepatocytes with variable degrees of inflammatory infiltrations cells. However, damages were reduced, and in some sections recovered, when treated with seed oil (Figure 3.3 D) by decreasing of hemorrhage, congestion, necrosis, and other toxicity of CCL$_4$ on liver tissues.

Spleen

In the control group (Figure 3.4 A), and rats treated with oil only (Figure 3.4 b), spleen sections showed no pathological histological alterations in white pulps, red pulps and central arterioles. In the group intoxicated with CCL$_4$ only (Figure3-4 c), spleen sections showed obvious changes in the structure of pulps through scattered necrotic areas and apoptotic changes in the parenchymal tissue with fragmented nuclei. The spleen of CCL$_4$-intoxicated rats treated with seeds oil (Figure 3.4 D) showed reduction and recovering of injured tissue with almost normal structural of parenchymal cells with decreasing apoptosis, and necrosis.
Figure 3.2—cross sections of kidney at 20x magnifications (H&E): control group (A), and group treated with oil only (B) showing normal glomeruli (G), and renal tubules (T). (C): Cross section of kidney in CCL4 injected group showing various lesions such as glomerulus degeneration (GD), haemorrhage (H), congestion (C) in glomeruli, and renal tubules with tubular necrosis (TN). (D): Cross section of kidney in CCL4 intoxicated group, and treated with oil extract showing almost recovering in some cases, and reduction of renal damage in glomerulus, and renal tubules.

Figure 3.3—cross sections of liver at 20x magnifications (H&E): control group (A), and treated group with oil only (B) showing normal central vein (CV), and hepatocyte (HE). (C): Section of intoxicated liver showing congestion (C), and haemorrhage (H) in the central vein, disruption, and necrosis (N) in hepatocytes, and aggregation of inflammatory cells (I). (D): Section of liver in CCL4-intoxicated rats treated with seeds oil showing decreased congestion, haemorrhage, and necrosis.
Discussion

CCL₄ has been reported as a potent hepatotoxic agent that is widely used in experimental studies for screening of the protective role of some drugs and medicinal plants against liver damages [20]. Moreover, in addition to liver injury, CCl₄ induces various damages in other organs such as the kidney and spleen damage via overproduction of free radicals [21]. Under the activity of the oxygenase system, the cytochrome P450 in the endoplasmic reticulum converted CCl₄ to trichloromethyl radical which in turn reacts with oxygen to form trichloromethyl proxy radical. These radicals are highly reactive and can also bind to various cellular molecules such as lipids, fatty acids, proteins, amino acids and nucleic acids, leading to the initiating of chain reactions such as lipid peroxidation, which attacks and disrupting polyunsaturated fatty acids; particularly those that are associated with phospholipids [3, 22]. These damages further lead to various tissue injuries such as cellular necrosis, apoptosis, depletion of antioxidants, and progression of many acute, and chronic diseases, and activation of the immune system [23-24]. Therefore, liver intoxication by CCl₄ results from oxidative stress that usually causes an imbalance between reactive oxygen species (ROS) production and antioxidant defense system., in which antioxidant activity, and prevention of the production of free radicals are important sources for reducing the toxicity of CCl₄ on liver tissues [25].

In this study, the toxicity of CCl₄ in rats was manifested by an increase in the level of liver enzymes, serum lipids, TNF-α, CRP, WBC, ACE, urea and creatinine with decreased serum proteins, hemoglobin and FBW constituent with histopathological changes in the liver, kidney and spleen tissues. These results have been supported previously [6]. The detection of elevated level of serum aminotransferases is mostly indicated as abnormal liver function existing in the hepatic cells which indicates structural changes in the hepatic tissues and biliary system [27]. These enzymes are located in the cytoplasmic and are certainly released in a large quantity into the peripheral blood during cellular damages of hepatic tissues [28-29]. Moreover, CCl₄ has been reported for inducing kidney damage in rats with remarkable leakage of proteins due to the hyper-cellularity of renal glomeruli, and tubules which leads to the reduction in the level of serum albumin. Furthermore, chronic inflammation and tissue injuries cause over-secretion of inflammatory mediators, including TNF-α ACE with decreasing activities of antioxidant enzymes that are sensitive to severe damage to the cells [3, 30-31]. TNF-α is considered as the main hepatotoxic mediator during liver injury [32] therefore, the release of TNF-α, as a pro-inflammatory mediator during liver injury, is also linked to cytotoxicity induced by CCl₄ [33].

The total oil in Onopordum acanthium L. seeds in the current study was 11.12%. Its chemical composition has been identified, and analysed previously showing that it mainly contains linoleic, oleic, palmitic and stearic acids [15,34]. It has been reported that cotton thistle extracts have antioxidant and ACE inhibitory properties [35-37]. The exact mechanism between the inhibitor and ACE is not fully interpreted. Some studies concluded that agents blocking or inhibiting the activity of ACE can reduce blood pressure in hypertensive patients [38-39]. Furthermore, the activation of renin-angiotensin system is characterized by the increase in ACE expression that catalyzes the conversion of inactive angiotensin I to a bioactive angiotensin II which in turn exerts a variety of effects, importantly vasoconstriction and enhancing aldosteron It has been reported that the crude oil of cotton thistle seeds is rich in a polyphenol by-product; α-tocopherol with potent free-radical removers that can be used as an anti-inflammatory and anti-carcinogenic agent against cancer cells. This has been further indicating that the onopordum plants gain new botanical sources that could provide useful therapeutic treatment for liver and oxidative stress-related diseases. Moreover, it has been considered that the use of cotton thistle compounds in food industry as a potential and cheap, saves the source of antioxidant components [41-42] against tumors and various other
chronic inflammations [43]. Therefore, the hepatoprotective activity of onopordum oil was well speculated in our study through ameliorating liver damage markers that could be mostly due to the presence of antioxidant activity. On the other hand, the improvement level of TNF-α, CRP and WBC as signs of inflammation, with better kidney functions, can be other additional factors. Moreover, these results can be correlated with those of Han et al. (2019) in which they reported that the significant hepatoprotective effect of plant seed extracts have been suggested due to downregulation of cytokines such as TNF-α in treated animals [44]. This further indicates that the extracted oil can alleviate CCl4-induced tissue damages to a certain extent and is consistent with the histopathological results.

Conclusion
The oral administration of seeds oil from local Onopordum acanthium L. was effective in the controlling of abnormal biochemical, immunological and haematological parameters in the rats intoxicated with CCL4 constituent with the improvement of damages in the liver, kidney and spleen tissues.

References:

