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Abstract  
       This paper treats the interactions among four population species. The system 

includes one mutuality prey, one harvested prey and two predators. The four species 

interaction can be described as a food chain, where the first prey helps the second 

harvested prey. The first and the second predator attack the first and the second prey, 

respectively, according to Lotka-Volterra type functional responses. The model is 

formulated using differential equations. One equilibrium point of the model is found 

and analysed to reveal a threshold that will allow the coexistence of all species. All 

other equilibrium points of the system are located, with their local and global 

stability being assessed. To back up the conclusions of the mathematical analysis, a 

numerical simulation examination of the model is carried out. The system's 

coexistence can be achieved as long as the harvesting rate of the prey population is 

lower than its intrinsic growth rate. 

 

Keywords: Food chain model, Prey-predator model, Mutual interaction, Harvesting, 

Stability. 
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 الخلاصة 
التفاعلات بين أربعة أنهاع من السكان. يشتمل النظام عمى فريسة متبادلة واحدة  يهدف هذا البحث الى دراسة

واثنان من الحيهانات المفترسة. يمكن وصف تفاعل الأنهاع الأربعة بأنه سمسمة غذائية.  واحدة وفريسة محصهدة
تم العثهر عمى نقطة التهازن لمنمهذج وتحميمها لتكشف عن عتبة تسمح بالتعايش بين جميع الأنهاع. تم حساب 

حميل الرياضي ، تم إجراء لدعم استنتاجات التو  .شاملجميع نقاط التهازن لمنظام وتقييم استقرارها المحمي وال
يمكن تحقيق تعايش النظام طالما أن معدل الحصاد عمى الفريسة أقل لهحظ بأنه فحص محاكاة رقمي لمنمهذج. 

 .من معدل النمه الداخمي
1. Introduction 

   Ecosystems are the result of interactions between the environment and communities. In an 

ecosystem, a food chain plays a vital role in guaranteeing the stability of the populations [1]. 

The best method to understand the dynamics and behaviour of ecological interactions between 

prey and predator populations is to utilise a

mathematical model. A simple model of prey-predator interactions was separately proposed 

by Lotka and Volterra, but the model is now known as the Lotka – Volterra model [2,3]. In 
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[4], the first simple mathematical model of two prey and one predator has been investigated 

and analysed in terms of predicting their dynamics. Subsequently, some researchers have 

studied numerous properties, such as coexistence, persistence, stability and extinction [5- 8]. 

In [9], it has been used Holling type-I functional response in a system consisting of two prey-

one predators. The authors [10,11] explored the difficulties in the dynamic behaviour of two 

prey-one predator systems following the Holling type II functional response with an influence 

impulsive. In [12], it was analysed the local and global stability of the prey-predator model 

including Holling type I functional response and the implications of group help. Further, in 

[13], it has been considered the interaction between two mutualistic prey and a predator 

population. In addition, the proportional harvesting function is taken into account in his model 

when these species interact. The stability of his model has been established for the positive 

equilibrium point. 

In this paper, we consider the interaction among four populations: two prey and two 

predators. The first prey is assumed to help the second, whilst the latter is harvested. The first 

predator can attack the first prey, while the second predator (top predator) can only attack the 

first predator, according to the type I functional response. 

The rest of this paper is orginsed as follows: In section two, the existence of the equilibrium 

points for the proposed model has been investigated. In section three, the stability of the 

possible equilibrium point has been analysed. Finally, in the last section, some numerical 

analyses have been provided to confirm our analytical result. 

1. Assumptions of the Model 

Suppose a food chain contains the following species: prey, a predator and a top predator, with 

the mathematics beings based on the following assumptions.   ( ) is the density of the first 

prey (the first species in the food chain),   ( ) is the density of the second harvested prey, 

which has a positive effect on the first prey, whilst   ( ) and   ( ) are the densities of the 

predator and top predator species, respectively.  

Under the above assumptions, the model can be presented by the following system of 

differential equations:   

            
   

  
    .  

  

 
/                     (           ), 

            
   

  
    .  

  

 
/            (           ),                             

   

  
                        (           ), 

   

  
                (           ). 

Here, model (1) has been analysed with the initial conditions   ( )      ( )    
  ( )    and   ( )   .  (  )       and  (  )       are the Lotka-Volterra type of 

functional responses. All parameters of the system (1) are assumed to be positive and 

described as: 

The parameters   and   are the carrying capacities of the first and second prey, respectively, 

with intrinsic growth rates r and s;   is the positive effect on the first prey by the second prey; 

 and   are the effort and the catchability rate applied on the second prey, i.e.,    represents 

the harvesting rate of the second prey;    and   are the attack rate coefficient of the first prey 

and first predator species due to the first predator and top predator, respectively;     and   

represent the first and the second predator’s natural death rate, respectively.  
Apparently, the functions on the right-hand side of system (1) are continuously differentiable 

functions on   
  *(           )                    +. Therefore, there exists a 

unique solution for system (1). And hence, they are Lipschitzian. Further, all solutions of the 

system (1) with any non-negative initial conditions are bounded, as shown in the following 

section. 
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Theorem (1) All solutions   ( )   ( )   ( ) and   ( ) of the system (1) with the initial 

conditions (           ) are uniformly bounded if the following conditions (       ) 
and (       ) hold. 

Proof: -   Let (  ( )   ( )   ( )   ( )) be an arbitrary solution of the system (1) with a 

non-negative initial condition. Then for  ( )    ( )     ( )     ( )     ( )  we have  
  

  
  
   
  

  
   
  

  
   
  

  
   
  

 

  

  
      

   
 

 
 (     )                 

   
 

 
            (   

   )          . 
Hence, according to the assumptions of the theorem, the following is obtained: 

 
  

  
     

   
 

 
              

   
 

 
                . 

  

  
              

   
 

 
             

   
 

 
    

Where   = min. *           +. Then,  
  

  
                        

Applying Gronwall’s Inequality [6], the following is obtained: 

   (  ( )   ( )   ( )   ( ))    
 

 
 (      )   ( )     

hence,  

     
   

     ( )   
 

 
   

Therefore, all the solutions of the system (4.1) that are initiated in   
  are attracted to the 

region    {(           )     
                

 

 
} under the given 

conditions. Thus, these solutions are uniformly bounded, and the proof is complete.   ■ 

2. Existence of equilibria     

   The harvested food chain prey-predator model with a mutual interaction given by the 

system (1) has eight non-negative equilibrium points, namely: 

(1)  The vanishing equilibrium point    (       ), always exists. 

(2)  The first prey equilibrium point    (       ), always exists. 

(3)  The second prey equilibrium point    .  
 

 
(    )    /, exists when 

                                                               .                                                              (2) 

(4)  The first two species equilibrium point    ( ̅   ̅     ), where  ̅  
 

 
,    ̅ - 

     ̅  
 

 
(    ), exists when 

                                                  .                                                              (3) 

(5)  The first and third species equilibrium point    ( ̈     ̈   ), where  ̈  
  

  
  and 

 ̈   .
      

     
/, exists when 

                                                  .                                                             (4) 

(6) The first three species equilibrium point    ( ̂   ̂   ̂   ), here  ̂  
  

  
,  ̂  

 

 
(    ) and  ̂  

   (      )      (    )

      
, which exists when 

                                  (    )    (      ).                                       (5) 

(7) The second free species equilibrium point    (          ), 
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here    
 

 
.
       

  
/,    

 

  
 and    

(       )         

     
, which exists when  

                                  (       )       .                                                (6) 

(8) The positive equilibrium point    (  
    

    
    

 ), here 

  
  

 ,  (      )     (    )-

    
,  
  

 

 
(    ),   

  
 

  
 and   

  
    

    

  
, which exists when 

                         (    )    (      ) and     
    .                         (7) 

3. The stability analysis  

    In this section, the conditions to guarantee the local behaviour of system (1) around each of 

the above equilibrium points are found. First, the Jacobian matrix of the system (1) at each 

point is determined, and then, the eigenvalues of the resulting matrix are computed. 

The Jacobian matrix of the system (1) at the vanishing fixed point    (       ) can be 

written as: 

 (  )  [

           
               
 
 

 
 

   
 

   
 
  

]  

Then, the eigenvalues of  (  ) are given by                         and 

      . That means    (       ) is a saddle point in   
 . 

The Jacobian matrix of the system at    ( ̃       ) can be written as: 

 (  )  [

               
                     
 
 

 
 

      
 

 
  

]  

Then, the eigenvalues of  (  ) are given by       ,         ,            and 

      . That means    is a locally asymptotical stable point if and only if  

                                                     and       .                                                 (8) 

Otherwise    is a saddle point. 

The Jacobian matrix of the system at    (   ̇     ) can be written as: 

 (  )  [

    ̇                 
  (    )              
 
 

 
 

   
 

  
    
  

]  

Then, the eigenvalues of  (  ) are given by         ̇   ,      (    ),     
    and       . That means    is a saddle point. 

The Jacobian matrix of the system at    ( ̅   ̅     ) can be written as: 

 

 (  )  [

 (    ̅ )   ̅     ̅          

  (    )                      
 
 

 
 

   ̅    
 

  
  
  

]  

Then, the eigenvalues of  (  ) are given by      (    ̅ )   ,      (    ), 
       ̅     and        . That means    is a locally asymptotical stable point if and 

only if    

                                                              ̅    .                                                                    (9) 

Otherwise    ( ̅   ̅     ) is a saddle point. 

The Jacobian matrix of the system at    ( ̈     ̈   )  can be written as: 



Hussan and Jawad                                   Iraqi Journal of Science, 2022, Vol. 63, No. 6, pp: 2641-2649 
 

2462 

 (  )  

[
 
 
 
  
  ̈ 
 

  ̈     ̈          

                          

   ̈ 
 

 
 

           
 
 

  
    ̈ 
   ̈   ]

 
 
 
 

  

Then, it is easy to verify that the eigenvalues of  (  ) satisfy the following relations: 

        
   ̈ 

 
   ,     

           ̈    ̈          

          ,        

       ̈   .        

That means    is a locally asymptotical stable point fixed point when 

                                                               ̈   .                                                                 (10) 

Otherwise    is a saddle point. 

The Jacobian matrix of the system at the equilibrium point    ( ̂   ̂   ̂   ) can be written 

as: 

 (  )  

[
 
 
 
  
  ̂ 
 

  ̂     ̂          

  (    )                      

   ̂ 
 

 
 

           
 
 

  
    ̂ 
   ̂   ]

 
 
 
 

 

Then, it is easy to verify that the eigenvalues of  (  ) satisfy the following relations: 

         
  ̂ 

 
  ,         

           ̂    ̂    ,     

     (    )    ,      

       ̂    .        

That means    is a locally asymptotical stable point if and only if 

                                                                  ̂   .                                                    (11) 

Otherwise    is a saddle point. 

The Jacobian matrix of the system at the equilibrium point    (          ) can be written 

as: 

 (  )  [

 (      )                  
                          
    
 

 
 

           
 
    

  
         

 

]  

The first root of the characteristic equation of  (  ) is      and the other three roots are 

given by: 

  
     

            
Where,  

    (      )  
                      
            (      ), 
                    (      )  
Now, according to the Routh-Hurwitz criteria [14], all the eigenvalues of  (  ) have roots 

with negative real parts, provided that           and       . Therefore,    is 
locally asymptotically stable, if  

                                                                                                                                           (12) 
holds. 
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The Jacobian matrix of the system at the equilibrium point    (  
    

    
    

 ) can be written 

as: 

 (  )  

[
 
 
 
   

    
 

 
     

     
    

      
          

  (    )                      

    
 

 
 
 

           
 
    

   
         

 

 ]
 
 
 
 

. 

The first root of the characteristic equation of  (  ) is      and the other three roots are 

given by: 

    ̂    ̂   ̂   . 

Where,  

 ̂   [  (
    

 

 
)      

     
 ]     

 ̂        
   
        

   
   

 ̂        
   
 .  

    
 

 
     

     
 /   , 

                     (      )     
Now, according to the Routh-Hurwitz criteria, all the eigenvalues of  (  ) have roots with 

negative real parts, provided that  ̂     ̂    and     . Therefore,    is locally 
asymptotically stable, if 

                                                                                                                                           (13) 
hold. 
In the following theorem, the global stability condition for the positive equilibrium points is 

studied with the help of the Lyapunov method [15]. 

Theorem (2) Assume that the equilibrium point    (  
    

    
    

 ) is locally 

asymptotically stable in   
 . Then it is globally asymptotically stable in   

  provided that 

                                                    
      

    
  .

  

  
/                                                 (14) 

holds. 

Proof: Consider the following positive definite function 

    (     
    

   
  
  
 )    (     

    
   

  
  
 )  

      .     
    

   
  

  
 /    .     

    
   

  

  
 /,   

where   ,    ,    and    are positive constants to be determined.  

Now the derivative of   along the trajectory of the system can be written as: 

 
  

  
   .

     
 

  
/
   

  
   .

     
 

  
/
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/
   

  
    .

     
 

  
/
   

  
       

  

  
   (     

 ) . .  
  

 
/          /     (     

 ) . .  
  

 
/    /  

             (     
 )(            )    (     

 )(      )   
Therefore, 
  

  
 

   
 

 
(     

 )     (     
 )(     

 )    
 

 
(     

 )  (                    )(   

  
 )(     

 )  (         )(     
 )(     

 ). 
By choosing the positive constants as: 

   
    
    

      
  
  
             

We get: 
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  .

     

     
(     

 )  
     

    
(     

 )(     
 )  

 

 
(     

 ) /. 

Thus, 
  

  
    (√

     

     
(     

 )   √
 

 
(     

 ))

 

.     

Then 
  

  
   under the condition (14), hence    is a globally asymptotically stable point in the 

  
 .                                                                                                                                     

4. Numerical analysis 

This section aims to find the system's critical parameters that affect the behaviour of the 

proposed system by using numerical simulations. The dynamics of system (1) is obtained by 

solving system (1) numerically by using the predictor-corrector method with the six order 

Range Kutta method. The time series of the solution of system (1) is drawn using MATLAB  

for different sets of parameters. Now, for the following set of parameters: 

                                                  
                                                                                                             (15) 

 
Figure 1-Dynamics of the four species with the data given by Eq. (15). 

 

the condition (13) is satisfied. This shows that    exists, and it is given by  
(  
    

    
    

 ) = (3.88, 2.22, 0.74, 4.76). (See Figure 2). 

Figure 2 presents the dynamics of the four species with the data given by Eq. (15) with 

      . It shows that the condition (11) is satisfied and that    exists and it is given by 

( ̂   ̂   ̂   )  (                )  
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Figure 2-Dynamics of the four species with the data given by Eq. (15) with         
Figure 3 presents the dynamics of the four species with the data given by Eq. (15) with 

       . It shows that the condition (12) is satisfied and that    exists and it is given by 

(          )  (             )  

 
Figure 3-Dynamics of the four species with the data given by Eq. (15) with qE=0.91. 

5. Discussions and Conclusions 

In the proposed model, it is observed different eight equilibrium points at which the system is 

stable. The system's stability is determined based on the conditions at which the equilibrium 

points of the model equations exist. For example, at the equilibrium point    only the second 

prey could become extinct. Since there is a harvesting effect for the latter, it can stay for a 

long time by controlling the parameter qE. This result has been shown in Figure 3. Moreover, 

Figure 2 shows the first three species can live together if condition (12) holds. Finally,  figure 

1 describes the interaction among the fourth species. The fourth species could survive for a 

long time when the state (12) is satisfied. 
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