Razooqi and Al-Ani

Iraqi Journal of Science, 2022, Vol. 63, No. 6, pp: 2331-2344 DOI: 10.24996/ijs.2022.63.6.2

ISSN: 0067-2904

Quantum Mechanical Calculations and Electrochemical Study of Vibrational Frequencies, Energies in Some Flavonoids molecules

Mustafa S. Razooqi^{*}, Huda N. Al-Ani

Department of Chemistry, College of Science, University of Baghdad, Jadiriya, Baghdad, Iraq

Received: 15/7/2021 Accepted: 7/10/2021 Published: 30/6/2022

Abstract

Quantum mechanical computations is conducted using DFT (Density Functional Theory) and PM3 (Parameterized Model 3), also, using DFT of (B3LYP) with a 6-311++G (d, p) with G09 application. These molecular three components include structure, electronic charge density and energetic characteristics of chosen phytomedicine compounds. The impact of functional groups on physical characteristics were studied using myricetin, linebacker, and flavone because of their chemical structures. For phytomedicine compounds, we utilized quantum mechanical simulations to estimate bond length, energy, vibration(vib.) modes, charge density and mechanical properties (cruelty, strength, stiffness, for the measurements of the lengths and energy of the bonds). Herzberg convention is used to look for the connections between the frequencies of similar modes which was used. IR absorption of the highest vibration frequencies modes of 3N-6 was measured and assigned for all species. Physical parameters were also calculated these include: heat of production, amount of energy, atomic electronic charge density, dipole moment and (E gap) ($E = E_{LUMO}-E_{HOMO}$). For three phytomedicine molecules, quantum chemical properties were combined. This software also computed and evaluated the electronic charge density distribution on atoms of 3 molecules. The equilibrium geometries of all three molecules were studied.

Keywords: Flavonoids, DFT, B3LYP, G09, IR absorption

حسابات ميكانيك الكم والدراسة الالكتروكيميائية لتربدات الاهتزاز والطاقات في بعض جزيئات الفلافونوبدات

مصطفى ستار رزوقي *, هدى نجم الدين

قسم الكيمياء ، كلية العلوم ، جامعة بغداد ، الجادرية ، بغداد ، العراق

الخلاصة

تطبيق حسابات ميكانيك الكم لنظرية (معاملات النموذج 3) PM3 ونظرية الكثافة الوظيفية DFT لـ (p,d) ++G 311-6(B3LYP) على جزيئات طب نباتية مختارة، فإن خطوة الدراسة الحسابية هي دعم العناصر الجزيئية التي تؤثر على البنية التركيبية كثافة الشحنات الإلكترونية على الدراسة وخصائص الطاقة. تم اختيار myricetin و linebacker و flavone و flavone الوظيفية على الميائية. الفحص المميزة، والتي تسمح للباحثين باستكشاف تأثيرات المجموعات الوظيفية على الصفات الفرزيئية. الفحص

^{*}Email: mustafasattar.msc@gmail.com

النظري للخصائص الفيزيائية مثل طول الرابطة والطاقة وأنماط الاهتزاز وكثافة الشحن والخواص الميكانيكية لمركبات الطب النباتي باستخدام حسابات ميكانيك الكم. تم قياس وتخصيص امتصاص الأشعة تحت الحمراء لأنماط ترددات الاهتزاز القصوى لـ 3 δ-الجميع الأنواع، وتم استخدام طريقة هيرزبرج لإيجاد الارتباطات بين ترددات الأنماط ذات الصلة. تتضمن المعلمات الفيزيائية المحسوبة ، من بين أمور أخرى، حرارة التكوين والطاقة الكلية وكثافة الشحنة الإلكترونية على الذرات والعزم نتائي القطب وفجوة الطاقة-ولاهة-منحدام برنامج 40 Ber الشرية لجزيئات طب النبات الثلاثة، ارتبطت المعلمات الكيميائية وفق ميكانيك الكم. تم استخدام برنامج 50 Ber أيضًا لقياس وتقييم توزيع كثافة الشحنة الإلكترونية على ذرات ثلاثة جزيئات؛ تم بحث ووصف الجزيئات الثلاثة في توازنها وهندستها وتناظرها.

1. Introduction

Natural flavonoid derivatives are well-known for their biological antibacterial, anti-viral, antioxidant, and anti-inflammatory effects [1-3]. Plants such as Camellia sinensis (popularly known as green tea), fruits such as Euterpe oleracea (acai berry), and plant seeds such as Glycine max have a certain amount of flavonoids (soy). They are composed of a large set of benzopyrone-based polyphenolic chemicals and are reliant on the structure. The chemical character of flavonoids relies on their kind, their degree of hydroxylation and polymerization, other chemical replacements and conjugations [4]. Flavonoids are linked to many biological impacts and health promotion activities[5] among components. Plant-produced flavonoids are polyphenolic chemicals that are known to offer different biological advantages against different human ailments. The role of flavonoids as anti-inflammatory, antibacterial, antifungal, antioxidant, and antiviral agents has been established in several research [6-9]. Density functional theory (DFT) with the B3LYP functional [10] is the theoretical method in this study. Due to considerable interest in its many positive biological properties including antidiabetic, neuroprotective, cardioprotective, and anticancer actions, etc., flavonoids have been widely studied over the past several decades. Flavonoids are typically linked to their antioxidants, that is, they are capable of scavenging free radicals and other reactive species involved in the development of many human disorders [11-15]. Plant pigments are also referred to as flavonoids, which form any place inside plants and in the category of polyphenolic chemicals [16-17]. 4,000 natural flavonoids have been found and this number has been increasing so far [17]. The flavonoids comprise more than 10,000 structures and represent a major group of secondary metabolites. Many lines of evidence reaffirm their idea that higher plants with a wide-ranging of environmental challenges have antioxidant effects [6,18-19]. Flavonoids prevent many biotic and abiotic stressors from occurring and act as unique UV filters [20]. Flavonoids are a promising group of bioactive chemicals with low toxicity. The common secondary metabolites of diverse fruit-vegetable and medicinal plants, natural flavonols, flavanones, and other ingredients of this class [21] are strongly anti-oxidant and anti-inflammatory [22-23]. Dietary polyphenols, such as flavonoids and phenolic acids, which are found in a great number of plant-origin foods, have many positive benefits and play essential roles in chronic and degenerative disease prevention, flavonoids have many properties as, antioxidant, anti-inflammatory and neuroprotective effects, anti-cancer, immunomodulatory, antidiabetic and antiadipogenic [24-25]. Compared to micro- and macronutrients, biological availability of dietary polyphenols is low. But recent research demonstrate that these phytochemicals have prebiotic and anti-pathogenic intestinal Flora characteristics [24]. Flavonoids are a collection of natural compounds that are present in plants with various phenolic structures. A novel compound was extracted from oranges in 1930. It was thought to be a member of a novel class of vitamins at that time and was labeled vitamin P. The fact that this compound was a flavonoid (rutin) has been known later [25] Previous studies have generally shown the SET mechanism as a unique electron transfer from antioxidant to free radical and is subjected to the antioxidant molecule adiabatic ionizing potential (IP)[26]. The chemical hardness (η) has proved to be an effective world index of atoms, molecules, and clusters response based on the density functional theory [27-28] introduced in terms of chemical potential (μ) and hardness (η) the global electrophilicity index (ω) in [29].

$$\omega = \mu^2 / 2\eta$$
 ------(1)

For some time, medicinal plants were identified as a potential hub for natural chemicals with antioxidants, especially secondary plant metabolites, i.e. phenolic substances and flavonoids produced in plants to support or encourage growth in adverse conditions(Such as phenolic substances and flavonoids produced in plants to support or encourage growth in adverse conditions). Functional group design, conformation, substitution, and the number of hydroxy groupings have also been altered by flavonoid action, such as radical activity scavenging and/or metal chelation [30]. Generally, hydroxylation positions and numbers are reasonably correlated to flavonoid anti-oxidation. Hydrostatic and electron radicals, which are flavonoid radicals with highly stable, are provided by Ring B hydroxyl groups into hydroxyl, peroxyl, and peroxyacetic radials. Flavonoids, on the other hand, might scavenge the resultant radicals to counteract their previous effect. Based on greatly improved anti-oxidant effects, the requirement for at least two hydroxyl groups in ring B (Figure 1) anti-oxidant capability is recommended [31].

Figure 1- Flavonoids have a simple structure.

Most of the powerful progress tools in this sector of computational software are virtual chemical methods. This offers incredibly useful low-cost expertise, allowing the impacts of different molecular characteristics. The fundamental objective of this research is to determine how hydroxyls affect the local charges and how they influence geometries and molecular energies[32]. Flavonoid antioxidants counteract reactive oxidation by giving electrons. Despite this, it is widely understood that a little A flavonoid's molecular structure may impact its antioxidant effectiveness.

2. Computation Methods

The application of computational chemistry in chemical and medical research has grown in recent years. The Gaussian 09 software was used to do DFT calculations. [33] to calculate the density function theory (DFT) The 6-311++ G basis set was utilized for this project. The possibility for electrostatic attraction [34-37]. Among the physical characteristics that were identified are the optimal equilibrium total energy, dipole moment, partial nuclear charge, and molecular energy orbitals. By utilizing vibrational frequencies, the lack of imaginary values was utilized to demonstrate the presence of a real minimum for the optimized geometries. Atoms in Molecules explores the topological and energy aspects of intramolecular hydrogen bonding as well as molecular characteristics in atoms. For the best constructions, all calculations have been done.

3. Discussion and Conclusions

Quantum chemical methods in electrochemistry (the charges on the atoms were calculated, as well as the interpretation of their effect on the molecule in terms of vibrations and energy) are extremely useful because they allow researchers to easily know the structure and function of flavone and 2 closely similar polyphenols. Using quantum chemical computations to determine the physical properties of flavonoids is a routine procedure. The key molecular parameters in Table 2 calculated at the B3LYP/6-311 G++ optimized bond lengths and charges study underscoring the importance of bioactive aromatic groups in antioxidant activities actions for flavone and flavonoid generated from its flavonoids with estimated structures given in (Figure 2) and important molecular characteristics in a Table 2.

Figure 2-G09 program is used to calculate the equilibrium bonding and angles of flavone, myricetin, and linebacker compounds.

A high capacity to donate electrons is connected to a high HOMO [36,38] HOMO is the highest in myricetin and the lowest in flavone among the three flavonoid compounds (see Table 1). The following order is in line with HOMO trend:

myricetin > linebacker > flavone

The title molecule reactivities are larger because the orbital energy gap on the frontiers is lower and the dipole moment is bigger. The correlation graphs of physical characteristics of flavone, linebacker, and myricetin molecules are shown in Figure 3. E (energy gap) may be thought of as a guess based on chemical data and hence a predictor of compound kinetics. The antioxidant is much more efficient when the E gap is smaller. The low bandgap energy indicates flavonoids are reactive systems. Flavonoid (energy gap) energy different [39].

An examination of border-orbital (E gap) shows how electron density is distributed across the molecule: myricetin > linebacker > flavone

The energy gap of myricetin is bigger than the rest molecules because myricetin contains more groups of OH than the rest of the molecules, this difference appears larger than that of the rest of the molecules because myricetin contains more OH groups than the rest of the molecules at six sites on the molecule while linebacker contains five sites and flavones do not contain an OH group.

It was found, The primary reactive sites are –OH, C-O-C and C=O, this according to the computational techniques. These aggregates are sites for the concentration of charges and also affect the vibration and electro-negative energy.

The electronegative region is mostly above the electrophilic attack site of carbonyl oxygen. The calculated vibratory modes are visible in the comparison of calculated data. The following correlations emerge from comparing the three molecules' measured global hardness (a pertinent metric for assessing charge transfer preventative medicine) (Figure 3)

electrical potential μ -0.1 -0.2 -0.3 -0.4	Global electrophilicity index (ω 0 0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9	ΔE eV 0 -0.02 -0.04 -0.06 -0.08 -0.1 -0.12 -0.14 -0.16 -0.18	LUMO eV	HOMO eV	Energy a.u 0 -200 -400 -600 -800 -1000 -1200 -1400 -1600 -1800
Linebacker	0.35 0.3	Thermal Enthalpies	Dipole moment Debye	HARDNESS η	SOFTNESS 1/η 0 -2 4
Linebacker	O.35	O	Dipole moment Debye 8 7 6 5 4 3	HARDNESS η 0 -0.01 -0.02 -0.03 -0.04 -0.05 -0.05 -0.06 -0.0	SOFTNESS 1/η 0 -2 -4 -6 -8 -10 -12 -12 -4 -6 -10 -12 -12 -12 -14 -14 -15 -15 -17 -17 -17 -17 -17 -17 -17 -17

Flavone > Linebacker > Myrcetin

In most electronegative regions, oxygen atom of carbonyl, hydroxy and C=O is considered to the electrophilic attacks through the electric charges, this is shown on the molecule in the following:

Table 1-Bond lengths of flavone, myricetin, and linebacker geometries which were optimized using DFT at B3LYP/ 6-311++G(d,p).

Flavone[39]			Myricetin		Linebacker	
Atoms	Bond length (Å)	Atoms	Bond length (Å)	Atoms	Bond length (Å)	
C1-C2	1.4031	C1-C2	1.3996	C1-C2	1.4001	
C2-C3	1.3843	C2-C3	1.3876	C2-C3	1.3850	
C3-C4	1.4029	C3-C4	1.4264	C3-C4	1.4253	
C4-C5	1.3977	C4-C5	1.4006	C4-C5	1.4033	
C1-C6	1.3860	C5-C6	1.3888	C5-C6	1.3901	
C5-O7	1.3707	C5-O7	1.3828	C5-07	1.3583	
O7-C8	1.3623	O7-C8	1.4036	O7-C8	1.3732	
C8-C9	1.3561	C8-C9	1.3633	C8-C9	1.3663	
C9-C10	1.4551	C4-C10	1.4225	C4-C10	1.4327	
C10-O11	1.2270	C10-O11	1.2877	C10-O11	1.2546	
C8-C12	1.4769	C8-C12	1.4565	C8-C12	1.4656	
C12-C13	1.4042	C12-C13	1.4084	C12-C13	1.4054	
C13-C14	1.3892	C13-C14	1.3912	C13-C14	1.3864	
C14-C15	1.3950	C14-C15	1.3944	C14-C15	1.3920	

C15-C16	1.3926	C15-C16	1.3928	C15-C16	1.4031
C16-C17	1.3917	C16-C17	1.3836	C16-C17	1.3842
C1-H18	1.0839	C3-O18	1.3557	C3-O18	1.3405
C2-H19	1.0835	C1-O19	1.3791	C1-O19	1.3594
C3-H20	1.0834	C9-O20	1.3754	C9-O20	1.3540
C6-H21	1.0830	C14-O21	1.3818	C14-Cl21	1.7622
C9-H22	1.0800	C15-O22	1.3888	C15-O22	1.3615
С13-Н23	1.0822	C16-O23	1.3975	C16-O23	1.3608
C14-H24	1.0839	C2-H24	1.0802	C2-H24	1.0815
С15-Н25	1.0839	C6-H25	1.0801	C6-H25	1.0831
C16-H26	1.0840	C13-H26	1.0773	C13-H26	1.0776
С17-Н27	1.0810	C17-H27	1.0813	C17-H27	1.0799
		O18-H28	1.0294	O18-H28	0.9851
		O19-H29	0.9895	O19-H29	0.9634
		O20-H30	1.0155	O20-H30	0.9772
		O21-H31	0.9972	O22-H31	0.9671
		O22-H32	0.9972	O23-H32	0.9662
		O23-H33	0.9972		

Table 2- Electronic charge calculations using G09 software for flavone, myricetin and linebacker molecules.

Flavone[39]		myr	myricetin		Linebacker	
Atom	Charge	Atom	Charge	Atom	Charge	
C1	-0.4455	C1	0.9694	C 1	0.9716	
C2	-0.0949	C2	-0.3683	C2	0.3712	
C 3	0.3117	C3	0.8401	C3	0.8450	
C4	2.1824	C4	-0.5668	C4	0.5680	
C5	-1.7849	C5	0.6311	C5	0.6588	
C6	-0.2937	C6	-0.5291	C6	-0.5243	
07	0.0412	07	-0.6975	07	-0.7266	
C8	0.6325	C8	0.7482	C8	0.6710	
C9	-0.5558	C9	-0.2762	C9	-0.2117	
C10	-0.7686	C10	1.3371	C10	1.3334	
O11	-0.2954	011	-1.0378	O11	-1.0294	
C12	1.0963	C12	-0.1276	C12	-0.0657	
C13	-0.5592	C13	-0.1209	C13	-0.1556	
C14	-0.5512	C14	0.5376	C14	0.3488	
C15	-0.2950	C15	0.5088	C15	0.4879	
C16	-0.3726	C16	0.4306	C16	0.4822	
C17	0.0572	C17	-0.1319	C17	-0.0818	
H18	0.1790	O18	-0.8270	O18	-0.8001	
H19	0.1693	019	-0.8367	O19	-0.8461	
H20	0.1956	O20	-0.5955	O20	-0.6045	
H21	0.1665	O21	-0.7442	Cl21	-0.3311	

H22	0.2136	O22	-0.9132	O22	-0.9004
H23	0.0830	O23	-0.7225	O23	-0.7489
H24	0.1898	H24	0.0810	H24	0.0833
H25	0.1548	H25	0.0589	H25	0.0637
H26	0.1854	H26	0.1301	H26	0.1278
H27	0.1583	H27	0.0853	H27	0.1005
		H28	0.4902	H28	0.4384
		H29	0.2939	H29	0.2990
		H30	0.3751	H30	0.3689
		H31	0.3289	H31	0.3507
		H32	0.3513	H32	0.3343

Mulliken Atomic Charges

Mulliken charges are a useful tool for interpreting the chemical composition basis of structure. Charge in an atom of the molecule assists to depict the electron density distribution across the molecule in a straightforward way. The chemical under investigation has no net charge. Table 2 shows the Mulliken charge of the title compound calculated using a 6-311++G (d, p) basis set in the gas phase. Some C and H atoms have a higher positive charge, but the oxygen atoms of the three molecules, as well as the Cl atom in a linebacker, have a negative charge. A positive charge exists on all hydrogen atoms. Figure 4 shows a graphical representation of Mulliken charges in the gas phase.

Electronic Properties

Quantum chemical computations are crucial for deducing information about organic molecules' electrochemical activity. At B3LYP/6-311++G (d, p) level, the title compounds were subjected to a frontier molecular orbital (FMO) study. FMO analysis takes into account the interactions between full and empty molecular orbitals. The primary orbitals involved in the chemical stability of compounds are the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The electron donor HOMO and the electron acceptor LUMO work together. The energy gap is the difference between the energies of HOMO and LUMO, which influences a molecule's reactivity and kinetic stability. The energy gap between hard and soft molecules is large for hard molecules and small for soft ones. The following relation describes the HOMO-LUMO energy gap (ΔE) of title compounds and the charge transfer interactions that occur within the molecules in the end: Myricetin > Linebacker > Flavone

The Mulliken atomic charge in the B3LYP level for the three molecules was set at 6-311G++ (d, p) (Table 2). C, O, C = O and OH are the main axis of charge density.

Figure 4- Molecular Mulliken charge density of flavone, linebacker, and myricetin molecules using DFT at (B3LYP) 6-311++G (d,p).

Figure 5-HOMOs and LUMOs and their energies for flavone, myricetin and linebacker molecules calculated using density functional theory at B3LYP/6-311G++(d,p).

Vibration frequencies assignment of Flavonoid, Myricetin, and Linebacker molecules.

DFT (B3LYP 6-311++G) calculations were carried out for the estimation of vibration frequencies, and normal coordinates for all flavonoids derivatives, by using the Gaussian-09 program. The results allowed interesting relations between the different vibration modes and could be useful for the discussion of different problems of stability and reactivity of the

molecules. For symmetrical stretching of H-O bond due to the O-H group was found to have a values range of (3829.44-3308 cm-1)(DFT (B3LYP 6-311++G(d,p)), For stretching vibration frequency of C-H belonging to the flavone was found 3225.17 cm⁻¹, for the myricetin have the value 3260.68 cm⁻¹, and for the linebacker have the value of (3400.84 cm⁻¹ ¹) which was the higher value in linebacker molecule. The highest frequency values correspond to the largest bond force constants. The vibration of a molecule causes deformation in its geometry. Structure deformation is expected to change its physical and chemical properties. While for stretching vibration frequency of (C=O) str. was found to have values range of flavone was the range $(502.04 - 117.10 \text{ cm}^{-1})$, and for the Applying this comparatively convenient method allowed the valance assignment for the vibration modes of this molecule for the first time, the main subject of this work is to understand how the presence of hydroxyl groups affects and how this is related to geometric structures and molecular parameters and with molecular energy. The vibration of a molecule causes deformation in its geometry, structure deformation is expected to change its physical and chemical properties. The antioxidant properties of polyphenols are related to the nature of their chemical structures. Flavonoids are effective scavengers of hydroxyl, peroxyl, and superoxide anion radicals.

The vibrations that make up the foundation (3N-6) and the effects of the irreducible formulation in subsequent vibration modes are:

$\Gamma vibration = \Gamma total - (\Gamma rotation + \Gamma translation)$

There are several vibration modes in use (IR). The following are their responsibility:

CH stretching vibration:

H atoms are located on the transposition paths. Their mode frequencies vary from to examining the values (Table 3,4), the following relation emerge:

vCHstr.(Linebacker) > vCHstr.(Myricetin) > vCHstr.(Flavone)

Ring (CCC) stretching vibration:

Atomic displacement courses reveal that displacement directions are not located at individual C atoms. Their Variations in predicted vibrational modes (Infrared active) show the following relation (Tables 3, and 4):

v CCC str.(Linebacker) > v CCC str.(Myricetin) > v CCC str.(Flavone)

OH stretching vibration

The estimated Frequency of vibrations (Infrared active) as modes vary between Tables 3and 4, with interesting correlations of:

v(OH)str. (Linebacker) > v(OH)str. (Myricetin)

C=C stretching vibration:

The Frequency of vibrations (Infrared active) as modes vary between Tables 3and 4, with interesting order of:

vC=C str.(Linebacker) > v C=C str.(Flavone) > v C=C str.(Myricetin)

In-plane CH bending vib. (δCH):

H atoms are located on the transposition paths. Their mode frequencies vary from to examining the values (Tables 3, and4), the following relation emerge:

vδCH(Linebacker) >vδCH(Flavone) >vδCH(Myricetin)

In-plane (ring) bending vibration (δ ring):

Examining the numbers in Tables 3 and 4 and the estimated vibration frequencies (IR active) reveal the following correlations:

νδ ring. (Linebacker) >νδ ring (Flavone)

Out of plane CH bending vibration (γCH):

Frequency of vibrations (Infrared active) as mode varies between Tables 3 and 4 as following.:

vγ CH(Flavone) >vγ CH(Myricetin) >vγ CH(Linebacker)

Out of plane ring bending vibrations (γ ring):

Deformations and pinching vibrations of the ring computed vibrational modes (Infrared active) modes are included. Comparing the estimated frequency modes values molecules to use G09 software reveals the following correlations:

$v\gamma(CCC)(Linebacker) > v\gamma(CCC)ring(Flavone) > v\gamma(CCC)(Myricetin)$

Table 3-Vibration. frequencies to calculate modes of flavone, myricetin and linebacker molecule using DFT at B3LYP/ 6-311++G(d,p).

	Flavo	Flavone [39] myricetin		etin	linebacker	
Vib.	Symmetry and	F	Symmetry and	F	Symmetry and	F
modes	description	Frequency	description	Frequency	description	Frequency
v1	δring	24.74	ring str (breathing)	40.82	ring str	15.01
v2	δring	57.30	ring str	59.54	ring str	38.11
v3	γ ring	116.21	ring str	98.91	ring str	77.30
v4	C=O str	117.10	C-C str	101.57	C-O str	79.60
v5	$\delta CH + \delta ring$	149.80	C-C str	123.48	γ ring	108.92
vб	C=Cstr + C=Ostr	190.40	δ C=O	161.82	ү ОН	127.79
v7	γring	267.70	δ C-O	193.93	γ ring	153.85
v8	$\delta CH + \delta ring$	281.40	δ ring	213.40	γ Cl	172.86
v9	$\gamma CH + \gamma C=O$	294.07	$\delta CH + \delta OH$	240.47	$\gamma CH + \gamma OH$	219.14
v10	γ Ring + γ C=O	351.64	δΟΗ	242.36	δ ΟΗ	228.82
v11	δRing	408.75	ring str	260.05	γ ring	234.77
v12	CH str + ring str	431.24	C=C str	262.58	γ ring	245.74
v13	CH str + ring str	467.77	C-C str	290.84	$\gamma Cl + \gamma OH$	261.70
v14	$\gamma CH + \gamma C=O$	502.04	δОН	308.28	γ ring + γ OH	281.03
v15	$\gamma CH + \gamma ring$	512.97	γ ΟΗ	336.74	δΟΗ	282.20
v16	CH str + C = C str	533.53	δOH	343.39	γ ΟΗ	315.47
v17	$\gamma CH + \gamma ring$	588.35	δОН	355.27	γOH	315.82
v18	γCH	613.86	δring	361.04	δОН	338.45
v19	γ ring	634.07	γOH	403.93	γ ΟΗ	344.99
v20	$\delta CH + \delta ring$	660.17	OH str	409.90	γOH	349.58
v21	CH str + C = C str	679.65	C-O str + ring str	417.79	$\delta OH + \delta C = O$	374.87
v22	γ ring	685.60	γ C=O	466.82	γ ΟΗ	401.96
v23	Ring str	700.50	γOH	518.77	C-O str	403.75
v24	$\gamma CH + \gamma ring$	755.78	$\delta OH + \delta CH$	530.14	γ ΟΗ	411.22
v25	CH str + C-C str	766.63	γ CH	531.42	$\gamma OH + \gamma ring$	417.70
v26	CH str	781.40	C = C + C - O	540.71	$\gamma OH + \gamma C=O$	463.55
v27	CH str + C = C str	789.83	$\delta OH + \delta CH$	572.26	γ ring	515.59
v28	CH str	846.07	$\gamma OH + \gamma CH$	581.65	γ CH	516.79
v29	$\gamma CH + \gamma ring$	860.98	δОН	593.22	$\gamma CH + \gamma OH$	529.57
v30	CH str	865.84	δОН	599.78	$\gamma CH + \gamma OH$	543.26
v31	CH str	879.85	$\delta \operatorname{ring} + \delta - O -$	625.08	γ Ring + γ OH	582.50
v32	γCH	920.01	$\delta CH + \delta C-O$	629.58	γOH	596.98
v33	CH str	939.76	γOH	640.36	$\gamma ring + \gamma OH$	610.29
v34	CH str	977.05	γ CH	650.39	$\gamma ring + \gamma OH$	616.54
v35	CH str	989.73	δring	660.41	$\gamma ring + \gamma OH$	629.97
v36	CH str	1002.66	γOH	673.96	$\gamma CH + \gamma OH$	634.69
v37	CH str	1007.12	γOH	686.13	$\gamma CH + \gamma ring$	647.74
v38	Ring str	1015.83	γOH	693.60	γCH	667.30
v39	$\gamma CH + \gamma ring$	1030.93	$\gamma OH + \gamma ring$	704.28	$\dot{\gamma}$ ring	685.57
v40	γCH	1050.79	$\gamma CH + \gamma ring$	722.37	$\gamma ring + \gamma CH$	695.15
v41	γCH	1061.74	C-C str	731.25	$\gamma CH + \gamma C = C$	725.49
v42	γCH	1107.57	δΟΗ	748.85	$\gamma OH + \gamma C-C$	731.47
v43	γCH	1111.42	γ ring	755.15	γ ring	737.68
v44	γCH	1147.41	γCH	777.45	γ OH	769.22
v45	γCH	1174.36	$\gamma ring + \gamma CH$	827.56	γCH	787.36
v46	γ CH	1186.46	γCH	831.41	$\delta OH + \delta CH$	838.44

v47	γCH	1211.67	γCH	850.29	ν CH	851.57
v48	γCH	1236.34	γOH	876.71	γCH	880.99
v49	CH str + ring str	1250.97	$\gamma OH + \gamma CH$	884.57	γOH	884.52
v50	γCH	1274.66	$\gamma OH + \gamma ring$	936.39	γCH	891.44
v51	γCH	1305.89	γCH	996.99	$\gamma OH + \gamma CH$	958.81
v52	γCH	1331.11	γOH	1003.32	δCH	1017.95
v53	CH str + C = C str	1356.72	$\gamma OH + \gamma CH$	1014.83	γ CH	1039.15
v54	ү СН	1359.92	γCH	1031.03	$\gamma \operatorname{ring} + \gamma \operatorname{C-O} + \gamma \operatorname{OH}$	1107.60
v55	γ CH	1385.41	$\gamma CH + \gamma C-O$	1072.04	ү СН	1129.09
v56	CH str + ring str	1478.34	γ CH	1088.68	γ CH	1159.84
v57	$\gamma CH + \gamma ring$	1492.22	γ CH	1136.76	γ CH	1172.95
v58	δСН	1500.98	γ CH	1151.46	γ CH	1195.83
v59	γ CH	1526.51	$\gamma CH + \gamma OH$	1196.97	γ ΟΗ	1213.17
v60	γ ring	1603.52	γ CH	1198.77	$\gamma \text{ OH} + \gamma \text{ CH}$	1215.06
v61	CH str+ ring str	1616.25	$\gamma CH + \gamma OH$	1232.75	$\gamma \text{ OH} + \gamma \text{ CH}$	1249.79
v62	CH str+ ring str	1641.27	δСН	1253.24	$\gamma \text{ OH} + \gamma \text{ CH}$	1263.13
v63	CH str + ring str	1643.2	$\gamma CH + \gamma OH$	1267.76	CH str	1278.35
v64	Ring str	1653.58	γ ΟΗ	1290.06	OH str	1300.50
v65	γ C=Ο	1702.84	$\gamma \text{ OH} + \gamma \text{ ring}$	1309.24	OH str + CH str	1342.20
v66	CH str	3168.22	γ ΟΗ	1318.89	OH str + C = C str	1353.53
v67	CH str	3173.17	γ ΟΗ	1334.28	OH str + CH str	1359.69
v68	CH str	3178.14	γ ΟΗ	1352.95	OH str	1368.20
v69	CH str	3186.40	γ ΟΗ	1387.64	OH str	1401.51
v70	CH str	3189.32	γ ΟΗ	1397.44	OH $str + C-C str$	1428.68
v71	CH str	3197.57	$\gamma \text{ OH} + \gamma \text{ CH}$	1419.03	OH str	1456.67
v72	CH str	3199.68	δΟΗ	1438.24	$\gamma OH + \gamma ring$	1480.30
v73	CH str	3201.61	OH str	1460.40	$\gamma \text{ OH} + \gamma \text{ ring}$	1514.15
v74	CH str	3216.85	OH str + CH str	1496.22	$\gamma \text{ OH} + \gamma \text{ CH}$	1519.75
v75	CH str	3225.17	$\gamma CH + \gamma OH$	1504.88	δ CH	1528.32
v76			$\gamma CH + \gamma OH$	1514.72	OH str	1605.93
v77			$\gamma CH + \gamma OH$	1544.45	ring str	1616.31
v78			γ ΟΗ	1566.45	OH str + ring str	1627.70
v79			γ ΟΗ	1623.93	CH + ring str	1649.04
v80			ring str + OH str	1641.36	$\gamma \text{ OH} + \gamma \text{ ring}$	1664.00
v81			OH str	1648.28	OH str + ring str	1686.96
v82			OH str + ring str	1663.55	CH str	3190.83
v83			γ ΟΗ	1685.84	OH str	3215.99
v84			γ ΟΗ	2766.53	CH str	3233.06
v85			OH str	3118.46	CH str	3256.28
v86			CH str	3209.08	CH str	3400.84
v87			CH str	3216.22	OH str	3600.26
v88			CH str	3225.93	OH str	3767.04
v89			CH str	3260.68	OH str	3791.65
v90			OH str	3392.23	OH str	3829.44
v91			OH str	3424.03		
v92			OH str	3494.92		
v93			OH str	3542.07		

Bending vibrations OH off of plane OH

Vibration frequencies (IR-active) that have been determined to examine the numbers in Table-3 and Table-4 reveal interactions which were observed between their predicted vibrational modes to use G09 application:

vγOH (Myricetin)> vγOH (Linebacker)

Vibration modes	Flavone [39]	Myricetin	Linebacker
CH str	3225.17 - 679.65	1496.22- 3260.68	3260.68 - 3400.84
ring str	1653.581015.83	40.82 - 1663.55	15.01 - 1686.96
C=C str	679.65 - 190.4	262.58	1353.53
C=O str	502.04 - 117.10		
C-C str	766.63	101.57 - 731.25	
C-O str		417.79	79.6 - 403.75
OH str		409.9 - 3542.07	1300.5 - 3829.44
δСН	1500.98	24047 - 1253.24	1017.95 - 1528.32
δring	408.75 - 57.30	213.4 - 660.41	
δОН		240.47 - 1438.24	228.82 - 838.44
γ ring	1603.52-116.21	755.15 - 1309.24	108.92 - 1664
ү СН	3168.22613.86	531.42 - 1544.45	219.14 - 1519.75
ү ОН		336.74 - 2766.53	127.79 - 1664

Table 4-Vibration freq. modes of Flavone, Myricetin, and Linebacker molecule computed using DFT at B3LYP/ 6-311++G. (d,p).

The highest bond force constant is usually used, whereas the weakest strength constant is used in the relation:

$v = 1/2\pi \sqrt{(k/\mu)}....(2)$

Wheres: (v) is the frequency in cm⁻¹, (k) is the force constant in N/cm, (μ) is the reduced mass in Kg. The lowest frequency is the lowest bond force constant. There are .no experimental vibrational frequency data for these compounds in the literature to have it compared with our calculations.

Conclusion

Physical qualities, bond length, energy, modes of vibrations, charge density, and mechanical properties "hardness, softness, and strength" of phytomedicine molecules are all studied using quantum mechanical simulations. A density-function level theory based on B3LYP 6 311++G was used to investigate the compounds Flavone Myricetin and Linebacker (d, p). The presence of C = O, CH3 and the functioning of dihydroxy of the link and promotesis aproved according to the findings. Based on this study, a dihydroxy group within the B ring that provides high radicals stabilization, which may be summarized in two pre-conditions for good antioxidant activity, and the double bond of C2-C3 in connection, at the theoretical level of B3LYP/6-311++G (d, p). In this study, the structural of B3LYP/6-311++G (d, p) technique was used to study three natural polyphenols: flavone, myricetin, and linebacker. The flavonoid also with the lowest energy gap appears when the 3 compounds are examined. These are the three flavonoids that have been linked to the relation:

myricetin > flavone > linebacker

The results are in line with theoretical results. At the end of the day, calculated vibrations frequency (Infrared) reveal that carbonyl extending, OH stretching, C=O stretching and OH stretching, C=O stretching vibration frequent values are all present in (C-C-C stretching). Flavone has the highest frequency of vibrations, followed by myricetin and linebacker frequency values, all of which lead to key chemical characteristics.

References

- [1] M. Afzal, A. M. Safer, and M. Menon, "Green tea polyphenols and their potential role in health and disease," *Inflammopharmacology*, vol. 23, no. 4, pp. 151–161, 2015.
- [2] F. C. Torres et al., "Combining the pharmacophore features of coumarins and 1, 4-substituted 1, 2, 3-triazoles to design new acetylcholinesterase inhibitors: fast and easy generation of 4-methylcoumarins/1, 2, 3-triazoles conjugates via click chemistry," J. Braz. Chem. Soc., vol. 27, pp. 1541–1550, 2016.

- [3] F. R. F. Passamani et al., "Effect of temperature, water activity, and pH on growth and production of ochratoxin A by Aspergillus niger and Aspergillus carbonarius from Brazilian grapes," *J. Food Prot.*, vol. 77, no. 11, pp. 1947–1952, 2014.
- [4] M. M. Soeiro, L. A. De Souza, and W. B. De Almeida, "DFT Calculations of Spectroscopic Properties for Zn (II)-Kaempferol Complexes."
- [5] F. Perez-Vizcaino and C. G. Fraga, "Research trends in flavonoids and health," *Arch. Biochem. Biophys.*, vol. 646, pp. 107–112, 2018.
- [6] C. Brunetti, M. Di Ferdinando, A. Fini, S. Pollastri, and M. Tattini, "Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans," *Int. J. Mol. Sci.*, vol. 14, no. 2, pp. 3540–3555, 2013.
- [7] R. Hendra, S. Ahmad, A. Sukari, M. Y. Shukor, and E. Oskoueian, "Flavonoid analyses and antimicrobial activity of various parts of Phaleria macrocarpa (Scheff.) Boerl fruit," *Int. J. Mol. Sci.*, vol. 12, no. 6, pp. 3422–3431, 2011.
- [8] D. D. Orhan, B. Özçelik, S. Özgen, and F. Ergun, "Antibacterial, antifungal, and antiviral activities of some flavonoids," *Microbiol. Res.*, vol. 165, no. 6, pp. 496–504, 2010.
- [9] K. K. Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, "Mechanism of action of flavonoids as anti-inflammatory agents: a review," *Inflamm. Allergy-Drug Targets* (Formerly Curr. Drug Targets-Inflammation Allergy)(Discontinued), vol. 8, no. 3, pp. 229–235, 2009.
- [10] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," *Phys. Rev. A*, vol. 38, no. 6, p. 3098, 1988.
- [11] M. Sandahl, C. Turner, E. Östman, and M. R. M. Júnior, "Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: A pilot clinical study," *Food Chem.*, vol. 211, pp. 185–197, 2016.
- [12] A. H. V Schapira, "Mitochondrial dysfunction in neurodegenerative diseases," *Neurochem. Res.*, vol. 33, no. 12, pp. 2502–2509, 2008.
- [13] D. Ravishankar, A. K. Rajora, F. Greco, and H. M. I. Osborn, "Flavonoids as prospective compounds for anti-cancer therapy," *Int. J. Biochem. Cell Biol.*, vol. 45, no. 12, pp. 2821–2831, 2013.
- [14] Q. Cai, R. O. Rahn, and R. Zhang, "Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals," *Cancer Lett.*, vol. 119, no. 1, pp. 99–107, 1997.
- [15] N. Ottman et al., "Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model," *J. Allergy Clin. Immunol.*, vol. 143, no. 3, pp. 1198–1206, 2019.
- [16] U. Wenzel, A. Nickel, S. Kuntz, and H. Daniel, "Ascorbic acid suppresses drug-induced apoptosis in human colon cancer cells by scavenging mitochondrial superoxide anions," *Carcinogenesis*, vol. 25, no. 5, pp. 703–712, 2004.
- [17] G. Galati and P. J. O'brien, "Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties," *Free Radic. Biol. Med.*, vol. 37, no. 3, pp. 287–303, 2004.
- [18] B. Winkel-Shirley, "Biosynthesis of flavonoids and effects of stress," *Curr. Opin. Plant Biol.*, vol. 5, no. 3, pp. 218–223, 2002.
- [19] G. Agati and M. Tattini, "Multiple functional roles of flavonoids in photoprotection," *New Phytol.*, vol. 186, no. 4, pp. 786–793, 2010.
- [20] A. Takahashi and T. Ohnishi, "The significance of the study about the biological effects of solar ultraviolet radiation using the exposed facility on the international space station," *Biol. Sci. Sp.*, vol. 18, no. 4, pp. 255–260, 2004.
- [21] E. P. Gutiérrez-Grijalva, M. A. Picos-Salas, N. Leyva-López, M. S. Criollo-Mendoza, G. Vazquez-Olivo, and J. B. Heredia, "Flavonoids and phenolic acids from oregano: Occurrence, biological activity and health benefits," *Plants*, vol. 7, no. 1, p. 2, 2018.
- [22] A. Jungbauer and S. Medjakovic, "Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome," *Maturitas*, vol. 71, no. 3, pp. 227–239, 2012.
- [23] S. Gonçalves, E. Moreira, C. Grosso, P. B. Andrade, P. Valentão, and A. Romano, "Phenolic profile, antioxidant activity and enzyme inhibitory activities of extracts from aromatic plants used in Mediterranean diet," *J. Food Sci. Technol.*, vol. 54, no. 1, pp. 219–227, 2017.
- [24] A. Kumar Singh et al., "Beneficial effects of dietary polyphenols on gut microbiota and strategies

to improve delivery efficiency," Nutrients, vol. 11, no. 9, pp. 2216, 2019.

- [25] E. Middleton, "Effect of plant flavonoids on immune and inflammatory cell function," *Flavonoids living Syst.*, pp. 175–182, 1998.
- [26] G. Mazzone, N. Malaj, N. Russo, and M. Toscano, "Density functional study of the antioxidant activity of some recently synthesized resveratrol analogues," *Food Chem.*, vol. 141, no. 3, pp. 2017–2024, 2013.
- [27] J. Calais, "Density-functional theory of atoms and molecules. RG Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. IX+ 333 pp. Price£ 45.00." Wiley Online Library, 1993.
- [28] R. G. Pearson, Chemical hardness, vol. 10, no. 3527606173. Wiley Online Library, 1997.
- [29] P. K. Chattaraj, B. Maiti, and U. Sarkar, "Philicity: a unified treatment of chemical reactivity and selectivity," *J. Phys. Chem. A*, vol. 107, no. 25, pp. 4973–4975, 2003.
- [30] K. E. Heim, A. R. Tagliaferro, and D. J. Bobilya, "Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships," *J. Nutr. Biochem.*, vol. 13, no. 10, pp. 572–584, 2002.
- [31] H. Çelik and M. Koşar, "Inhibitory effects of dietary flavonoids on purified hepatic NADHcytochrome b5 reductase: Structure-activity relationships," *Chem. Biol. Interact.*, vol. 197, no. 2– 3, pp. 103–109, 2012.
- [32] S. Antonczak, "Electronic description of four flavonoids revisited by DFT method," J. Mol. Struct. THEOCHEM, vol. 856, no. 1–3, pp. 38–45, 2008.
- [33] Mj. Frisch, "Gaussian 03 Rev. E. 01," http//www. gaussian. com/, 2004.
- [34] U. C. Singh and P. A. Kollman, "An approach to computing electrostatic charges for molecules," *J. Comput. Chem.*, vol. 5, no. 2, pp. 129–145, 1984.
- [35] K. J. A. Lemmens et al., "The contribution of the major metabolite 4'-O-methylmonoHER to the antioxidant activity of the flavonoid monoHER," *Chem. Biol. Interact.*, vol. 239, pp. 146–152, 2015.
- [36] C. Lee, W. Yang, and R. G. Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density," *Phys. Rev. B*, vol. 37, no. 2, p. 785, 1988.
- [37] M. M. Kadhim and R. M. Kubba, "Theoretical Investigation on Reaction Pathway, Biological Activity, Toxicity and NLO Properties of Diclofenac Drug and Its Ionic Carriers," *Iraqi J. Sci.*, pp. 936–951, 2020.
- [38] R. M. Kubba and N. M. Al-Joborry, "Theoretical study of a new oxazolidine-5-one derivative as a corrosion inhibitor for carbon steel surface," *Iraqi J. Sci.*, pp. 1396–1403, 2021.
- [39] S. R. Mustafa and H. N. Al-Ani, "Calculation of vibrational frequencies, Energetic and some other Quantum Chemical Parameters for some Flavonoids," J. Phys. Conf. Ser., vol. 1999, no. 1, p. 12018, 2021, doi: 10.1088/1742-6596/1999/1/012018.