

On Soft LC-Spaces and Weak Forms of Soft LC-Spaces

Sabiha I. Mahmood

Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

Abstract

The main purpose of this article is to study the soft LC-spaces as soft spaces in which every soft Lindelöf subset of \tilde{U} is soft closed. Also, we study the weak forms of soft LC-spaces and we discussed their relationships with soft LC-spaces as well as among themselves.

Keywords: Soft F_{σ} -closed set, soft compact space, soft Lindelöf space, soft LC-space, soft L_i -space, i = 1,2,3,4, soft KC-space, and soft P-space.

حول فضاءات -LC الميسرة والصيغ الضعيفة لفضاءات -LC الميسرة

صبيحة ابراهيم محمود

قسم الرياضيات، كلية العلوم، الجامعة المستنصرية، بغداد، العراق

الخلاصة

الهدف من هذة المقالة هو دراسة فضاءات -LC الميسرة وهي الفضاءات الميسرة التي فيها كل مجموعة جزئية لندلوف ميسرة مغلقة ميسرة. كذلك درسنا الصيغ الضعيفة لفضاءات-LC الميسرة وناقشنا علاقاتهم مع فضاءات -LC الميسرة كذلك علاقاتهم مع بعضهم.

Introduction

Molodtsov [1] in 1999 introduced and studied soft set theory as a new mathematical tool for dealing with uncertainty while modeling problems in medical sciences, economics, computer science, engineering physics and social sciences. Shabir and Naz [2] in 2011 investigated the notion of soft topological spaces over an initial universe set with a fixed set of parameters. Molodtsov and et. al. [3] in 2006 and Rong [4] in 2012 introduced and studied soft compact spaces and soft Lindelöf spaces respectively. The main purpose of this paper is to introduce and study a new type of soft spaces called soft LC-spaces and we show that a soft topological space $(U, \tilde{\tau}, P)$ is a soft LC-space if and only if each soft point in \tilde{U} has a soft closed neighborhood that is a soft LC-space. Moreover we discussed weak forms of soft LC-spaces such as soft L_1 -spaces, soft L_2 -spaces, soft L_3 -spaces and soft L_4 -spaces. The characteristics of these soft spaces and the relation among them also have been studied.

1. Preliminaries:

In this paper P is the set of parameters, U is an initial universe set, P(U) is the power set of U, and $A \subset P$.

Definition (1.1) [1]: A soft set over U is a pair (H,A), where H is a function defined by $H: A \rightarrow P(U)$ and A is a non-empty subset of P.

Definition (1.2)[5]: A soft set (H,A) over U is called a soft point if there is $e \in A$ such that $H(e) = \{u\}$ for some $u \in U$ and $H(e') = \varphi$, $\forall e' \in A \setminus \{e\}$ and is denoted by $\widetilde{u} = (e, \{u\})$.

^{*}Email: ssabihaa@uomustansiriyah.edu.iq

Definition (1.3)[5]: A soft point $\tilde{u} = (e, \{u\})$ is called belongs to a soft set (H, A) if $e \in A$ and $u \in H(e)$, and is denoted by $\tilde{u} \in (H, A)$.

Definition (1.4)[2]: A soft topology on U is a family $\tilde{\tau}$ of soft subsets of \tilde{U} having the following properties:

(i) $\widetilde{U} \in \widetilde{\tau}$ and $\widetilde{\varphi} \in \widetilde{\tau}$.

$$\textbf{(ii)} \ \mathrm{lf} \ (\mathrm{H}_1,\mathrm{P}),\!(\mathrm{H}_2,\mathrm{P}) \,\widetilde{\in} \, \widetilde{\tau} \quad \Rightarrow \ (\mathrm{H}_1,\mathrm{P}) \,\widetilde{\cap} \, (\mathrm{H}_2,\mathrm{P}) \,\widetilde{\in} \, \widetilde{\tau} \, .$$

$$\textbf{(iii)} \ \mathrm{If} \ (\mathrm{H}_{j}, \mathrm{P}) \, \widetilde{\in} \, \widetilde{\tau} \,, \forall \, j \, \in \, \Omega \ \Rightarrow \ \bigcup_{j \in \Omega} (\mathrm{H}_{j}, \mathrm{P}) \, \widetilde{\in} \, \widetilde{\tau} \,.$$

The triple $(U, \tilde{\tau}, P)$ is called a soft topological space. The members of $\tilde{\tau}$ are called soft open sets over U. The complement of a soft open set is called soft closed.

Definition (1.5) [6]: Let $(U, \tilde{\tau}, P)$ be a soft topological space and $(H, P) \subseteq \tilde{U}$. Then the soft closure of (H, P), denoted by cl((H, P)) is the intersection of all soft closed sets in \tilde{U} which contains (H, P).

Definition (1.6)[2]: If $(U, \tilde{\tau}, P)$ is a soft topological space and $\tilde{\phi} \neq (Y, P) \subseteq \tilde{U}$. The family $\tilde{\tau}_{(Y,P)} = \{(V,P) \cap (Y,P) : (V,P) \in \tilde{\tau}\}$ is called the relative soft topology on (Y,P) and $((Y,P),\tilde{\tau}_{(Y,P)},P)$ is called a soft subspace of $(U,\tilde{\tau},P)$.

Definition (1.7)[7]: A soft topological space $(U, \tilde{\tau}, P)$ is called a soft \tilde{T}_1 -space if for any two distinct soft points \tilde{x} and \tilde{y} of \tilde{U} , there exists a soft open set in \tilde{U} containing \tilde{x} but not \tilde{y} and a soft open set in \tilde{U} containing \tilde{y} but not \tilde{x} .

Theorem (1.8)[7]: A soft topological space $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_1 -space if and only if each soft point in \tilde{U} is soft closed.

Definition (1.9)[7]: A soft topological space $(U, \tilde{\tau}, P)$ is called a soft \tilde{T}_2 -space if for any two distinct soft points \tilde{x} and \tilde{y} of \tilde{U} , there are two soft open sets (H,P) and (K,P) in \tilde{U} such that $\tilde{x} \in (H,P), \tilde{y} \in (K,P)$, and $(H,P) \cap (K,P) = \tilde{\phi}$.

Definition (1.10)[7]: A soft topological space $(U, \tilde{\tau}, P)$ is called a soft regular space if for any soft closed set (F, P) in \tilde{U} and any soft point \tilde{x} in \tilde{U} such that $\tilde{x} \notin (F, P)$ there exists two soft open sets (H, P) and (K, P) in \tilde{U} such that $\tilde{x} \in (H, P), (F, P) \subset (K, P)$ and $(H, P) \cap (K, P) = \tilde{\phi}$.

Definition (1.11)[3]: A soft topological space $(U, \tilde{\tau}, P)$ is called soft compact if every soft open cover of \tilde{U} has a finite soft subcover.

Theorem (1.12)[8]: A soft closed subset of a soft compact space is soft compact.

Theorem (1.13)[9]: A soft compact set in a soft \widetilde{T}_2 -space is soft closed.

Definition (1.14)[4]: A soft topological space $(U, \tilde{\tau}, P)$ is called soft Lindelöf if every soft open cover of \tilde{U} has a countable soft subcover.

Theorem (1.15)[8]: A soft closed subset of a soft Lindelöf space is soft Lindelöf.

2. Soft LC-Spaces and Weak Forms of Soft LC-Spaces

Now, we introduce and study new types of soft spaces called soft LC-spaces also, we study weak forms of soft LC-spaces such as soft L_1 -spaces, soft L_2 -spaces, soft L_3 -spaces and soft L_4 -spaces. Further we discussed the equivalent definitions of these soft spaces and the relation among them.

Definition (2.1): A soft topological space $(U, \tilde{\tau}, P)$ is called a soft LC-space if every soft Lindelöf subset of \tilde{U} is soft closed.

Definition (2.2): A soft subset (F,P) of a soft topological space $(U, \tilde{\tau}, P)$ is called soft F_{σ} -closed if it is the soft union of a countable soft closed sets.

Definition (2.3): A soft topological space $(U, \tilde{\tau}, P)$ is called a soft P-space if every soft F_{σ} -closed set in \tilde{U} is soft closed.

Definition (2.4): A soft topological space $(U, \tilde{\tau}, P)$ is called:

- (i) A soft L_1 -space if every soft Lindelöf F_σ -closed set in \widetilde{U} is a soft closed set.
- (ii) A soft L_2 -space if cl((L,P)) is soft Lindelöf whenever (L,P) is a soft Lindelöf set in \widetilde{U} .
- (iii) A soft L_3 -space if every soft Lindelöf set in \tilde{U} is a soft F_{σ} -closed set.
- (iv) A soft L_4 -space if whenever (L,P) is a soft Lindelöf set in \widetilde{U} , then there is a soft Lindelöf F_{σ} -closed set (F,P) in \widetilde{U} such that $(L,P) \subseteq cl((L,P))$.

Theorem (2.5):

- (i) If $(U, \tilde{\tau}, P)$ is a soft LC -space, then $(U, \tilde{\tau}, P)$ is a soft L_i -space, i = 1, 2, 3, 4.
- (ii) If $(U, \tilde{\tau}, P)$ is a soft L_1 -space and a soft L_3 -space, then $(U, \tilde{\tau}, P)$ is a soft LC-space.
- (iii) If $(U, \tilde{\tau}, P)$ is a soft L_1 -space and a soft L_4 -space, then $(U, \tilde{\tau}, P)$ is a soft L_2 -space.
- (iv) Every soft L_2 -space is a soft L_4 -space and every soft L_3 -space is a soft L_4 -space.
- (v) Every soft L_3 -space is a soft \widetilde{T}_1 -space.
- (vi) Every soft Lindelöf space is a soft L_2 -space and every soft L_2 -space having a soft dense Lindelöf set is soft Lindelöf.
- (vii) The property soft L_3 is soft hereditary and the properties L_1, L_2 and L_4 are soft hereditary on a soft F_{σ} -closed set.
- (viii) The property soft LC-space is soft hereditary.
- (ix) Every soft P-space is a soft L_1 -space.

Proof: (i) It is obvious.

- (ii) Let (L,P) be a soft Lindelöf set in \widetilde{U} , since $(U,\widetilde{\tau},P)$ is a soft L_3 -space, then (L,P) is soft F_{σ} -closed, but $(U,\widetilde{\tau},P)$ is a soft L_1 -space, then (L,P) is a soft closed set in \widetilde{U} . Thus $(U,\widetilde{\tau},P)$ is a soft LC-space.
- (iii) Let (L,P) be a soft Lindelöf set in \widetilde{U} , since $(U,\widetilde{\tau},P)$ is a soft L_4 -space, then there is a soft Lindelöf F_{σ} -closed set (F,P) in \widetilde{U} such that $(L,P) \subseteq cl((L,P))$. Since $(U,\widetilde{\tau},P)$ is a soft L_1 -space, then (F,P) is soft closed. Hence $cl((L,P)) \subseteq cl((L,P))$, thus cl((L,P)) = (F,P) is a soft Lindelöf set in \widetilde{U} . Therefore $(U,\widetilde{\tau},P)$ is a soft L_2 -space.
- (iv) Let (L,P) be a soft Lindelöf set in \widetilde{U} , since $(U,\widetilde{\tau},P)$ is a soft L_2 -space, then cl((L,P)) is soft Lindelöf. Hence $(L,P) \subseteq cl((L,P)) \subseteq cl((L,P))$. Since cl((L,P)) is soft closed, then there is (F,P) = cl((L,P)) is a soft Lindelöf F_{σ} -closed set in \widetilde{U} such that $(L,P) \subseteq cl((L,P))$. Therefore $(U,\widetilde{\tau},P)$ is a soft L_4 -space. Similarly, we can prove $(U,\widetilde{\tau},P)$ is a soft L_4 -space, if $(U,\widetilde{\tau},P)$ is a soft L_3 -space.
- (v) Since $\{\widetilde{x}\}$ is a soft Lindelöf set and $(U, \widetilde{\tau}, P)$ is a soft L_3 -space, then $\{\widetilde{x}\}$ is a soft F_{σ} -closed set. Therefore $\{\widetilde{x}\}$ is soft closed. Thus $(U, \widetilde{\tau}, P)$ is a soft \widetilde{T}_1 -space.

(vi) Let (L, P) be a soft Lindelöf set in U, since cl((L, P)) is soft closed in $(U, \tilde{\tau}, P)$ which is a soft Lindelöf space, then by theorem (1.15), cl((L, P)) is soft Lindelöf in \tilde{U} . Thus $(U, \tilde{\tau}, P)$ is a soft L_2 space. Also, if $(U, \tilde{\tau}, P)$ is a soft L_2 -space having a soft dense Lindelöf set (L, P), then cl((L, P)) =U. Since $(U, \tilde{\tau}, P)$ is a soft L_2 -space, then $(U, \tilde{\tau}, P)$ is soft Lindelöf.

(vii) Let $(U, \tilde{\tau}, P)$ be a soft L_1 -space and $(Y, \tilde{\tau}_Y, P)$ be a soft F_{σ} -closed subspace of $(U, \tilde{\tau}, P)$. To prove that $(Y, \tilde{\tau}_Y, P)$ is a soft L_1 -space. Let (A, P) be a soft Lindelöf F_{σ} -closed set in \widetilde{Y} . Since $\widetilde{Y} \overset{\sim}{\subseteq} \widetilde{U} \text{ , then } (A,P) \text{ is soft Lindel\"of in } \widetilde{U} \text{ and } (A,P) = \bigcup (F'_n,P) \text{ , where } (F'_n,P) \text{ is soft closed in } \widetilde{Y} \text{ ,}$

$$\begin{split} \forall \ n \in N \text{ , thus } (A,P) &= \bigcup_{n \in N} (\widetilde{Y} \, \widetilde{\cap} \, (F_n,P)) = \widetilde{Y} \, \widetilde{\cap} \, (\bigcup_{n \in N} (F_n,P)) \text{ , Where } (F_n,P) \text{ is soft closed in } \widetilde{U} \text{ ,} \\ \forall \ n \in N \text{ . Since } \widetilde{Y} \text{ is a soft } F_{\sigma}\text{-closed set in } \widetilde{U} \text{ , then } \widetilde{Y} &= \bigcup (G_m,P) \text{ , where } (G_m,P) \text{ is soft closed } \end{split}$$

$$\text{in }\widetilde{\mathrm{U}}\,,\forall\,\,m\in\mathrm{N}\,.\,\text{Hence }(\mathrm{A},\mathrm{P})=(\bigcup_{\mathrm{m}\in\mathrm{N}}(\mathrm{G}_{\mathrm{m}},\mathrm{P}))\overset{\sim}{\cap}(\bigcup_{\mathrm{n}\in\mathrm{N}}(\mathrm{F}_{\mathrm{n}},\mathrm{P}))=\bigcup_{\mathrm{n},\mathrm{m}\in\mathrm{N}}((\mathrm{G}_{\mathrm{m}},\mathrm{P})\overset{\sim}{\cap}(\mathrm{F}_{\mathrm{n}},\mathrm{P})),\,\text{but}$$

 $(G_m,P) \cap (F_n,P)$ is soft closed in \widetilde{U} , thus (A,P) is a soft union of a countable soft closed sets in \widetilde{U} , hence (A,P) is a soft F_{σ} -closed set in \widetilde{U} . Since $(U,\widetilde{\tau},P)$ is a soft L_1 -space, then (A,P) is soft $\text{closed in }\widetilde{\mathbf{U}} \Rightarrow (\mathbf{A},\mathbf{P}) = \widetilde{\mathbf{Y}} \, \widetilde{\cap} \, (\mathbf{A},\mathbf{P}) = \widetilde{\mathbf{Y}} \, \widetilde{\cap} \, (\bigcup_{n,m \in \mathbb{N}} ((\mathbf{G}_m,\mathbf{P}) \, \widetilde{\cap} \, (\mathbf{F}_n,\mathbf{P}))) = \bigcup_{n,m \in \mathbb{N}} [\widetilde{\mathbf{Y}} \, \widetilde{\cap} \, ((\mathbf{G}_m,\mathbf{P}) \, \widetilde{\cap} \, (\mathbf{F}_n,\mathbf{P}))]$

is soft closed in \tilde{Y} . Therefore $(Y, \tilde{\tau}_Y, P)$ is a soft L_1 -space. Similarly, we can prove other cases. (viii) It is obvious.

(ix) It is obvious.

Theorem (2.6): A soft topological space $(U, \tilde{\tau}, P)$ is a soft LC-space if and only if each soft point in U has a soft closed neighborhood that is a soft LC-subspace.

Proof: If $(U, \tilde{\tau}, P)$ is a soft LC-space, then for each $\tilde{x} \in \tilde{U}, \tilde{U}$ itself is a soft closed neighborhood that is a soft LC-space. Conversely, let (L,P) be a soft Lindelöf set in \widetilde{U} and let $\widetilde{x} \notin (L,P)$. Choose a soft closed neighborhood $(W,P)_{\widetilde{x}}$ of \widetilde{x} such that $((W,P)_{\widetilde{x}},\widetilde{\tau}_{(W,p)_{\widetilde{y}}},P)$ is a soft LC-subspace. Then $(W,P)_{\widetilde{X}} \overset{\sim}{\cap} (L,P) \quad \text{is soft Lindel\"of in the soft subspace} \quad ((W,P)_{\widetilde{X}},\widetilde{\tau}_{(W,p)_{\widetilde{X}}},P) \,. \quad \text{Since } (W,P)_{\widetilde{X}} \overset{\sim}{\cap} (L,P) \quad \text{is soft Lindel\"of in the soft subspace} \quad ((W,P)_{\widetilde{X}},\widetilde{\tau}_{(W,p)_{\widetilde{X}}},P) \,. \quad \text{Since } (W,P)_{\widetilde{X}} \overset{\sim}{\cap} (L,P) \quad \text{is soft Lindel\"of in the soft subspace} \quad ((W,P)_{\widetilde{X}},\widetilde{\tau}_{(W,p)_{\widetilde{X}}},P) \,. \quad \text{Since } (W,P)_{\widetilde{X}} \overset{\sim}{\cap} (L,P) \quad \text{is soft Lindel\"of in the soft subspace} \quad ((W,P)_{\widetilde{X}},\widetilde{\tau}_{(W,p)_{\widetilde{X}}},P) \,. \quad \text{Since } (W,P)_{\widetilde{X}} \overset{\sim}{\cap} (L,P) \quad \text{is soft Lindel\"of in the soft subspace} \quad ((W,P)_{\widetilde{X}},\widetilde{\tau}_{(W,p)_{\widetilde{X}}},P) \,. \quad \text{Since } (W,P)_{\widetilde{X}} \overset{\sim}{\cap} (L,P) \quad \text{is soft Lindel\"of in the soft subspace} \quad ((W,P)_{\widetilde{X}},\widetilde{\tau}_{(W,p)_{\widetilde{X}}},P) \,. \quad \text{Since } (W,P)_{\widetilde{X}} \overset{\sim}{\cap} (L,P) \quad \text{Since } (W,P)_{$ $((W,P)_{\widetilde{X}},\widetilde{\tau}_{(W,p)_{\widetilde{x}}},P)$ is a soft LC-space, therefore $(W,P)_{\widetilde{X}} \cap (L,P)$ is soft closed in $((W,P)_{\widetilde{X}},\widetilde{\tau}_{(W,p)_{\widetilde{x}}},P)$ also soft closed $(U, \tilde{\tau}, P)$. and Hence $(W,P)_{\widetilde{x}} - (W,P)_{\widetilde{x}} \cap (L,P) = (W,P)_{\widetilde{x}} - (L,P)$ is soft open neighborhood of \widetilde{x} in $(W,P)_{\widetilde{x}}$ soft disjoint from (L,P), that is (L,P) is soft closed in $(W,P)_{\widetilde{X}}$. Thus (L,P) is soft closed in $(U,\widetilde{\tau},P)$.

Definition (2.7): A soft topological space $(U, \tilde{\tau}, P)$ is called a soft Q-set space if each soft subset of U is a soft F_{σ} -closed set.

Definition (2.8): A soft topological space $(U, \tilde{\tau}, P)$ is called a soft hereditarily Lindelöf if each soft subspace of \tilde{U} is soft Lindelöf.

Proposition (2.9):(i) Every soft Q-set space is a soft L_3 -space.

(ii) Every soft hereditarily Lindelöf L_3 -space is a soft Q-set space.

Proof: (i) Let (L, E) be a soft Lindelöf set in \widetilde{U} , since $(U, \widetilde{\tau}, P)$ is a soft Q-set space, then (L, P) is a soft F_{σ} -closed set. Thus $(U, \tilde{\tau}, P)$ is a soft L_3 -space.

(ii) Let (L,P) be a soft subset of \tilde{U} , since $(U,\tilde{\tau},P)$ is a soft hereditarily Lindelöf, then (L,P) is a soft Lindelöf set in $(U, \tilde{\tau}, P)$ which is a soft L_3 -space, then (L, P) is a soft F_{σ} -closed set in \tilde{U} . Hence

 $(U, \tilde{\tau}, P)$ is a soft Q-set space.

Corollary (2.10):(i) Every soft Q-set space is a soft \tilde{T}_1 -space.

- (ii) Every soft hereditarily Lindelöf LC-space is a soft Q-set space.
- (iii) Every soft L_1Q -set space is a soft LC-space.
- (iv) Every soft L_3 P-space is a soft LC-space.
- (v) Every soft P Q-set space is a soft LC-space.

Proof: (i) If $(U, \tilde{\tau}, P)$ is a soft Q-set space, then by proposition $((2.9),(i)), (U, \tilde{\tau}, P)$ is a soft L_3 -space, hence $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_1 -space by theorem ((2.5), (v)).

- (ii) Since $(U, \tilde{\tau}, P)$ is a soft LC-space, then by theorem (2.5),(i)), $(U, \tilde{\tau}, P)$ is a soft L₃-space, but $(U, \tilde{\tau}, P)$ is a soft hereditarily Lindelöf, then by proposition ((2.9),(ii)), $(U, \tilde{\tau}, P)$ is a soft Q-set space.
- (iii) Since $(U, \tilde{\tau}, P)$ is a soft Q-set space, then by proposition $((2.9),(i)), (U, \tilde{\tau}, P)$ is a soft L_3 -space, since $(U, \tilde{\tau}, P)$ is a soft L_1 -space, then $(U, \tilde{\tau}, P)$ is a soft LC-space by theorem (2.5),(ii). (iv) It is obvious.
- (v) If (L,P) is a soft Lindelöf set in $(U,\tilde{\tau},P)$ which is a soft Q-set space, then (L,P) is a soft F_{σ} -closed set, but $(U,\tilde{\tau},P)$ is a soft P-space, so (L,P) is a soft closed set. Hence $(U,\tilde{\tau},P)$ is a soft LC-space.

Corollary (2.11): Every soft L_i Q-set space is soft hereditary, i = 1,2,4.

Proof: This is obvious by theorem ((2.5), (vii)) and definition (2.7).

Corollary (2.12): For a soft hereditarily Lindelöf P-space $(U, \tilde{\tau}, P)$ the following statements are equivalent:

- (i) $(U, \tilde{\tau}, P)$ is a soft LC-space.
- (ii) $(U, \tilde{\tau}, P)$ is a soft Q-set space.

Proof: (i) \rightarrow (ii): This is obvious by proposition ((2.9),(ii)).

(ii) \rightarrow (i): This is obvious by corollary ((2.10),v).

Definition (2.13): A soft topological space $(U, \tilde{\tau}, P)$ is called a soft KC-space if every soft compact subset of \tilde{U} is soft closed.

Proposition (2.14):

- (i) Every soft \tilde{T}_2 -space is a soft KC-space.
- (ii) Every soft KC-space is a soft \tilde{T}_1 -space.

Proof: It is obvious.

Proposition (2.15):

- (i) Every soft LC-space is a soft KC-space.
- (ii) Every soft LC-space is a soft \tilde{T}_1 -space.

Proof: It is obvious.

Theorem (2.16): Every soft \tilde{T}_2 P-space $(U, \tilde{\tau}, P)$ is a soft LC-space.

Proof: Let (L,P) be a soft Lindelöf set in \widetilde{U} . To prove that (L,P) is soft closed in \widetilde{U} . Let $\widetilde{x} \in (L,P)^c \Rightarrow \forall \ \widetilde{y} \in (L,P)$, we get $\widetilde{x} \neq \widetilde{y}$, since $(U,\widetilde{\tau},P)$ is a soft \widetilde{T}_2 -space, then $\exists (H,P)_{\widetilde{x}}$ and $(K,P)_{\widetilde{y}}$ are soft open sets in \widetilde{U} such that $\widetilde{x} \in (H,P)_{\widetilde{x}}$, $\widetilde{y} \in (K,P)_{\widetilde{y}}$ and $(H,P)_{\widetilde{x}} \cap (K,P)_{\widetilde{y}} = \widetilde{\phi}$. Hence $(L,P) \subseteq \bigcup_{\widetilde{y} \in (L,P)} (K,P)_{\widetilde{y}}$, thus $\{(K,P)_{\widetilde{y}} : \widetilde{y} \in (L,P)\}$ is a soft open cover of (L,P). Since (L,P) is soft Lindelöf $\Rightarrow \exists \{(K,P)_{\widetilde{y}_n}\}_{n \in \mathbb{N}}$ is a countable soft subcover of (L,P). Let $(W,P) = \bigcup_{n \in \mathbb{N}} (K,P)_{\widetilde{y}_n}$ and $(V,P) = \bigcap_{n \in \mathbb{N}} (H,P)_{\widetilde{x}_n} \Rightarrow (W,P)$ is soft open, since it is a soft union of soft

open sets and (V,P) is also soft open, since $(U,\tilde{\tau},P)$ is a soft P-space and soft intersection of a countable soft open sets is soft open. Hence $\tilde{x} \in (V, P)$ and $(L, P) \subseteq (W, P)$. To prove that $(V,P) \, \widetilde{\cap} \, (W,P) = \widetilde{\phi} \,. \quad \text{Since} \quad (H,P)_{\widetilde{X}_n} \, \widetilde{\cap} \, (K,P)_{\widetilde{y}_n} = \widetilde{\phi} \quad, \quad \forall \ n \in \mathbb{N} \qquad \Longrightarrow \qquad (V,P) \, \widetilde{\cap} \, (K,P)_{\widetilde{y}_n} = \widetilde{\phi} \,,$ $\forall n \in \mathbb{N} \implies (V, P) \widetilde{\bigcap} (W, P) = \widetilde{\varphi} \implies (V, P) \widetilde{\bigcap} (L, P) = \widetilde{\varphi} \implies \widetilde{x} \in (V, P) \widetilde{\subseteq} (L, P)^c \implies (L, P)^c \text{ is}$ soft open \Rightarrow (L, P) is soft closed. Thus (U, $\tilde{\tau}$, P) is a soft LC-space.

Corollary (2.17): Every soft \tilde{T}_1 -regular P-space is a soft LC -space.

Proof: Let $\tilde{x}, \tilde{y} \in \tilde{U}$ such that $\tilde{x} \neq \tilde{y}$. Since $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_1 -space, then by theorem (1.8), $\{\tilde{x}\}$ is soft closed in \widetilde{U} and $\widetilde{v} \notin \{\widetilde{x}\}$. Since $(U, \widetilde{\tau}, P)$ is a soft regular space, then by definition (1.10), \exists (H,P) and (K,P) are soft open sets in \widetilde{U} such that $\{\widetilde{x}\} \subseteq (H,P)$, $\widetilde{y} \in (K,P)$ and $(H,P) \cap (K,P) = \widetilde{\phi}$. Hence \exists (H,P) and (K,P) are soft open sets in \widetilde{U} such that $\widetilde{x} \in (H,P), \widetilde{y} \in (K,P)$ and $(H,P) \, \widetilde{\cap} \, (K,P) = \widetilde{\phi} \implies (U,\widetilde{\tau},P) \, \text{ is a soft } \, \widetilde{T}_2 \, \text{-space, since } \, (U,\widetilde{\tau},P) \, \text{ is a soft P-space, then by theorem}$ (2.16), $(U, \tilde{\tau}, P)$ is a soft LC-space.

Proposition (2.18): Countable soft union of soft Lindelöf sets is soft Lindelöf.

Proof:Let $\{(A_n, P)\}_{n \in \mathbb{N}}$ be a countable family of soft Lindelöf sets in \widetilde{U} . To prove that $\bigcup (A_n, P)$

is soft Lindelöf. Let $\{(V_{\alpha},P)\}_{\alpha\in \Lambda}$ be any soft open cover of $\bigcup_{n\in N}(A_n,P)\Rightarrow \{(V_{\alpha},P)\}_{\alpha\in \Lambda}$ is soft

open cover of $(A_n, P), \forall n \in \mathbb{N}$. Since (A_n, P) is soft Lindelöf $\forall n \in \mathbb{N} \Rightarrow \exists \{(V_{\alpha_{nm}}, P)\}_{m \in \mathbb{N}}$ is a countable soft subcover $\forall n \in \mathbb{N}$. That is $(A_n, P) \subseteq \bigcup_{m \in \mathbb{N}} (V_{\alpha_{nm}}, P)$, $\forall n \in \mathbb{N} \Rightarrow \bigcup_{n \in \mathbb{N}} (A_n, P) \subseteq \bigcup_{n \in \mathbb{N}} (V_{\alpha_{nm}}, P) = \bigcup_{n \in \mathbb{N}} (V_{\alpha_{nm}}, P)$. Since union of countable family of countable set is countable $(A_n, P) \subseteq \bigcup_{n \in \mathbb{N}} (V_{\alpha_{nm}}, P) = \bigcup_{n \in \mathbb{N}} (V_{\alpha_{nm}}, P)$. Since union of countable family of countable set is countable $(A_n, P) \subseteq \bigcup_{n \in \mathbb{N}} (V_{\alpha_{nm}}, P) = \bigcup_{n \in \mathbb{N}} (V_{\alpha_{nm}}, P)$.

 $\Rightarrow \{(V_{\alpha_{nm}},P)\}_{n,m\in N} \text{ is a countable soft subcover of } \bigcup_{n\in N} (A_n,P) \Rightarrow \bigcup_{n\in N} (A_n,P) \text{ is soft Lindel\"of}.$

Proposition (2.19): For a soft Lindelöf \tilde{T}_2 -space $(U, \tilde{\tau}, P)$ the following statements are equivalent: (i) $(U, \tilde{\tau}, P)$ is a soft LC-space.

(ii) $(U, \tilde{\tau}, P)$ is a soft P-space.

Proof: (i) \rightarrow (ii): Let (A,P) be a soft F_{σ} -closed set in $\widetilde{U} \Rightarrow (A,P) = \bigcup_{n} (F_{n},P)$, where (F_{n},P) is

soft closed in \widetilde{U} , \forall $n \in \mathbb{N}$. Since $(U, \widetilde{\tau}, P)$ is soft Lindelöf, then by theorem (1.15), (F_n, P) is soft Lindelöf in $\widetilde{\mathrm{U}}$, \forall $n \in N$, hence by proposition (2.18), $(A,P) = \bigcup (F_n,P)$ is soft Lindelöf in $\widetilde{\mathrm{U}}$, but

 $(U, \tilde{\tau}, P)$ is a soft LC-space, then (A, P) is soft closed in \tilde{U} . Thus $(U, \tilde{\tau}, P)$ is a soft P-space.

(ii) \rightarrow (i): This is obvious by theorem (2.16).

Proposition (2.20): For a soft Lindelöf Q-set space $(U, \tilde{\tau}, P)$ the following statements are equivalent:

(i) $(U, \tilde{\tau}, P)$ is a soft LC-space.

(ii) $(U, \tilde{\tau}, P)$ is a soft P-space.

Proof: (i) \rightarrow (ii): This is obvious by proposition (2.19).

(ii) \rightarrow (i): This is obvious by corollary ((2.10),v).

Proposition (2.21): For a soft regular P-space $(U, \tilde{\tau}, P)$ the following statements are equivalent:

(i) $(U, \tilde{\tau}, P)$ is a soft LC-space.

- (ii) $(U, \tilde{\tau}, P)$ is a soft KC-space.
- (iii) $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_1 -space.

Proof: (i) \rightarrow (ii): This is obvious by proposition (2.15),(i)).

- (ii) \rightarrow (i): Let $(U, \tilde{\tau}, P)$ be a soft KC-space, then by proposition ((2.14), (ii)), $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_1 -space, but $(U, \tilde{\tau}, P)$ is soft regular, then $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 -space. Since $(U, \tilde{\tau}, P)$ is a soft P-space, then by theorem (2.16), $(U, \tilde{\tau}, P)$ is a soft LC-space.
- $(ii) \rightarrow (iii)$: This is obvious by proposition ((2.14),(ii)).
- (iii) \rightarrow (ii): Let $(U, \tilde{\tau}, P)$ be a soft \tilde{T}_1 -space, since $(U, \tilde{\tau}, P)$ is soft regular, then $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 -space. Hence $(U, \tilde{\tau}, P)$ is a soft KC-space by proposition ((2.14), (i)).

Definition (2.22): A soft topological space $(U, \tilde{\tau}, P)$ is called a soft R_1 -space if \tilde{x} and \tilde{y} have disjoint soft neighborhoods whenever $cl(\{\tilde{x}\}) \neq cl(\{\tilde{y}\})$. Clearly a soft space is soft \tilde{T}_2 if and only if its soft \tilde{T}_1 and soft R_1 .

Theorem (2.23): For a soft R_1 -space $(U, \tilde{\tau}, P)$ the following statements are equivalent:

- (i) $(U, \tilde{\tau}, P)$ is a soft KC-space.
- (ii) $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_1 -space.
- (iii) $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 -space.

Proof: (i) \rightarrow (ii): This is obvious by proposition ((2.14),(ii)).

- (ii) \rightarrow (i): Let $(U, \tilde{\tau}, P)$ be a soft \tilde{T}_1 -space, since $(U, \tilde{\tau}, P)$ is a soft R_1 -space, then $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 -space by definition (2.22). So $(U, \tilde{\tau}, P)$ is a soft KC-space by proposition ((2.14),(i)).
- (ii) \rightarrow (iii): This is obvious by definition (2.22).
- $(iii) \rightarrow (ii)$: It is obvious.

Corollary (2.24):(i) Every soft R_1KC -space is a soft \tilde{T}_2 -space.

- (ii) Every soft R_1Q -set space is a soft \tilde{T}_2 -space.
- (iii) Every soft R₁Q-set space is a soft KC-space.
- (iv) Every soft L₁ L₃-space is a soft KC-space.
- (v) Every soft $R_1 L_3$ -space is a soft \tilde{T}_2 -space.
- (vi) Every soft R₁ L₃-space is a soft KC-space.

Proof: It is obvious.

Corollary (2.25): For a soft regular space $(U, \tilde{\tau}, P)$ the following statements are equivalent:

- (i) $(U, \tilde{\tau}, P)$ is a soft KC-space.
- (ii) $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_1 -space.

Proof: (i) \rightarrow (ii): This is obvious by proposition ((2.14),(ii)).

(ii) \rightarrow (i): Let $(U, \tilde{\tau}, P)$ be a soft \tilde{T}_1 -space, since $(U, \tilde{\tau}, P)$ is soft regular, then $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 -space. Hence by proposition ((2.14),(i)), $(U, \tilde{\tau}, P)$ is a soft KC-space.

Theorem (2.26): For a soft \tilde{T}_2 -space $(U, \tilde{\tau}, P)$ the following statements are equivalent:

- (i) $(U, \tilde{\tau}, P)$ is a soft LC-space.
- (ii) $(U, \tilde{\tau}, P)$ is a soft L_1 -space and a soft L_2 -space.

Proof: (i) \rightarrow (ii): This is obvious by theorem ((2.5),(i)).

(ii) \rightarrow (i): Let (L,P) be a soft Lindelöf set in \widetilde{U} and $\widetilde{x} \not\in (L,P)$. To prove that $\widetilde{x} \not\in cl((L,P))$. Since $(U,\widetilde{\tau},P)$ is a soft \widetilde{T}_2 -space, then $\forall \widetilde{y} \in (L,P), \exists (V,P)_{\widetilde{y}} \in \widetilde{\tau}$ such that $\widetilde{y} \in (V,P)_{\widetilde{y}}$ and

$$\begin{split} \widetilde{x} \, \widetilde{\not\in} \, \text{cl}((V,P)_{\widetilde{y}}) \,. & \text{ Hence } \{(V,P)_{\widetilde{y}} \, \colon \, \widetilde{y} \, \widetilde{\in} \, (L,P) \} \text{ is a soft open cover of } (L,P) \,. \text{ Since } (L,P) \text{ is soft } \\ \text{Lindel\"of} \quad \Rightarrow \quad \exists \quad \{(V,P)_{\widetilde{y}_n}\}_{n \in N} \quad \text{is a countable soft subcover of } (L,P) \,. \text{ Thus } \\ (L,P) \, \widetilde{\subseteq} \, \bigcup_{n \in N} (V,P)_{\widetilde{y}_n} \, \widetilde{\subseteq} \, \bigcup_{n \in N} \text{cl}((V,P)_{\widetilde{y}_n}) \,. \quad \text{For each } n \in N \,, \, (L,P) \, \widetilde{\cap} \, \text{cl}((V,P)_{\widetilde{y}_n}) \text{ is soft Lindel\"of}. \end{split}$$

Since $(U, \widetilde{\tau}, P)$ is a soft L_2 -space, then $cl[(L, P) \bigcap cl((V, P)_{\widetilde{y}_n})]$ is soft Lindelöf. If $(W, P) = \bigcup_{n \in \mathbb{N}} cl[(L, P) \bigcap cl((V, P)_{\widetilde{y}_n})]$, then (W, P) is soft Lindelöf F_{σ} -closed set in \widetilde{U} , but $(U, \widetilde{\tau}, P)$

is a soft L_1 -space, then (W,P) is soft closed and $\widetilde{x} \not\in (W,P)$, hence $\widetilde{x} \not\in cl((L,P))$. Thus (L,P) is a soft closed set in \widetilde{U} . Therefore $(U,\widetilde{\tau},P)$ is a soft LC-space.

Corollary (2.27): For a soft Lindelöf \tilde{T}_2 -space $(U, \tilde{\tau}, P)$ the following statements are equivalent:

- (i) $(U, \tilde{\tau}, P)$ is a soft P-space.
- (ii) $(U, \tilde{\tau}, P)$ is a soft LC-space.
- (iii) $(U, \tilde{\tau}, P)$ is a soft L_1 -space and a soft L_2 -space.

Proof: This is obvious by proposition (2.19) and theorem (2.26).

Corollary (2.28): For a soft regular $L_1 L_2$ -space $(U, \tilde{\tau}, P)$ the following statements are equivalent:

- (i) $(U, \tilde{\tau}, P)$ is a soft LC-space.
- (ii) $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_1 -space.

Proof: (i) \rightarrow (ii): This is obvious by proposition ((2.15),(ii)).

(ii) \rightarrow (i): This is obvious by theorem (2.26).

Corollary (2.29): For a soft R_1 L_1 L_2 -space $(U, \tilde{\tau}, P)$ the following statements are equivalent:

- (i) $(U, \tilde{\tau}, P)$ is a soft LC-space.
- (ii) $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_1 -space.

Proof: (i) \rightarrow (ii): This is obvious by proposition ((2.15), (ii)).

(ii) \rightarrow (i): This is obvious by theorem (2.26).

Corollary (2.30): For a soft discrete space $(U, \tilde{\tau}, P)$ the following statements are equivalent:

- (i) $(U, \tilde{\tau}, P)$ is a soft LC-space.
- (ii) $(U, \tilde{\tau}, P)$ is a soft L_2 -space.

Proof: It is obvious.

Theorem (2.31): If $(U, \tilde{\tau}, P)$ is a soft topological space and $\tilde{Y} \subseteq \tilde{U}$, $\tilde{Y} = \bigcup_{i=1}^{n} \tilde{Y}_{i}$, where \tilde{Y}_{i} ,

i = 1,2,...,n are soft closed LC-subspaces of $\,\widetilde{U}$, then $\,\widetilde{Y}$ is a soft LC-subspace.

Proof: Let (L,P) be a soft Lindelöf subset of \widetilde{Y} , then $\widetilde{Y}_i \cap (L,P)$, i=1,2,...,n are soft closed in (L,P) which is soft Lindelöf so $\widetilde{Y}_i \cap (L,P)$, i=1,2,...,n are soft Lindelöf subset of \widetilde{Y}_i i=1,2,...,n. Since \widetilde{Y}_i , i=1,2,...,n is a soft LC-subspace, then $\widetilde{Y}_i \cap (L,P)$ is a soft closed in \widetilde{Y}_i , i=1,2,...,n. Since \widetilde{Y}_i , i=1,2,...,n is soft closed in \widetilde{U} , then $\widetilde{Y}_i \cap (L,P)$, i=1,2,...,n is soft closed in \widetilde{U} . But (L,P)=

 $\bigcup_{i=1}^n (\widetilde{Y}_i \overset{\frown}{\cap} (L,P)), \text{ so } (L,P) \text{ is soft closed in } \widetilde{U} \text{ and also in } \widetilde{Y} \text{ . Hence } \widetilde{Y} \text{ is a soft LC-subspace.}$

Proposition (2.32): Every soft Lindelof L_1 -space is a soft P-space.

Proof: Let (A,P) be a soft F_{σ} -closed set in $\widetilde{U} \Rightarrow (A,P) = \bigcup_{n \in \mathbb{N}} (F_n,P)$, where (F_n,P) is soft closed

in \widetilde{U} , \forall $n \in N$. Since $(U, \widetilde{\tau}, P)$ is soft Lindelöf, then by theorem (1.15), (F_n, P) is soft Lindelöf in

 \widetilde{U} , \forall $n \in \mathbb{N}$. Hence $(A,P) = \bigcup_{n \in \mathbb{N}} (F_n,P)$ is soft Lindelöf in \widetilde{U} by proposition (2.18). Since $(U,\widetilde{\tau},P)$

is a soft $L_1\text{-}$ space, then (A,P) is soft closed in $\,\widetilde{U}\,.$ Thus $(U,\widetilde{\tau},P)$ is a soft P-space.

Proposition (2.33): For a soft Lindelöf \tilde{T}_2 -space $(U, \tilde{\tau}, P)$ the following statements are equivalent:

(i) $(U, \tilde{\tau}, P)$ is a soft LC-space.

(ii) $(U, \tilde{\tau}, P)$ is a soft L_1 -space.

Proof: (i) \rightarrow (ii): This is obvious by theorem ((2.5), (i)).

(ii) \rightarrow (i): Let $(U, \tilde{\tau}, P)$ be a soft L_1 -space, since $(U, \tilde{\tau}, P)$ is a soft Lindelöf space, then by proposition (2.32), $(U, \tilde{\tau}, P)$ is a soft P-space. Since $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 -space, then $(U, \tilde{\tau}, P)$ is a soft LC-space by theorem (2.16).

Proposition (2.34): For a soft Q-set space $(U, \tilde{\tau}, P)$ having a soft dense Lindelöf subset the following statements are equivalent:

- (i) $(U, \tilde{\tau}, P)$ is a soft P-space.
- (ii) $(U, \tilde{\tau}, P)$ is a soft Lindelöf and a soft L₁-space.

Proof: (i) \rightarrow (ii): If $(U, \tilde{\tau}, P)$ is a soft P-space, then $(U, \tilde{\tau}, P)$ is a soft L₁-space. Since $(U, \tilde{\tau}, P)$ is a soft Q-set space, then by corollary ((2.10),(iii)), $(U, \tilde{\tau}, P)$ is a soft LC-space, hence $(U, \tilde{\tau}, P)$ is a soft L₂-space. Since $(U, \tilde{\tau}, P)$ having a soft dense Lindelöf subset, then by theorem ((2.5),(vi)), $(U, \tilde{\tau}, P)$ is a soft Lindelöf space.

(ii) \rightarrow (i): This is obvious by proposition (2.32).

Proposition (2.35): For a soft \tilde{T}_2 L₁-space (U, $\tilde{\tau}$, P) having a soft dense Lindelöf subset the following statements are equivalent:

- (i) $(U, \tilde{\tau}, P)$ is a soft LC-space.
- (ii) $(U, \tilde{\tau}, P)$ is a soft Lindelöf space.

Proof: (i) \rightarrow (ii): If $(U, \tilde{\tau}, P)$ is a soft LC-space, then $(U, \tilde{\tau}, P)$ is a soft L₂-space. Since $(U, \tilde{\tau}, P)$ having a soft dense Lindelöf subset, then by theorem (2.5),(vi)), $(U, \tilde{\tau}, P)$ is a soft Lindelöf space.

(ii) \rightarrow (i): Let $(U, \tilde{\tau}, P)$ be a soft Lindelöf space, then by theorem ((2.5),(vi)), $(U, \tilde{\tau}, P)$ is a soft L_2 -space. Since $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 L_1 -space, then by theorem (2.26), $(U, \tilde{\tau}, P)$ is a soft LC-space.

Proposition (2.36): For a soft Lindelöf Q-set space $(U, \tilde{\tau}, P)$ the following statements are equivalent: (i) $(U, \tilde{\tau}, P)$ is a soft L_1 -space.

(ii) $(U, \tilde{\tau}, P)$ is a soft L_2 -space and a soft P-space.

Proof: (i) \rightarrow (ii): Let $(U, \tilde{\tau}, P)$ be a soft L_1 -space, since $(U, \tilde{\tau}, P)$ is a soft Lindelöf space, then by proposition (2.32), $(U, \tilde{\tau}, P)$ is a soft P-space. Since $(U, \tilde{\tau}, P)$ is a soft Q-set space, then by corollary ((2.10),v), $(U, \tilde{\tau}, P)$ is a soft L_2 -space.

(ii) \rightarrow (i): This is obvious by theorem ((2.5),(ix)).

Theorem (2.37): If $(U, \tilde{\tau}, P)$ is a soft topological space and $\tilde{Y} \subseteq \tilde{U}$, $\tilde{Y} = \bigcup_{i=1}^{n} \tilde{Y}_{i}$, where \tilde{Y}_{i} ,

i = 1,2,...,n are soft closed L_2 -subspaces of \widetilde{U} , then \widetilde{Y} is a soft L_2 -subspace.

Proof: Let (L,P) be a soft Lindelöf subset of \widetilde{Y} , then $\widetilde{Y}_i \cap (L,P)$, i=1,2,...,n are soft closed in (L,P) which is soft Lindelöf, so $\widetilde{Y}_i \cap (L,P)$, i=1,2,...,n are soft Lindelöf subset of \widetilde{Y}_i i=1,2,...,n. Since \widetilde{Y}_i , i=1,2,...,n is a soft L_2 -subspace, then $cl(\widetilde{Y}_i \cap (L,P))$ is a soft Lindelöf in \widetilde{Y}_i , i=1,2,...,n. Hence $cl(\widetilde{Y}_i \cap (L,P))$, i=1,2,...,n is soft Lindelöf in \widetilde{Y} . But

$$cl((L,P)) = cl(\bigcup_{i=1}^n (\widetilde{Y}_i \ \widetilde{\cap} \ (L,P))) \ = \bigcup_{i=1}^n cl((\widetilde{Y}_i \ \widetilde{\cap} \ (L,P))) \ , \ so \ \ cl((L,P)) \ \ is \ soft \ Lindel\"{of} \ \ in \ \widetilde{Y} \ . \ Hence \ \widetilde{Y} \ \ is$$

a soft L₂ -subspace.

Theorem (2.38): For a soft R_1P -space $(U, \tilde{\tau}, P)$ the following statements are equivalent:

- (i) $(U, \tilde{\tau}, P)$ is a soft LC-space.
- (ii) $(U, \tilde{\tau}, P)$ is a soft KC-space.
- (iii) $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_1 -space.
- (iv) $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 -space.
- (v) $(U, \tilde{\tau}, P)$ is a soft L_3 -space.

Proof: (i) \rightarrow (ii): This is obvious by proposition ((2.15),(i)).

- (ii) \rightarrow (i): Let $(U, \tilde{\tau}, P)$ be a soft KC-space, since $(U, \tilde{\tau}, P)$ is a soft R_1 -space, then by proposition ((2.14),(ii)) and definition (2.22), $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 -space, since $(U, \tilde{\tau}, P)$ is a soft P-space, then by theorem (2.16), $(U, \tilde{\tau}, P)$ is a soft LC-space.
- (ii) \rightarrow (iii): This is obvious by proposition ((2.14),(ii)).
- (iii) \rightarrow (ii): Let $(U, \tilde{\tau}, P)$ be a soft \tilde{T}_1 -space, since $(U, \tilde{\tau}, P)$ is a soft R_1 -space, then $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 -space by definition (2.22). So $(U, \tilde{\tau}, P)$ is a soft KC-space by proposition ((2.14),(i)).
- (iii) \rightarrow (iv): Let $(U, \tilde{\tau}, P)$ be a soft \tilde{T}_1 -space, since $(U, \tilde{\tau}, P)$ is a soft R_1 -space, then $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 -space by definition (2.22).
- (iv) \rightarrow (iii): It is obvious.
- (iv) \rightarrow (v): Let $(U, \tilde{\tau}, P)$ be a soft \tilde{T}_2 -space, since $(U, \tilde{\tau}, P)$ is a soft P-space, then $(U, \tilde{\tau}, P)$ is a soft LC-space by theorem (2.16), so $(U, \tilde{\tau}, P)$ is a soft L_3 -space.
- $(v) \rightarrow (iv)$: Let $(U, \tilde{\tau}, P)$ be a soft L_3 -space, then $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_1 -space. Since $(U, \tilde{\tau}, P)$ is a soft R_1 -space, then by definition $(2.22), (U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 -space.

Theorem (2.39): For a soft \tilde{T}_2 L₁-space (U, $\tilde{\tau}$, P) the following statements are equivalent:

- (i) $(U, \tilde{\tau}, P)$ is a soft LC-space.
- (ii) $(U, \tilde{\tau}, P)$ is a soft L₄-space.
- (iii) $(U, \tilde{\tau}, P)$ is a soft L₃-space.
- (iv) $(U, \tilde{\tau}, P)$ is a soft L_2 -space.

Proof: (i) \rightarrow (ii): This is obvious by theorem ((2.5),(i)).

- (ii) \rightarrow (i): This is obvious by theorem ((2.5),(iii)) and theorem (2.26).
- (ii) \rightarrow (iii): Let $(U, \tilde{\tau}, P)$ be a soft L_4 -space, since $(U, \tilde{\tau}, P)$ is a soft L_1 -space, then $(U, \tilde{\tau}, P)$ is a soft L_2 -space by theorem ((2.5),(iii)). Since $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 -space, then by theorem (2.26), $(U, \tilde{\tau}, P)$ is a soft LC-space. Hence $(U, \tilde{\tau}, P)$ is a soft L_3 -space by theorem ((2.5),(i)).
- $(iii) \rightarrow (ii)$: This is obvious by theorem ((2.5),(iv)).
- (iii) \rightarrow (iv): Let $(U, \tilde{\tau}, P)$ be a soft L_3 -space, since $(U, \tilde{\tau}, P)$ is a soft L_1 -space, then by theorem ((2.5),(ii)), $(U, \tilde{\tau}, P)$ is a soft LC-space. Hence $(U, \tilde{\tau}, P)$ is a soft L_2 -space by theorem ((2.5),(i)).
- (iv) \rightarrow (iii): Let $(U, \tilde{\tau}, P)$ be a soft L_2 -space, since $(U, \tilde{\tau}, P)$ is a soft \tilde{T}_2 L_1 -space, then $(U, \tilde{\tau}, P)$ is a soft LC-space by theorem (2.26). Hence $(U, \tilde{\tau}, P)$ is a soft L_3 -space by theorem ((2.5),(i)).

References

- **1.** Molodtsov, D. **1999.** Soft set theory-First results. *Computers and Mathematics with Applications*, **37**(4-5): 19-31.
- **2.** Shabir, M. and Naz, M. **2011.** On soft topological spaces. *Computers and Mathematics with Applications*, **61**(7): 1786-1799.
- **3.** Molodtsov, D., Leonov, V. Y. and Kovkov, D. V. **2006.** Soft sets technique and its Applications. *Nechetkie Sistemy Myagkie Vychisleniya*, **1**: 8-39.
- **4.** Rong, W. **2012.** The countabilities of soft topological spaces. *International Journal of Mathematical and Computational Sciences*, **6**(8): 952-955.
- 5. Das, S. and Samanta, S.K. 2012. Soft metric. Annals of Fuzzy Mathematics and Informatics, 1-18.
- **6.** Cağman, N., Karataş, S. and Enginoglu, S. **2011**. Soft topology. *Computers and Mathematics with Applications*, **62**: 351-358.
- 7. Hussain, S. and Ahmad, B. 2015. Soft separation axioms in soft topological Spaces. *Hacettepe Journal of Mathematics and Statistics*, 44 (3): 559-568.
- **8.** Yüksel, S., Güzel Ergül, Z. and Tozlu, N. **2013**. On Soft Compactness and Soft Separation Axioms. *Applied Mathematics and Information Sciences*.
- **9.** ÖZKAN, A. **2017**. Decomposition of Hyper Spaces of Soft Sets. *Iğdır University Journal of the Institute of Science and Technology*, **7**(1): 251-257.