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Abstract 

   The main purpose of this article is to study the soft LC-spaces                                             

as soft spaces in which every soft Lindelöf subset of U
~

 is soft closed. Also, we 

study the weak  forms of soft LC-spaces and we discussed their relationships with 

soft LC-spaces as well as among themselves. 
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حول فضاءات  -LC الميسرة والصيغ الضعيفة لفضاءات -LC   الميسرة  
 

 صبيحة ابراهيم محمود
العراق، بغداد، الجامعة المستنصرية، كلية العلوم،قسم الرياضيات  

    

 الخلاصة 
 وهي الفضاءات الميسرة التي فيها كل   الميسرة  -LCهو دراسة فضاءات الهدف من هذة المقالة     

وناقشنا  الميسرة -LCلفضاءات الضعيفة  درسنا الصيغ  كذلك  ميسرة  مغلقة ميسرة. مجموعة جزئية  لندلوف
 علاقاتهم مع بعضهم. كذلك الميسرة  -LCفضاءاتعلاقاتهم مع 

 

Introduction 

     Molodtsov [1] in 1999  introduced and studied soft set theory as a new mathematical tool for 

dealing with uncertainty while modeling problems in medical sciences, economics, computer science, 

engineering physics and social sciences. Shabir and Naz [2] in 2011 investigated the notion of soft 

topological spaces over an initial universe set with a fixed set of parameters. Molodtsov and et. al. [3] 

in 2006 and Rong [4] in 2012 introduced and studied soft compact spaces and soft Lindelöf spaces 

respectively. The main purpose of this paper is to introduce and study a new type of soft spaces called 

soft LC-spaces and we show that a soft topological space ),~,( PU τ  is a soft LC-space if and only if 

each soft point inU
~

 has a soft closed neighborhood that is a soft LC-space. Moreover we discussed 

weak forms of soft LC-spaces such as soft 1L -spaces, soft 2L -spaces, soft 3L -spaces and soft 4L -

spaces. The characteristics of these soft spaces and the relation among them also have been studied.  

1. Preliminaries:   

      In this paper P is the set of parameters, U is an initial universe set, )(UP  is the power set of U, and 

PA  . 

Definition (1.1) [1]: A soft set over U is a pair ),( AH , where H is a function defined by 

)(: UPAH   and A is a non-empty subset of P. 

Definition (1.2)[5]: A soft set ),( AH  over U is called a soft point if there is Ae  such that 

}{)( ueH   for some Uu  and φ)(eH , }{\ eAe   and is denoted by }){,(~ ueu  . 
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Definition (1.3)[5]: A soft point }){,(~ ueu   is called belongs to a soft set ),( AH  if Ae  and 

)(eHu , and is denoted by ),(~~ AHu . 

Definition (1.4)[2]: A soft topology on U is a family τ~  of soft subsets of U
~

 having the following 

properties: 

 

(i) τ~~~
U  and τφ ~~~ . 

(ii) If τ~~),(),,( 21 PHPH       τ~~),(
~

),( 21 PHPH  . 

(iii) If τ~~),( PH j ,  j     τ~~),( 




j

j PH . 

     The triple ),~,( PU τ  is called a soft topological space. The members of τ~  are called soft open sets 

over U. The complement of a soft open set is called soft closed. 

Definition (1.5) [6]: Let ),~,( PU τ  be a soft topological space and UPH
~~),(  . Then the soft closure 

of ),( PH , denoted by )),(( PHcl  is the intersection of all soft closed sets inU
~

 which contains ),( PH . 

Definition (1.6)[2]: If ),~,( PU τ  is a soft topological space and UPY
~~),(~ φ . The family 

),(
~

PYτ }~~),(:),(
~

),{( τPVPYPV   is called the relative soft topology on ),( PY  and 

),~),,(( ),( PPY PYτ  is called a soft subspace of ),~,( PU τ . 

 

Definition (1.7)[7]: A soft topological space ),~,( PU τ  is called a soft 1
~
T -space if for any two distinct 

soft points x~  and y~  of U
~

, there exists a soft open set in U
~

 containing x~  but not y~  and a soft open 

set in U
~

 containing y~  but not x~ . 

Theorem (1.8)[7]: A soft topological space ),~,( PU τ  is a soft 1
~
T -space if and only if each soft point 

inU
~

 is soft closed. 

 

Definition (1.9)[7]: A soft topological space ),~,( PU τ  is called a soft 2
~
T -space if for any two distinct 

soft points x~  and y~  of U
~

, there are two soft open sets ),( PH  and ),( PK  in U
~

 such that 

),(~~ PHx , ),(~~ PKy , and φ~),(
~

),( PKPH  . 

Definition (1.10)[7]: A soft topological space ),~,( PU τ  is called a soft regular space if for any soft 

closed set ),( PF  in U
~

 and any soft point x~  in U
~

 such that ),(
~~ PFx  there exists two soft open sets 

),( PH  and ),( PK  inU
~

 such that ),(~~ PHx , ),(~),( PKPF   and φ~),(
~

),( PKPH  . 

 

Definition (1.11)[3]: A soft topological space ),~,( PU τ  is called soft compact if every soft open cover 

of U
~

 has a finite soft subcover. 

Theorem (1.12)[8]: A soft closed subset of a soft compact space is soft compact. 

Theorem (1.13)[9]: A soft compact set in a soft 2
~
T -space is soft closed. 

Definition (1.14)[4]: A soft topological space ),~,( PU τ  is called soft Lindelöf if every soft open 

cover of U
~

 has a countable soft subcover. 

Theorem (1.15)[8]: A soft closed subset of a soft Lindelöf space is soft Lindelöf. 
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2. Soft LC-Spaces and Weak Forms of Soft LC-Spaces 

     Now, we introduce and study new types of soft spaces called soft LC-spaces also, we study weak 

forms of soft LC-spaces such as soft 1L -spaces, soft 2L -spaces, soft 3L -spaces and soft 4L -spaces. 

Further we discussed the equivalent definitions of these soft spaces and the relation among them.  

 

Definition (2.1): A soft topological space ),~,( PU τ  is called a soft LC-space if every soft Lindelöf 

subset of U
~

 is soft closed. 

Definition (2.2): A soft subset ),( PF  of a soft topological space ),~,( PU τ  is called soft σF -closed if 

it is the soft union of a countable soft closed sets.   

Definition (2.3): A soft topological space ),~,( PU τ  is called a soft P-space if every soft σF -closed set 

inU
~

 is soft closed. 

Definition (2.4): A soft topological space ),~,( PU τ  is called:  

(i) A soft 1L -space if every soft Lindelöf σF -closed set inU
~

 is a soft closed set. 

(ii) A soft 2L -space if )),(( PLcl  is soft Lindelöf whenever ),( PL  is a soft Lindelöf set inU
~

. 

(iii) A soft 3L -space if every soft Lindelöf set inU
~

 is a soft σF -closed set. 

(iv) A soft 4L -space if whenever ),( PL  is a soft Lindelöf set inU
~

, then there is a soft Lindelöf σF -

closed set ),( PF  inU
~

 such that )),((~),(~),( PLclPFPL  . 

Theorem (2.5): 

(i) If ),~,( PU τ  is a soft LC -space, then ),~,( PU τ  is a soft iL -space, 4,3,2,1i . 

(ii) If ),~,( PU τ  is a soft 1L -space and a soft 3L -space, then ),~,( PU τ  is a soft LC-space. 

(iii) If ),~,( PU τ  is a soft 1L -space and a soft 4L -space, then ),~,( PU τ  is a soft 2L -space. 

(iv) Every soft 2L -space is a soft 4L -space and every soft 3L -space is a soft 4L -space. 

(v) Every soft 3L -space is a soft 1
~
T -space. 

(vi) Every soft Lindelöf space is a soft 2L -space and every soft 2L -space having a soft dense 

Lindelöf set is soft Lindelöf. 

(vii) The property soft 3L  is soft hereditary and the properties 1L , 2L  and 4L  are soft hereditary on a 

soft σF -closed set. 

(viii) The property soft LC-space is soft hereditary. 

(ix) Every soft P-space is a soft 1L -space. 

Proof: (i) It is obvious.  

(ii) Let ),( PL be a soft Lindelöf set inU
~

, since ),~,( PU τ  is a soft 3L -space, then ),( PL  is soft σF -

closed, but ),~,( PU τ  is a soft 1L -space, then ),( PL  is a soft closed set inU
~

. Thus ),~,( PU τ  is a soft 

LC-space. 

(iii) Let ),( PL  be a soft Lindelöf set inU
~

, since ),~,( PU τ  is a soft 4L -space, then there is a soft 

Lindelöf σF -closed set ),( PF  inU
~

 such that )),((),(~),( PLclPFPL  . Since ),~,( PU τ  is a soft 1L -

space, then ),( PF  is soft closed. Hence )),((),(~)),(( PLclPFPLcl  , thus )),(( PLcl ),( PF  is a 

soft Lindelöf set inU
~

. Therefore ),~,( PU τ  is a soft 2L -space. 

(iv) Let ),( PL  be a soft Lindelöf set inU
~

, since ),~,( PU τ  is a soft 2L -space, then )),(( PLcl  is soft 

Lindelöf. Hence )),((~)),((~),( PLclPLclPL  . Since )),(( PLcl  is soft closed, then there is ),( PF   

)),(( PLcl  is a soft Lindelöf σF -closed set in U
~

 such that ),(~),( PFPL  )),((~ PLcl . Therefore  

),~,( PU τ  is a soft 4L -space. Similarly, we can prove ),~,( PU τ  is a soft 4L -space, if ),~,( PU τ  is a  

soft 3L -space. 

(v) Since }~{x  is a soft Lindelöf set and ),~,( PU τ  is a soft 3L -space, then }~{x  is a soft σF -closed set.  

Therefore }~{x  is soft closed. Thus ),~,( PU τ  is a soft 1
~
T -space. 
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(vi) Let ),( PL  be a soft Lindelöf set inU
~

, since )),(( PLcl  is soft closed in ),~,( PU τ  which is a soft 

Lindelöf space, then by theorem (1.15), )),(( PLcl  is soft Lindelöf inU
~

. Thus ),~,( PU τ  is a soft 2L - 

space. Also, if ),~,( PU τ  is a soft 2L -space having a soft dense Lindelöf set ),( PL , then )),(( PLcl    

U
~

. Since ),~,( PU τ  is a soft 2L -space, then ),~,( PU τ  is soft Lindelöf. 

(vii) Let ),~,( PU τ  be a soft 1L -space and ),~,( PY Yτ  be a soft σF -closed subspace of ),~,( PU τ . To 

prove that ),~,( PY Yτ  is a soft 1L -space. Let ),( PA  be a soft Lindelöf σF -closed set inY
~

. Since 

UY
~~~

 , then ),( PA  is soft Lindelöf inU
~

 and ),(),( PFPA

Nn

n


 , where ),( PFn  is soft closed in Y
~

, 

Nn , thus )),(
~~

(),( PFYPA

Nn

n 


 )),((
~~

PFY

Nn

n


 , Where ),( PFn  is soft closed inU
~

,    

Nn . SinceY
~

 is a soft σF -closed set inU
~

, then ),(
~

PGY

Nm

m


 , where ),( PGm  is soft closed 

in U
~

, Nm . Hence ),( PA  



)),((
~

)),(( PFPG

Nn

n

Nm

m   )),(
~

),((

,

PFPG

Nmn

nm 


, but   

),(
~

),( PFPG nm   is soft closed in U
~

, thus ),( PA  is a soft union of a countable soft closed sets in 

U
~

, hence ),( PA  is a soft σF -closed set inU
~

. Since ),~,( PU τ  is a soft 1L -space, then ),( PA  is soft  

closed inU
~
  ),(

~~
),( PAYPA  



))),(
~

),(((
~~

,

PFPGY

Nmn

nm  ))],(
~

),((
~~

[

,

PFPGY

Nmn

nm 


  

is soft closed inY
~

. Therefore ),~,( PY Yτ  is a soft 1L -space. Similarly, we can prove other cases. 

(viii) It is obvious. 

(ix) It is obvious. 

Theorem (2.6): A soft topological space ),~,( PU τ  is a soft LC-space if and only if each soft point 

inU
~

 has a soft closed neighborhood that is a soft LC-subspace. 

Proof: If ),~,( PU τ  is a soft LC-space, then for each Ux
~~~ ,U

~
 itself is a soft closed neighborhood that 

is a soft LC-space. Conversely, let ),( PL  be a soft Lindelöf set in U
~

 and let ),(
~~ PLx . Choose a 

soft closed neighborhood xPW ~),(  of x~  such that ),~,),(( ~),(~ PPW
xpWx τ  is a soft LC-subspace. Then 

),(
~

),( ~ PLPW x   is soft Lindelöf in the soft subspace ),~,),(( ~),(~ PPW
xpWx τ . Since 

),~,),(( ~),(~ PPW
xpWx τ   is a soft LC-space, therefore ),(

~
),( ~ PLPW x   is soft closed in 

),~,),(( ~),(~ PPW
xpWx τ  and so also soft closed in ),~,( PU τ . Hence 

 ),(
~

),(),( ~~ PLPWPW xx  ),(),( ~ PLPW x   is soft open neighborhood of x~  in xPW ~),(  soft 

disjoint from ),( PL , that is ),( PL  is soft closed in xPW ~),( . Thus ),( PL  is soft closed in ),~,( PU τ . 

 

Definition (2.7): A soft topological space ),~,( PU τ  is called a soft Q-set space if each soft subset of 

U
~

 is a soft σF -closed set. 

Definition (2.8): A soft topological space ),~,( PU τ  is called a soft hereditarily Lindelöf if each soft 

subspace of U
~

 is soft Lindelöf. 

Proposition (2.9):(i) Every soft Q-set space is a soft 3L -space. 

(ii) Every soft hereditarily Lindelöf 3L -space is a soft Q-set space. 

Proof: (i) Let ),( EL  be a soft Lindelöf set inU
~

, since ),~,( PU τ  is a soft Q-set space, then ),( PL  is a 

soft σF -closed set. Thus ),~,( PU τ  is a soft 3L -space. 

(ii) Let ),( PL  be a soft subset of U
~

, since ),~,( PU τ  is a soft hereditarily Lindelöf, then ),( PL  is a 

soft Lindelöf set in ),~,( PU τ  which is a soft 3L -space, then ),( PL  is a soft σF -closed set in U
~

. Hence  
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      ),~,( PU τ  is a soft Q-set space. 

Corollary (2.10):(i) Every soft Q-set space is a soft 1
~
T -space. 

(ii) Every soft hereditarily Lindelöf LC-space is a soft Q-set space. 

(iii) Every soft 1L Q-set space is a soft LC-space. 

(iv) Every soft 3L P-space is a soft LC-space. 

(v) Every soft P Q-set space is a soft LC-space. 

Proof: (i) If ),~,( PU τ  is a soft Q-set space, then by proposition ((2.9),(i)), ),~,( PU τ  is a soft 3L -space, 

hence ),~,( PU τ  is a soft 1
~
T -space by theorem ((2.5), (v)). 

(ii) Since ),~,( PU τ  is a soft LC-space, then by theorem (2.5),(i)), ),~,( PU τ  is a soft 3L -space, but 

),~,( PU τ  is a soft hereditarily Lindelöf, then by proposition ((2.9),(ii)), ),~,( PU τ  is a soft Q-set space. 

(iii) Since ),~,( PU τ  is a soft Q-set space, then by proposition ((2.9),(i)), ),~,( PU τ  is a soft 3L -space, 

since ),~,( PU τ  is a soft 1L -space, then ),~,( PU τ  is a soft LC-space by theorem (2.5),(ii)). 

(iv) It is obvious. 

(v) If ),( PL  is a soft Lindelöf set in ),~,( PU τ  which is a soft Q-set space, then ),( PL  is a soft σF -

closed set, but ),~,( PU τ  is a soft P-space, so ),( PL  is a soft closed set. Hence ),~,( PU τ  is a soft LC-

space. 

Corollary (2.11): Every soft iL Q-set space is soft hereditary, 4,2,1i . 

Proof: This is obvious by theorem ((2.5), (vii)) and definition (2.7). 

Corollary (2.12): For a soft hereditarily Lindelöf P-space ),~,( PU τ  the following statements are 

equivalent: 

(i) ),~,( PU τ  is a soft LC-space. 

(ii) ),~,( PU τ  is a soft Q-set space. 

Proof: )()( iii  : This is obvious by proposition ((2.9),(ii)).  

)()( iii  : This is obvious by corollary ((2.10),v). 

Definition (2.13): A soft topological space ),~,( PU τ  is called a soft KC-space if every soft compact 

subset of U
~

 is soft closed. 

Proposition (2.14): 

(i) Every soft 2
~
T -space is a soft KC-space. 

(ii) Every soft KC-space is a soft 1
~
T -space. 

Proof: It is obvious. 

 

Proposition (2.15): 

(i) Every soft LC-space is a soft KC-space. 

(ii) Every soft LC-space is a soft 1
~
T -space. 

Proof: It is obvious. 

Theorem (2.16): Every soft 2
~
T P-space ),~,( PU τ  is a soft LC-space. 

 

Proof: Let ),( PL  be a soft Lindelöf set in U
~

. To prove that ),( PL  is soft closed in U
~

. Let 

cPLx ),(~~    ),(~~ PLy , we get yx ~~  , since ),~,( PU τ  is a soft 2
~
T -space, then   xPH ~),(  and 

yPK ~),(  are soft open sets in U
~

 such that xPHx ~),(~~ , yPKy ~),(~~   and  yx PKPH ~~ ),(
~

),(  φ~ . 

Hence ~),( PL 
),(~~

~),(

PLy

yPK



, thus )},(~~:),{( ~ PLyPK y   is a soft open cover of ),( PL .  Since ),( PL  

is soft Lindelöf    Nnny
PK }),{( ~  is a countable soft subcover of ),( PL . Let 


Nn

yn
PKPW



 ~),(),( and ),( PV 
Nn

xn
PH



~),(  ),( PW  is soft open, since it is a soft union of soft 
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open sets and ),( PV  is also soft open, since ),~,( PU τ  is a soft P-space and soft intersection of a 

countable soft open sets is soft open. Hence ),(~ PVx  and ),(~),( PWPL  . To prove that 

φ~),(
~

),( PWPV  . Since φ~),(
~

),( ~~ 
nn yx PKPH   , Nn      φ~),(

~
),( ~ 

ny
PKPV  , 

Nn     φ~),(
~

),( PWPV      φ~),(
~

),( PLPV      cPLPVx ),(~),(~     cPL ),(  is 

soft open    ),( PL  is soft closed. Thus ),~,( PU τ  is a soft LC-space. 

Corollary (2.17): Every soft 1
~
T -regular P-space is a soft LC -space. 

Proof: Let Uyx
~~~,~   such that yx ~~  . Since ),~,( PU τ  is a soft 1

~
T -space, then by theorem (1.8), }~{x  is 

soft closed in U
~

 and }~{
~~ xy . Since ),~,( PU τ  is a soft regular space, then by definition (1.10),   

),( PH  and ),( PK  are soft open sets in U
~

 such that ),(~}~{ PHx  , ),(~~ PKy  and φ~),(
~

),( PKPH  . 

Hence   ),( PH  and ),( PK  are soft open sets in U
~

 such that ),(~~ PHx , ),(~~ PKy  and 

φ~),(
~

),( PKPH    ),~,( PU τ  is a soft 2
~
T -space, since ),~,( PU τ  is a soft P-space, then by theorem 

(2.16), ),~,( PU τ  is a soft LC-space. 

 

Proposition (2.18): Countable soft union of soft Lindelöf sets is soft Lindelöf. 

Proof:Let Nnn PA )},{(  be a countable family of soft Lindelöf sets in U
~

. To prove that ),( PA

Nn

n


 

is soft Lindelöf. Let αα )},{( PV   be any soft open cover of ),( PA

Nn

n


  αα )},{( PV   is soft 

open cover of ),( PAn , Nn . Since ),( PAn  is soft Lindelöf Nn    NmPV
nm )},{( α  is a 

countable soft subcover Nn . That is  ),(~),( PVPA

Nm

n nm


 α , Nn    



~),(
Nn

n PA  

)),(( PV

NmNn
nm



α ),(

,

PV

Nmn
nm



 α . Since union of countable family of countable set is countable  

 

 NmnPV
nm ,)},{( α  is a countable soft subcover of ),( PA

Nn

n


  ),( PA

Nn

n


 is soft Lindelöf. 

Proposition (2.19): For a soft Lindelöf 2
~
T -space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft LC-space. 

(ii) ),~,( PU τ  is a soft P-space. 

Proof: )()( iii  :  Let ),( PA  be a soft σF -closed set in U
~

   ),(),( PFPA

Nn

n


 , where ),( PFn  is 

soft closed in U
~

, Nn . Since ),~,( PU τ  is soft Lindelöf, then by theorem (1.15), ),( PFn  is soft 

Lindelöf in U
~

, Nn , hence by proposition (2.18), ),(),( PFPA

Nn

n


  is soft Lindelöf in U
~

, but 

),~,( PU τ  is a  soft LC-space, then ),( PA  is soft closed in U
~

. Thus ),~,( PU τ  is a soft P-space. 

)()( iii  : This is obvious by theorem (2.16). 

 

Proposition (2.20): For a soft Lindelöf Q-set space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft LC-space. 

(ii) ),~,( PU τ  is a soft P-space. 

Proof: )()( iii  : This is obvious by proposition (2.19). 

)()( iii  : This is obvious by corollary ((2.10),v). 

Proposition (2.21): For a soft regular P-space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft LC-space. 
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(ii) ),~,( PU τ  is a soft KC-space. 

(iii) ),~,( PU τ  is a soft 1
~
T -space. 

 

Proof: )()( iii  : This is obvious by proposition ( 2.15),(i)). 

)()( iii  : Let ),~,( PU τ  be a soft KC-space, then by proposition ((2.14), (ii)), ),~,( PU τ  is a soft 1
~
T -

space, but ),~,( PU τ  is soft regular, then ),~,( PU τ  is a soft 2
~
T -space. Since ),~,( PU τ  is a soft P-space, 

then by theorem (2.16), ),~,( PU τ  is a soft LC-space. 

)()( iiiii  : This is obvious by proposition ((2.14),(ii)). 

)()( iiiii  : Let ),~,( PU τ  be a soft 1
~
T -space, since ),~,( PU τ  is soft regular, then ),~,( PU τ  is a soft 

2
~
T -space. Hence ),~,( PU τ  is a soft KC-space by proposition ((2.14), (i)). 

Definition (2.22): A soft topological space ),~,( PU τ  is called a soft 1R -space if x~  and y~  have 

disjoint soft neighborhoods whenever })~({})~({ yclxcl  . Clearly a soft space is soft 2
~
T  if and only if 

its soft 1
~
T  and soft 1R . 

Theorem (2.23): For a soft 1R -space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft KC-space. 

(ii) ),~,( PU τ  is a soft 1
~
T -space. 

(iii) ),~,( PU τ  is a soft 2
~
T -space. 

Proof: )()( iii  : This is obvious by proposition ((2.14),(ii)). 

)()( iii  : Let ),~,( PU τ  be a soft 1
~
T -space, since ),~,( PU τ  is a soft 1R -space, then ),~,( PU τ  is a soft 

2
~
T -space by definition (2.22). So ),~,( PU τ  is a soft KC-space by proposition ((2.14),(i)). 

)()( iiiii  : This is obvious by definition (2.22).  

)()( iiiii  : It is obvious. 

Corollary (2.24):(i) Every soft 1R KC-space is a soft 2
~
T -space. 

(ii) Every soft 1R Q-set space is a soft 2
~
T -space. 

(iii) Every soft 1R Q-set space is a soft KC-space. 

(iv) Every soft 1L 3L -space is a soft KC-space. 

(v) Every soft 1R 3L -space is a soft 2
~
T -space. 

(vi) Every soft 1R 3L -space is a soft KC-space. 

Proof: It is obvious. 

Corollary (2.25): For a soft regular space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft KC-space. 

(ii) ),~,( PU τ  is a soft 1
~
T -space. 

Proof: )()( iii  : This is obvious by proposition ((2.14),(ii)). 

)()( iii  : Let ),~,( PU τ  be a soft 1
~
T -space, since ),~,( PU τ  is soft regular, then ),~,( PU τ  is a soft 2

~
T -

space. Hence by proposition ((2.14),(i)), ),~,( PU τ  is a soft KC-space.  

Theorem (2.26): For a soft 2
~
T -space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft LC-space. 

(ii) ),~,( PU τ  is a soft 1L -space and a soft 2L -space. 

 

Proof: )()( iii  : This is obvious by theorem ((2.5),(i)). 

)()( iii  : Let ),( PL  be a soft Lindelöf set in U
~

 and ),(
~~ PLx . To prove that )),((

~~ PLclx . Since 

),~,( PU τ  is a soft 2
~
T -space, then ),(~~ PLy ,  τ~~),( ~ yPV  such that yPVy ~),(~~  and 
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)),((
~~ ~yPVclx . Hence )},(~~:),{( ~ PLyPV y   is a soft open cover of ),( PL .  Since ),( PL  is soft 

Lindelöf      Nnny
PV }),{( ~  is a countable soft subcover of ),( PL . Thus 


Nn

yn
PVPL



 ~),(~),( )),((~ ~
Nn

yn
PVcl



 .     For each Nn , )),((
~

),( ~
ny

PVclPL   is soft Lindelöf. 

Since ),~,( PU τ  is a soft 2L -space, then )]),((
~

),[( ~
ny

PVclPLcl   is soft Lindelöf. If 

),( PW ])),((
~

),[( ~ 
Nn

yn
PVclPLcl



, then ),( PW  is soft Lindelöf σF -closed set in U
~

, but ),~,( PU τ  

is a soft 1L -space, then ),( PW  is soft closed and ),(
~~ PWx , hence )),((

~~ PLclx . Thus ),( PL  is a 

soft closed set inU
~

. Therefore ),~,( PU τ  is a soft LC-space. 

Corollary (2.27): For a soft Lindelöf 2
~
T -space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft P-space . 

(ii) ),~,( PU τ  is a soft LC-space. 

(iii) ),~,( PU τ  is a soft 1L -space and a soft 2L -space. 

Proof: This is obvious by proposition (2.19) and theorem (2.26). 

Corollary (2.28): For a soft regular 1L 2L -space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft LC-space. 

(ii) ),~,( PU τ  is a soft 1
~
T -space. 

Proof: )()( iii  : This is obvious by proposition ((2.15),(ii)). 

)()( iii  : This is obvious by theorem (2.26). 

Corollary (2.29): For a soft 1R 1L 2L -space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft LC-space. 

(ii) ),~,( PU τ  is a soft 1
~
T -space. 

Proof: )()( iii  : This is obvious by proposition ((2.15), (ii)). 

)()( iii  : This is obvious by theorem (2.26). 

Corollary (2.30): For a soft discrete space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft LC-space. 

(ii) ),~,( PU τ  is a soft 2L -space. 

Proof: It is obvious.  

Theorem (2.31): If ),~,( PU τ  is a soft topological space and UY
~~~

 , 
n

i

iYY

1

~~



 , where iY
~

, 

ni ,...,2,1  are soft closed LC-subspaces of U
~

, then Y
~

is a soft LC-subspace. 

Proof: Let ),( PL  be a soft Lindelöf subset of Y
~

, then ),(
~~

PLYi  , ni ,...,2,1  are soft closed in 

),( PL  which is soft Lindelöf so ),(
~~

PLYi  , ni ,...,2,1  are  soft Lindelöf subset of iY
~

 ni ,...,2,1 . 

Since iY
~

, ni ,...,2,1  is a soft LC-subspace, then ),(
~~

PLYi   is a soft closed in iY
~

, ni ,...,2,1 . Since 

iY
~

, ni ,...,2,1  is soft closed in U
~

, then ),(
~~

PLYi  , ni ,...,2,1  is soft closed in U
~

. But ),( PL  

)),(
~~

(

1

PLY

n

i

i 


, so ),( PL  is soft closed inU
~

 and also inY
~

. HenceY
~

is a soft LC-subspace. 

Proposition (2.32): Every soft Lindelof 1L -space is a soft P-space. 

Proof: Let ),( PA  be a soft σF -closed set in U
~

   ),(),( PFPA

Nn

n


 , where ),( PFn  is soft closed 

in U
~

, Nn . Since ),~,( PU τ  is soft Lindelöf, then by theorem (1.15), ),( PFn  is soft Lindelöf in 
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U
~

, Nn . Hence ),( PA  ),( PF

Nn

n


 is soft Lindelöf in U
~

 by proposition (2.18). Since ),~,( PU τ  

is a soft 1L - space, then ),( PA  is soft closed in U
~

. Thus ),~,( PU τ  is a soft P-space. 

Proposition (2.33): For a soft Lindelöf 2
~
T -space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft LC-space. 

(ii) ),~,( PU τ  is a soft 1L -space. 

Proof: )()( iii  : This is obvious by theorem ((2.5), (i)). 

)()( iii  : Let ),~,( PU τ  be a soft 1L -space, since ),~,( PU τ  is a soft Lindelöf space, then by 

proposition (2.32), ),~,( PU τ  is a soft P-space. Since ),~,( PU τ  is a soft 2
~
T -space, then ),~,( PU τ  is a 

soft LC-space by theorem (2.16). 

Proposition (2.34): For a soft Q-set space ),~,( PU τ  having a soft dense Lindelöf subset the following 

statements are equivalent: 

(i) ),~,( PU τ  is a soft P-space. 

(ii) ),~,( PU τ  is a soft Lindelöf and a soft 1L -space. 

 

Proof: )()( iii  : If ),~,( PU τ  is a soft P-space, then ),~,( PU τ  is a soft 1L -space. Since ),~,( PU τ  is a 

soft Q-set space, then by corollary ((2.10),(iii)), ),~,( PU τ  is a soft LC-space, hence ),~,( PU τ  is a soft 

2L -space. Since ),~,( PU τ  having a soft dense Lindelöf subset, then by theorem ((2.5),(vi)), ),~,( PU τ  

is a soft Lindelöf space. 

)()( iii  : This is obvious by proposition (2.32). 

Proposition (2.35): For a soft 2
~
T 1L -space ),~,( PU τ  having a soft dense Lindelöf subset the 

following statements are equivalent: 

(i) ),~,( PU τ  is a soft LC-space. 

(ii) ),~,( PU τ  is a soft Lindelöf space. 

Proof: )()( iii  : If ),~,( PU τ  is a soft LC-space, then ),~,( PU τ  is a soft 2L -space. Since ),~,( PU τ  

having a soft dense Lindelöf subset, then by theorem (2.5),(vi)), ),~,( PU τ  is a soft Lindelöf space. 

)()( iii  : Let ),~,( PU τ  be a soft Lindelöf space, then by theorem ((2.5),(vi)), ),~,( PU τ  is a soft 2L -

space. Since ),~,( PU τ  is a soft 2
~
T 1L -space, then by theorem (2.26), ),~,( PU τ  is a soft LC-space. 

Proposition (2.36): For a soft Lindelöf Q-set space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft 1L -space. 

(ii) ),~,( PU τ  is a soft 2L -space and a soft P-space. 

Proof: )()( iii  : Let ),~,( PU τ  be a soft 1L -space, since ),~,( PU τ  is a soft Lindelöf space, then by 

proposition (2.32), ),~,( PU τ  is a soft P-space. Since ),~,( PU τ  is a soft Q-set space, then by corollary          

((2.10),v), ),~,( PU τ  is a soft 2L -space. 

)()( iii  : This is obvious by theorem ((2.5),(ix)). 

Theorem (2.37): If ),~,( PU τ  is a soft topological space and UY
~~~

 , 
n

i

iYY




~~

, where iY
~

, 

ni ,...,2,1  are soft closed 2L -subspaces of U
~

, then Y
~

is a soft 2L -subspace. 

Proof: Let ),( PL  be a soft Lindelöf subset of Y
~

, then ),(
~~

PLYi  , ni ,...,2,1  are soft closed in 

),( PL  which is soft Lindelöf, so ),(
~~

PLYi  , ni ,...,2,1  are soft Lindelöf subset of iY
~

 ni ,...,2,1 . 

Since iY
~

, ni ,...,2,1  is a soft 2L -subspace, then )),(
~~

( PLYcl i   is a soft Lindelöf in 

iY
~

, ni ,...,2,1 . Hence )),(
~~

( PLYcl i  , ni ,...,2,1  is soft Lindelöf in Y
~

. But 
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)),(( PLcl ))),(
~~

((

1

PLYcl

n

i

i 


 ))),(
~~

((

1

PLYcl

n

i

i 


 , so )),(( PLcl  is soft Lindelöf inY
~

. HenceY
~

is 

a soft 2L -subspace. 

Theorem (2.38): For a soft 1R P-space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft LC-space. 

(ii) ),~,( PU τ  is a soft KC-space. 

(iii) ),~,( PU τ  is a soft 1
~
T -space. 

(iv) ),~,( PU τ  is a soft 2
~
T -space. 

(v) ),~,( PU τ  is a soft 3L -space. 

Proof: )()( iii  : This is obvious by proposition ((2.15),(i)). 

)()( iii  : Let ),~,( PU τ  be a soft KC-space, since ),~,( PU τ  is a soft 1R -space, then by proposition 

((2.14),(ii)) and definition (2.22), ),~,( PU τ  is a soft 2
~
T -space, since ),~,( PU τ  is a soft P-space, then by 

theorem (2.16), ),~,( PU τ  is a soft LC-space. 

)()( iiiii  : This is obvious by proposition ((2.14),(ii)). 

)()( iiiii  : Let ),~,( PU τ  be a soft 1
~
T -space, since ),~,( PU τ  is a soft 1R -space, then ),~,( PU τ  is a 

soft 2
~
T -space by definition (2.22). So ),~,( PU τ  is a soft KC-space by proposition ((2.14),(i)). 

)()( iviii  : Let ),~,( PU τ  be a soft 1
~
T -space, since ),~,( PU τ  is a soft 1R -space, then ),~,( PU τ  is a 

soft 2
~
T -space by definition (2.22).  

)()( iiiiv  : It is obvious. 

)()( viv  : Let ),~,( PU τ  be a soft 2
~
T -space, since ),~,( PU τ  is a soft P-space, then ),~,( PU τ  is a soft 

LC-space by theorem (2.16), so ),~,( PU τ  is a soft 3L -space. 

)()( ivv  : Let ),~,( PU τ  be a soft 3L -space, then ),~,( PU τ  is a soft 1
~
T -space. Since ),~,( PU τ  is a 

soft 1R -space, then by definition (2.22), ),~,( PU τ  is a soft 2
~
T -space. 

Theorem (2.39): For a soft 2
~
T 1L -space ),~,( PU τ  the following statements are equivalent: 

(i) ),~,( PU τ  is a soft LC-space.  

(ii) ),~,( PU τ  is a soft 4L -space. 

(iii) ),~,( PU τ  is a soft 3L -space. 

(iv) ),~,( PU τ  is a soft 2L -space. 

Proof: )()( iii  : This is obvious by theorem ((2.5),(i)). 

)()( iii  : This is obvious by theorem ((2.5),(iii))  and theorem (2.26). 

)()( iiiii  : Let ),~,( PU τ  be a soft 4L -space, since ),~,( PU τ  is a soft 1L -space, then ),~,( PU τ  is a 

soft 2L -space by theorem ((2.5),(iii)). Since ),~,( PU τ  is a soft 2
~
T -space, then by theorem (2.26), 

),~,( PU τ  is  a soft LC-space. Hence ),~,( PU τ  is a soft 3L -space by theorem ((2.5),(i)). 

)()( iiiii  : This is obvious by theorem ((2.5),(iv)). 

)()( iviii  : Let ),~,( PU τ  be a soft 3L -space, since ),~,( PU τ  is a soft 1L -space, then by theorem 

((2.5),(ii)) , ),~,( PU τ  is a soft LC-space. Hence ),~,( PU τ  is a soft 2L -space by theorem ((2.5),(i)). 

)()( iiiiv  : Let ),~,( PU τ  be a soft 2L -space, since ),~,( PU τ  is a soft 2
~
T 1L -space, then ),~,( PU τ           

is a soft LC-space by theorem (2.26). Hence ),~,( PU τ  is a soft 3L -space by theorem ((2.5),(i)). 
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