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Abstract

This paper treats the interactions among four population species. The system
includes one mutuality prey, one harvested prey and two predators. The four species
interaction can be described as a food chain, where the first prey helps the second
harvested prey. The first and the second predator attack the first and the second prey,
respectively, according to Lotka-Volterra type functional responses. The model is
formulated using differential equations. One equilibrium point of the model is found
and analysed to reveal a threshold that will allow the coexistence of all species. All
other equilibrium points of the system are located, with their local and global
stability being assessed. To back up the conclusions of the mathematical analysis, a
numerical simulation examination of the model is carried out. The system's
coexistence can be achieved as long as the harvesting rate of the prey population is
lower than its intrinsic growth rate.

Keywords: Food chain model, Prey-predator model, Mutual interaction, Harvesting,
Stability.

L) dadud) zagad o slanlly Jaliial) Jeladl) a0

*alga oy i, s ABIS Gy
Bhall aany, Slualyll s, dai dasls, aslall LIS, Slualyll ol
Ladal)

Basly Allie duwyd o o) daady ol e glsil Al g el duy ) Gaad) s Cangy

e Al 4l A £l Jelis Camy oSy s iall cillgaall (e Uil Baaly 53 gemne dussjdg

Glan el mas o leill mans L oSS Leblaty 7 3gaill lgil Ak o jgial)

shal @ ¢ alyll dail) Slabiiin aeals L Jolilly sl Wil andis oUaill Gl bl ases

Ji il e sbastl Jaee of Wl aUail) iules (3iaS Sy 4l Jangl o dgaill oy 3lSlae and

LA sl Jane e

1. Introduction

Ecosystems are the result of interactions between the environment and communities. In an
ecosystem, a food chain plays a vital role in guaranteeing the stability of the populations [1].
The best method to understand the dynamics and behaviour of ecological interactions between
prey and predator populations is to utilise a

mathematical model. A simple model of prey-predator interactions was separately proposed
by Lotka and Volterra, but the model is now known as the Lotka — Volterra model [2,3]. In
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[4], the first simple mathematical model of two prey and one predator has been investigated
and analysed in terms of predicting their dynamics. Subsequently, some researchers have
studied numerous properties, such as coexistence, persistence, stability and extinction [5- 8].
In [9], it has been used Holling type-1 functional response in a system consisting of two prey-
one predators. The authors [10,11] explored the difficulties in the dynamic behaviour of two
prey-one predator systems following the Holling type Il functional response with an influence
impulsive. In [12], it was analysed the local and global stability of the prey-predator model
including Holling type | functional response and the implications of group help. Further, in
[13], it has been considered the interaction between two mutualistic prey and a predator
population. In addition, the proportional harvesting function is taken into account in his model
when these species interact. The stability of his model has been established for the positive
equilibrium point.

In this paper, we consider the interaction among four populations: two prey and two
predators. The first prey is assumed to help the second, whilst the latter is harvested. The first
predator can attack the first prey, while the second predator (top predator) can only attack the
first predator, according to the type I functional response.

The rest of this paper is orginsed as follows: In section two, the existence of the equilibrium
points for the proposed model has been investigated. In section three, the stability of the
possible equilibrium point has been analysed. Finally, in the last section, some numerical
analyses have been provided to confirm our analytical result.

1. Assumptions of the Model

Suppose a food chain contains the following species: prey, a predator and a top predator, with
the mathematics beings based on the following assumptions. n,(t) is the density of the first
prey (the first species in the food chain), n,(t) is the density of the second harvested prey,
which has a positive effect on the first prey, whilst n;(t) and n,(t) are the densities of the
predator and top predator species, respectively.

Under the above assumptions, the model can be presented by the following system of
differential equations:

dn n
d_tl =rm, (1 - 71) — finynz + angn, = nyfi(ng,ny,nz, ny),
dn n
d_tz = SN, (1 - Tz) — qEn, = nyfo(ng,ny,n3,ny),
dn
d_: = faninz — fonz — Y1N3Ny = N3 f3(ny, Nz, N3, 1),
dn4
ar Y2N3zNy — ANy = n4f4(n1,n2,n3,n4).

Here, model (1) has been analysed with the initial conditions n,(0) =0, n,(0) =0,
n;(0) = 0and n,(0) = 0. p(n,) = Byn; and q(n3) = y;n5 are the Lotka-Volterra type of
functional responses. All parameters of the system (1) are assumed to be positive and
described as:

The parameters k and [ are the carrying capacities of the first and second prey, respectively,
with intrinsic growth rates r and s; a is the positive effect on the first prey by the second prey;
Eand q are the effort and the catchability rate applied on the second prey, i.e., gE represents
the harvesting rate of the second prey; B, and y,are the attack rate coefficient of the first prey
and first predator species due to the first predator and top predator, respectively; B, and «
represent the first and the second predator’s natural death rate, respectively.

Apparently, the functions on the right-hand side of system (1) are continuously differentiable
functions on R} = {(ny, ny,n3,ny),n; = 0,n, > 0,n3 > 0,n, > 0}. Therefore, there exists a
unique solution for system (1). And hence, they are Lipschitzian. Further, all solutions of the
system (1) with any non-negative initial conditions are bounded, as shown in the following
section.
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Theorem (1) All solutions n,(t),n,(t),n;(t) and n,(t) of the system (1) with the initial
conditions (ny, n,, ns, n,) are uniformly bounded if the following conditions ( 8; =, )
and (y, = vy, ) hold.

Proof: - Let (nl(t),nz (t),n4 (t),m(t)) be an arbitrary solution of the system (1) with a
non-negative initial condition. Then for H(t) = n,(t) + n,(t) + n3(t) + ny(t), we have
dH dn; dn, dn; dny

i dt dt+dt+dt2+ dt
Z—I: =Ty — % — (B1 — B2)nyng + anyn, + Sny — % —qkn; — Bonz — (y1 —
Y2) Nang — any .
Hence, according to the assumptions of the theorem, the following is obtained:

dH rn? sn2
—<rn, — Tl + anin, + sn, — TZ— qEn, — Bons — any.

dt
dH rn? sn3
E+ uH < 2rng — T+an1n2 + 2sn, — -

Where u = min. {r, s, qE, By, a}. Then,

dH
E-i_ uH < 2rk + akl + 2sl = ¢&.

Applying Gronwall’s Inequality [6], the following is obtained:
0 < H(m @, m@ O @) < 5 (1= )+ HO)e

hence,

3

0< gimsup H(t) < E

Therefore, all the solutions of the system (4.1) that are initiated in R% are attracted to the
region 9 = {(nl,nz,n3,n4) ER{:H=n,+n,+n3+n, < E} under the given
conditions. Thus, these solutions are uniformly bounded, and the proof is complete. =

2. Existence of equilibria

The harvested food chain prey-predator model with a mutual interaction given by the
system (1) has eight non-negative equilibrium points, namely:
(1) The vanishing equilibrium point I; = (0,0,0,0), always exists.
(2) The first prey equilibrium point I, = (k, 0,0,0), always exists.
(3) The second prey equilibrium point I5 = (O,é(s —qE), 0,0), exists when

s > gE. (2)

(4) The first two species equilibrium point I, = (74, 7,,0,0), where 7, =

R I=

[r + an,]

and nn, = é(s — qE), exists when

s > qE. 3)

(5) The first and third species equilibrium point I = (ji,, 0,7i5, 0), where 7, =% and

2
B2k—Po
B1B2k

fig=7r ( ) exists when
B2k > Bo. 4)

(6) The first three species equilibrium point I, = (A, 7,,73,0), here 7, =%, i, =
2

rs (Bok=Po)+alkpBz(s=4E) \\ nich exists when
B1B;ks

ralkB,(s — qE) > s (By — B2k). ®)
(7) The second free species equilibrium point I, = (nq, 0, n5,ny,),

%(s —qE)and i; =
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here n, = E(M)' ng = x and n, = (TVZ—a’ﬁl)ﬁzk—ﬁoT'YZ’ Wthh eXiStS When
r Y2 Y2 TY1Y2
kB2 (ry, — aBy) > Borys. (6)
(8) The positive equilibrium point Ig = (nj, n3,n3,ny), here
n; = k[rs(yz_aﬁl)mlyz“_qm],n§ =L(s — qE), n} = L and n, = 222750 \which exists when
Yasr N Y2 Y1
aly,(s — qE) > rs(afy —y2) and n] > f. (7)

3. The stability analysis

In this section, the conditions to guarantee the local behaviour of system (1) around each of
the above equilibrium points are found. First, the Jacobian matrix of the system (1) at each
point is determined, and then, the eigenvalues of the resulting matrix are computed.
The Jacobian matrix of the system (1) at the vanishing fixed point I; = (0,0,0,0) can be
written as:

T 0 0 0
10 s—=qE 0 0
0 0 0 -

Then, the eigenvalues of J(I;) are given by A, =71, A, =s—qE, 4,3 =—By; and
M4 = —a. That means I; = (0,0,0,0) is a saddle point in R¥.
The Jacobian matrix of the system at I, = (71, 0,0,0) can be written as:

-r ak —p1k 0
0 s—gqE 0 0
L) =
JL) =, 0 Bk—f, O
0 0 0 —a

Then, the eigenvalues of J(I,) are given by A,; = —r, 4,, =s —qE, 1,5 = B,k — B, and
A4 = —a. That means I, is a locally asymptotical stable point if and only if

s < qE and B,k < B,. (8)
Otherwise I, is a saddle point.
The Jacobian matrix of the system at I3 = (0, 71,,0,0) can be written as:

r+an, 0 0 0
0 —(s —qE) 0 0

L) = .
ja=| R
0 0 0 —a

Then, the eigenvalues of J(I5) are given by A3y =r+an; >0, A3, = —(s — qE), A33 =
—f, and 13, = —a. That means 5 is a saddle point.
The Jacobian matrix of the system at I, = (71, 1,,0,0) can be written as:

—(T + aﬁz) aﬁl _,817_11 O
B 0 —(s — qE) 0 0
1) = .
Jda) 0 0 B—fy O
0 0 0 —a

Then, the eigenvalues of j(I,) are given by A, = —(r+an,) <0, Ay, = —(s —qE),
A43 = Bo1y — By and 1,4 = —a. That means I, is a locally asymptotical stable point if and
only if

B2ty < Po. )
Otherwise I, = (114,75, 0,0) is a saddle point.
The Jacobian matrix of the system at I = (7i, 0, 7i3,0) can be written as:
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Tﬁl . .
Tk any —Baiy 0
Jg)=| 0 s —qE 0 0
Baii3 0 0 —Y1fi3
0 0 0 Yqfiz— (ZJ
Then, it is easy to verify that the eigenvalues of J(I5) satisfy the following relations:
/151 + 153 = —TI'(TH < O,

As1 * Asz = P1fiy otz > 0,
Asp, =5 —qE >0,
Asq = Y2iiz — a.
That means I5 is a locally asymptotical stable point fixed point when
yolis < a. (10)
Otherwise I5 is a saddle point.
The Jacobian matrix of the system at the equilibrium point I, = (71, i,, fi5, 0) can be written
as:

rily R R 1
| - T an1 _Blnl O |
JUe)=| 0  —(s—qE) 0 0 |
B2tz 0 0 —Y1fi3 J
0 0 0 y2ﬁ3 -
Then, it is easy to verify that the eigenvalues of J(I,) satisfy the following relations:
A1+ Ag3 = —%< 0,
Ae1 - Aoz = P17y BoTi3 > 0,
AGZ =_(S_qE) <0,
Aea =V2Mlz — .
That means I, is a locally asymptotical stable point if and only if
YoMz < a. (12)

Otherwise I, is a saddle point.
The Jacobian matrix of the system at the equilibrium point I, = (n4,0,n3,n,) can be written
as:

—(r — Byny) an, —p1ny 0
0 s—qE 0 0
I,) = .
]( 7) ﬁzng 0 0 _y1n3
0 0 U 0

The first root of the characteristic equation of J(I;) is s — qE and the other three roots are
given by:
A3+ A2+ 4,1+ A5 = 0.

Where,
Ay = —(r — Bing),
Ay = y1Yan3ng + B1fonyng,
Az = —y1¥ongng(r — Byng),
A= A1A; — A3 = —B1Bonins(r — Byns).
Now, according to the Routh-Hurwitz criteria [14], all the eigenvalues of J(I;) have roots
with negative real parts, provided that A; > 0,A; >0 and A = A; > 0. Therefore, I, is
locally asymptotically stable, if

s<qE (12)
holds.
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The Jacobian matrix of the system at the equilibrium point Ig = (nj, n3, n3, n;) can be written
as:

[r— 2 Bin; + an; anj —pin 0o |

J(Ug) =| 0 —(s —qE) 0 0 |
Bom 0 0 —nné.J
0 0 Vahy 0
The first root of the characteristic equation of J(Ig) is gE — s and the other three roots are
given by:
B +A422+Br+C=o.
Where,
2rnj
=—[r—( - )—ﬁ1n§+an§] > 0,

A
B = y1y,nin; + Bifoning,
~ * % Zrni * *
C =y1yn3ng (r - pins + anz) > 0,
A= A4, — Az = —f1fonyns(r — Bing) > 0.
Now, according to the Routh-Hurwitz criteria, all the eigenvalues of J(Ig) have roots with
negative real parts, provided that A > 0,C>0 and A;> 0. Therefore, I is locally
asymptotically stable, if
s >qE (13)
hold.
In the following theorem, the global stability condition for the positive equilibrium points is
studied with the help of the Lyapunov method [15].
Theorem (2) Assume that the equilibrium point Ig = (nj, n3,n3,n;) is locally
asymptotically stable in R%. Then it is globally asymptotically stable in R% provided that
a’B,v, rs

B1v1 =4 (kl)' (14)

holds.

Proof: Consider the following positive definite function

n n;
W=c <n1 -n; —n{ln—*> +c, <n2 —n; —nzln—*>
ny n,
+c3 (n3 n; —nzln n’é‘,) +cy (n4 ny —ngln nii)'
where ¢4, ¢, , ¢z and c, are positive constants to be determined.
Now the derivative of W along the trajectory of the system can be written as:

aw _ _”1‘”1) any (_”2‘”§> any (_"3‘"3) ans (_”4‘”3) ang

dt_cl( ny a T C2 ny, J dt tC3 ny J dt T Cy ng J dt’

‘;—V: =c(ng —nj) (r (1 - %) — Bing + anz) + ¢, (n, —nj) (s (1 —%) — qE) +
c3(n3 —n3)(Bong — o — vina) + ca(ng — n3)(yonz — a).

Therefore,

aw _

dt
T N
—C E(nl - ni)z —ca(ng —nj)(n, —n3) — ¢, 7 (n, — "3)2 — (11 — c3B2)(ny —

ny)(nz —n3) — (czy1 — Ca¥2) (3 — n3)(ny — ny).
By choosing the positive constants as:

c=y2—'82'c=ﬁ'c=c=1
! Y1bB1’ ’ Y1’ 2 * .
We get:
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aw TY2p % ay2 B * * s *

@ =~ (g o = n)? = 2 (my = ) (n, - )+ (na - n)?).
aw Y2 B2 * S *

Thus, E < —< —k]/lﬁl (Tll - Tll) - \/; (nZ - nZ)) .

Then ‘;—V: < 0 under the condition (14), hence I is a globally asymptotically stable point in the
R%.
4. Numerical analysis
This section aims to find the system's critical parameters that affect the behaviour of the
proposed system by using numerical simulations. The dynamics of system (1) is obtained by
solving system (1) numerically by using the predictor-corrector method with the six order
Range Kutta method. The time series of the solution of system (1) is drawn using MATLAB
for different sets of parameters. Now, for the following set of parameters:
r=1,k=5a=04p=2,a=04,a=0.2,qE =04,5s =09,l =4,
B, = 1.25,y; = 0.6,y, = 0.54,8, = 1. (15)

30 T T T T T T T

n1
n2
n3
n4

25

Populations
- N
[$,] o

—_
o

L i | | | |
0 500 1000 1500 2000 2500 3000 3500 4000
Time
Figure 1-Dynamics of the four species with the data given by Eqg. (15).

the condition (13) is satisfied. This shows that I exists, and it is given by

(ni,n3,n3,ny) =(3.88, 2.22, 0.74, 4.76). (See Figure 2).

Figure 2 presents the dynamics of the four species with the data given by Eqg. (15) with
a = 0.89. It shows that the condition (11) is satisfied and that I, exists and it is given by
(i, i, iz, 0) = (0.06,2.22,1.58,0).
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Figure 2-Dynamics of the four species with the data given by Eqg. (15) with @ = 0.89.
Figure 3 presents the dynamics of the four species with the data given by Eq. (15) with
qE = 0.91. It shows that the condition (12) is satisfied and that I, exists and it is given by
(ny,0,n3,n,) = (1.66,0,0.74, 2).

30

_n1
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— 4
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time

Figure 3-Dynamics of the four species with the data given by Eqg. (15) with gE=0.91.

5. Discussions and Conclusions

In the proposed model, it is observed different eight equilibrium points at which the system is
stable. The system's stability is determined based on the conditions at which the equilibrium
points of the model equations exist. For example, at the equilibrium point I, only the second
prey could become extinct. Since there is a harvesting effect for the latter, it can stay for a
long time by controlling the parameter gE. This result has been shown in Figure 3. Moreover,
Figure 2 shows the first three species can live together if condition (12) holds. Finally, figure
1 describes the interaction among the fourth species. The fourth species could survive for a
long time when the state (12) is satisfied.

0
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