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Abstract  

    It is so much noticeable that initialization of architectural parameters has a great 

impact on whole learnability stream so that knowing  mathematical properties of 

dataset results in providing neural network architecture a better expressivity and 

capacity. In this paper, five random samples of the Volve field dataset were taken. 

Then a training set was specified and the persistent homology of the dataset was 

calculated to show impact of data complexity on selection of multilayer perceptron 

regressor (MLPR) architecture. By using the proposed method that provides a well-

rounded strategy to compute data complexity. Our method is a compound algorithm 

composed of the t-SNE method, alpha-complexity algorithm, and a persistence 

barcode reading method to extract the Betti number of a dataset. After that,  MLPR 

were trained using that dataset using a single hidden layer with increased hidden 

neurons. Then, increased both hidden layers and hidden neurons. Our empirical 

analysis has shown that the training efficiency of MLPR severely depends on its 

architecture’s ability to express the homology of the dataset. 

 

Keywords: ANN Architecture, Alpha Complexity, Topological Data Analysis, Betti 

Number, Persistence Barcode. 

 

دِ البياناتِ على بظيةِ الشبكةِ العصبيةإِستِخدامُ الباركود الطستطر لإظهارِ تأثيرِ تعقي  
 

هظاء مرتضى علي*, لبيبة مضير عبد الوهاب  

العِراق, البَررة, جامعةُ البَررة, كُميةُ العمهم, قِدمُ الرياضيات  
  ألخُلاصة 

لها تأثير كبير عمى مجرى قابمية التعمم بالكامل  الهيكميةمن السلاحظ إلى حد كبير أن تهيئة السعمسات         
، بحيث تؤدي معرفة الخرائص الرياضية لسجسهعة البيانات إلى تهفير بشية الذبكة العربية بتعبير وقدرة 

، ثم تم تحديد  Volveأفزل. في هذا البحث ، تم أخذ خسس عيشات عذهائية من مجسهعة بيانات حقل 
ل السدتسر لسجسهعة البيانات لإظهار تأثير تعقيد البيانات عمى اختيار بشية مجسهعة التدريب وحُدب التساث

multilayer perceptron regressor (MLPR باستخدام الطريقة السقترحة التي تهفر استراتيجية شاممة )
فا وخهارزمية تعقيد أل t-SNEلحداب تعقيد البيانات. طريقتشا عبارة عن خهارزمية مركبة تتكهن من طريقة 

 MLPRمن مجسهعة البيانات. بعد ذلك ، تم تدريب  Betti numberوطريقة قراءة الباركهد لاستخراج 
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مخفية . بعد ذلك ،  باستخدام مجسهعة البيانات تمك باستخدام طبقة مخفية مفردة مع زيادة الخلايا العربية
تعتسد بذدة  MLPRي أن كفاءة تدريب زادت الطبقات السخفية والخلايا العربية السخفية. أظهر تحميمشا التجريب
 عمى قدرة بشيتها عمى التعبير عن التساثل في مجسهعة بيانات التدريب.

1. Introduction 

    In the past century, due to rapid progress in technological ideas and their applications, it 

was no longer possible to exploit some of mathematical models, especially statistical models 

in huge data-based methods, because it requires high computing power. Thus providing a 

computational technique that helps to reduce the time complexity and elevating the 

computation power of learning algorithms was severely required to push the science forward 

by cloud computing that decreases the training time of learning algorithms especially in deep 

learning. 

    Deep learning is a subfield of machine learning consisting of a set of learning-based models 

that mimics the brain's functioning and structure to train a computer system for achieving 

results by using pre-available data [1]. Deep learning is constantly a rising trend in the data 

analysis field, has been labeled one of the 10 advanced strategies of 2013 [2-4]. Substantially, 

the most common technique in deep learning is ANNs that have been adjusted with more 

layers to provide multiple levels of abstractions and better data predictions [2]. Regarding this 

matter, A deep neural network (DNN), which is a representation-learning method comprised 

of multiple layers, is supplied with a huge amount of raw data to discover the optimal data 

representation that can be used for prediction or classification [5].  

    Starting from the raw data, each non-linear unit embedded in DNN transforms the 

representation of data at one level into a higher level of abstraction. Specifically, a non-linear 

transformation on the output vector of the previous layer is performed by the next layer, 

thereby the representation of data is continuously exposed to several transformations as the 

data is permanently and successively being forwarded from one layer to another. The non-

linear transformation modules that involve in such alteration of data representation are the 

weight matrix between two consecutive layers, biases, and the activation functions [6]. To 

obtain the optimal representation of data in a backpropagation network, the ANN trains itself 

by leaning on a gradient-based optimization procedure by which the decision variables of the 

weight vector are being adjusted to minimize the objective function of training error in each 

training epoch. At the end of the final epoch, the model’s capacity should be perfectly 

optimized in such a way that avoids the occurrence of a high generalization gap between the 

training and the testing errors (overfitting) [7]. Consequently, the key sight in the utilization 

of the adjustable variables of weights and biases along with activation functions is to reach the 

point at which the model would have a better representation of data to interact with. 
Accordingly, the extraction of such a high-level representation enables the model to acquire 

an outstanding capability for splitting data as in neural network classifier model or fitting in 

case of  neural network regressor.  

    As illustrated above, the adequate technique to detect an optimal capacity of DNN can be 

achieved by selecting the appropriate hypothesis space of the hidden units (list of activation 

functions) that fits well with the amount and distribution of examples [7]. Nevertheless, a 

question may arise on whether the detection of the optimal number of hidden layers (depth) 

and hidden neurons (width) would enhance the model capacity. Undoubtedly, the significant 

challenge in each domain is establishing the model architecture that takes advantage of the 

structure in data optimally [8]. 

    In ANN, since hidden neurons and layers are the main units, initially, determination of 

ANN architecture, depth and width, is the most important issue that should be considered 

before initialization of any other hyperparameters [9, 10]. Furthermore, during the training 

process, majority of other hyperparameters can be modified accurately with less 
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computational complexity if the architecture of ANN were initialized ideally. Both 

feedforward and backpropagation are affected by early state of ANN architectural design. 

During feeding of data, each hidden layer applies geometric transformations which are a 

linear transformation implemented by the matrix of weights  , a translation implemented by 

the bias vector  , and utilization of activation functions which provides two advantages, one 

for a restriction of the new representation’s magnitude to a certain limit, the other is to 

provide non-linearity to the model. On the other hand, a better convergence with less 

computation can be performed by an optimization algorithm, if the size of the weights matrix 

where scrupulously determined. Thus, If the optimal selection of the model’s representational 

capacity increases the model performance, then the size of depth and width do likewise.  

    On the other hand, it was proved that increasing width and depth of ANN is the most 

straightforward method to improve their performance; however, this easy approach has two 

main pitfalls clarified in [11]. Mainly, a larger size usually means a larger number of 

parameters, which makes the expanded network more vulnerable to overfitting, particularly if 

the training set has a limited number of labeled examples. Besides this capacity-related 

problem, from a computation perspective, more adjustable parameters, more dramatic 

increase of running time. By taking such drawbacks as a challenge. Therefore, overall idea 

was to overcome the problem of architectural parameters selection of the ANNs to improve 

their capacity and rein the computation complexity of the training process as low as 

reasonably achievable. 

    Since ANN are learning from examples type of model, undoubtedly, the properties of the 

training dataset are main influencing factor of ANNs learning performance. Thus, having 

prior knowledge of raw data properties such as its probability distribution behavior, 

correlations, and other statistical features significantly helps in determining the most 

generalizable and expressive architecture that would be suitable for that data. In addition to 

those properties, topological features of a dataset can also be considered as a helpful guider 

concerning this matter and were therefore utilized in this paper as a determining factor for the 

optimal and less-computational architecture of ANN. In this paper, we employed a 

topological data analysis technique (TDA) to detect and show the relationship between the 

optimal architecture of MLPR and the topological complexity (TC) of the training dataset 

itself. Our technique has merged a dimensionality reduction method called t-SNE proposed by 

[12]. We preferred to take advantage of t-SNE since the authors in [13] reported that t-SNE 

can perform well with various data types, along with a filtration algorithm called alpha 

complexity and a persistent barcode reading method to extract the Bitti number (BN) of 

datasets, and thus detecting the topological complexity of a dataset.  

1. Related Work 

    In Deep learning, the essential features of hierarchical representation and optimization have 

revolutionized the state of the art [7]. Enhancing generalization capacity and reducing 

computation complexity of neural networks have been targeted profusely, particularly through 

improving preliminary estimate of the structural parameters of ANN [14]. Many works have 

been concentrated on enhancing the expressivity and capacity of ANNs by trying to attain 

their perfect width and depth as we have discussed in a few next lines.  

    Pruning is one of the popular approaches to obtain optimal network architecture. For 

instance, an algorithm called pruning by significance (N2PS) which was proposed in [15] 

estimates the significance value of neurons, thereby prunes the unimportant neurons. This 

pruning algorithm is implemented by estimating the significance value of each input neuron 

hidden neuron in trained neural network and assign significance values to those neurons. Such 

estimated values were calculated by the Sigmoidal activation value of a neuron along with all 

weights of its outgoing connections. Thus, N2PS prunes all superfluous neurons which have 

significance values less than an estimated threshold.  
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   Swarm intelligence algorithms have been also utilized in optimal architecture detection 

issues. In reference [16], the authors implemented the particle swarm optimization algorithm 

(PSO) to detect optimal architecture of recurrent neural networks. In that PSO, each particle 

in initial population consists of three parameters which were learning rate, number of hidden 

neurons, and activation function. Consequently, their goal was to find the best particle that 

has the optimal collection of pre-mentioned parameters including the optimal number of 

hidden neurons. employing the particle swarm for converging at the optimal network’s 

architecture can be considered as an accurate approach. However, from a computation 

perspective,  this method is still costly, since each particle represents a neural network itself 

that needs to be executed when calculating the fitness function of particles. 

   Since they have been raised, convolutional neural networks (CNN) own the lion’s share 

regarding architectural issues. The authors in [11] focused on enhancing the initial 

architectural choices of the deep CNN for image classification proposed by [17]. They 

utilized Hebbian principle and intuition of multi-scale processing to design the optimal 

architectural decisions that aim to cautiously increase width and depth of the network while 

maintaining the computational budget constant. On the other hand, neural architecture search 

(NAS) in [18] adopted  compositional hyperparameter search as a selection mechanism of 

neural architecture through which rather than attempting to find a single best architecture, 

they suggested using the concept of a “fabric” which is a system that contains an 

exponentially huge amount of architectures. in addition to the recovering of individual 

architectures as paths, the fiber will gather all embedded architectures together, exchanging 

their weights where their paths overlap. 

    In [19], by comparing between deep multilayered perceptrons (MLPs) and shallow ones in 

terms of the number of linearity regions, the authors proposed first step towards providing a 

mathematical analysis tool to discover the behavior of rectifier MLPs by attempting to study 

the relationship of MLPs depth and width to their complexity of sublevel sets. This was a 

motivation for [20] to propose a new metric, based on the BN, to assess the complexity of 

functions performed by ANN. This metric was utilized to show that deep networks can realize 

maps with more complexity than the shallows.  

    The authors in [21] clarified how the topological assumptions on input data result in 

efficiently expressive architectures. For this purpose, they proposed a novel layers 

parameterization framework called deep function machines (DFMs). DFMs are mathematical 

methods that can be used to produce provable properties in ANNs. They showed a great result 

in finding a better architecture of RippLeNET by utilizing the expressive ability of their 

DFMs.  In [22], the authors proposed a mathematical tool to explore and understand the 

neural networks' nonlinear maps. This tool which was based on Riemannian geometry and 

dynamical mean-field theory is used to provide basic reconnoitering of deep neural networks 

expressivity. 

     In [23], the authors proposed a TDA technique that aims to show the impact of data 

complexity on the architecture expressivity of CNN. Their technique was leaned on Vietoris-

Rips complex which is a computation costly filtration method. Besides, they have utilized 

two-dimensional persistent barcodes to compute the BN of their dataset. They have shown 

ability of CNN architectures to express various homology of datasets. They have shown an 

outstanding result to determine the width and depth of CNN. However, unfortunately, They 

did not clarify their method for extracting the BN, or how their algorithm behaves when 

utilizing a huge amount of dataset.  

     Since ANNs are platforms for calculating the nonlinear maps across high-dimensional 

spaces which must be compatible with the geometrical nature of the input dataset. From an 

algebraic topology perspective, The topological nature of datasets can be detected by 

exploring their complexity. Therefore, Efficient learning ability of neural network 
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architectures can be subject to complexity of datasets as we concluded later in the next 

sections. As a result, in this paper, we proposed a composite low-cost TDA algorithm to 

compute data complexity. Our algorithm is based on a dimensionality reduction called t-SNE, 

alpha complexity filtration algorithm, and a persistent barcode reading method for extracting 

the BN. Through utilizing this algorithm, we have shown effects of the data homology on the 

expressivity of the depth and width of the MLPR model. Our overall goal is to establish a 

practical link between the preceding theories on ANNs expressive ability and data homology, 

with potential ability to reduce search space of ANNs architectures. 

3. Background  

    Modern algebraic topology has emerged to offer quantitative methods for discovering and 

analyzing the "shapes" of geometric objects without any need for distances. It appoints 

algebraic invariants to geometric objects based on the relative position of points [24]. 

Historically, basic theory of algebraic topology has been associated with characterizing 

topological spaces based on their global properties by utilizing the algebraic invariants [25]. 

Nevertheless, theories from algebraic topology have recently been extended to the field of 

datasets as a means of analyzing the "shapes" of data by performing specialized algorithms. 

Topological spaces can be classified depending on the numbers and categories of holes 

embedded in those spaces [26]. For instance, a circle differs from a disk due to the existence 

of a hole in its middle. One of the core advantages of algebraic topology is providing 

powerful mechanisms to compare the complexity of shapes, which can be carried out by 

distinguishing among the topological spaces, whether it is topologically equivalent (or 

distinct), by assigning them to algebraic objects (e.g: chains and groups) inorder to finding out 

whether those objects are isomorphic (or not) [27]. Although there are several sorts of 

algebraic topology methods that deal with measuring complexity, homology is an efficient 

and computationally feasible method to compute the complexity of the topological spaces 

[28]. The following described the definition of homology group. 

Definition 1.1 suppose   as a topological space with  -dimension holes that has a number 

denoted by   , then           is defined as the     homology group. Bear in mind that 

   is the number of separate connected components (clusters);    represents circle;    are the 

gaps, and        is called  th Betti number of   [23]. 

Definition 1.2  if    is topological space and       is    homology group of X, then the 

homology      {     } 
  [23]. 

Example 1.1  Let    and    are datasets, we assume that    is the union of  two solid balls, 

   is the union of two solid balls and two rings. Since there are two separated clusters (0-

dimensional holes) in   ,          , and since there is no ring (one-dimensional holes), 

then         { }. Hence,         { } for    . For   , since there are four separated 

clusters,          , and since there are two rings, then          . As a result,    is less 

complex than   . Note that,    is the number of 0-dimensional holes (clusters),    is the 

number of one-dimensional holes (circles), and     is the number of two-dimensional holes 

(gaps or cavities). 

Corollary 1.1. if       is a homeomorphism map  then                is an 

isomorphism [23]. 

    During the homology’s determination in the previous example, we were compelled to 

presume that our data (or spaces) were in form of geometric shapes. But, to properly take 

advantage of homology, we have to be able to calculate the homology directly on the data 

with the continuity of capturing significative topological features (e.g: clusters, circles, and 

gaps). For doing so, here comes the ability of persistent homology, which is a topological data 

analysis method, to recognize the valuable features in the spaces at multiple levels. In general, 

homology helps to calculate the number of n-dimensional holes in the space, and persistent 

homology provides a method to track those features as the scale grows [29]. For better 
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understanding, we point the reader to great expository papers on persistent homology in [30] 

and [31]. Persistent homology defines the topological features of the data by converting data 

into simplicial complexes by utilizing a filtration method. Particularly, filtration is a 

topological space X having a sequence of subspaces                  defined as 

filtered simplicial complex. 

     The persistent homology is computed as    
                on the simplicial 

complex. Furthermore, the final result can be stored in various visualization structures such as 

a multi-set structure called persistence diagram or in persistence barcode [32]. The barcode 

indicates the topological features that are computed from a simplicial complex [33]. In Figure 

1, which represents the barcode of 3D topological space, the red, green, and purple bars 

represent   ,   ,and    respectively. The left endpoint of bars denotes the birth of betti (  ) 

that refers to the time at which the homology discovers a specific feature, and the right 

endpoint denotes the death which refers to the time at which the feature becomes 

unrecognizable in the filtration. A bar with a short distance refers to a feature with a short life 

which is considered as a topological noise. On contrary, a long-life feature is considered a 

topological feature of the given space [34]. These diagrams will be utilized frequently for 

computing the persistent homology of datasets later on in the proposed work. 

 

 
Figure 1- Persistence Barcode. 

 

    Back to the performing of persistent homology computation, there are several methods to 

build the filtered simplicial complex for the point cloud. For doing so, we utilized the 

Vietoris-Rips (VR) and the Alpha-Complexity algorithm (   )[35]. The following defines the 

VR [26].  

Definition 1.3. VR is a method to create a filtered simplicial complex by utilizing equal 

distances between any two points. Let   be a dataset in the form of a point cloud and let 

   , then define the VR complex as:        {                      }. If   has   

points then the maximal possible number of VR complex is      - simplex which contains 

all points with all its sub-simplices in  . By taking set {  } s.t             , then we 

have the filtered simplicial complex                              .     

    On the other hand, since     is the nerve of restricted Voronoi regions cover, and a 

subcomplex of Delaunay triangulation. Thus, To own a deep imagination and a better 
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understanding of     , the approaches of Voronoi diagrams and Delaunay triangulation should 

be preferably clarified. 

Definition 1.4. A Voronoi diagram, as shown in Figure 2 (A), partitions the space   with 

areas close to a set of finite points    , these points called sites  . Each site corresponds to 

an area called Voronoi cell   , and the Voronoi cell of   is defined as:    {  
                   } [36]. 

Definition 1.5. Delaunay triangulation, as shown in Figure 2 (B), state that between any two 

points       there is an edge if and only if their Voronoi cells    and    have a common 

edge in the Voronoi diagram [37].  

 

 
Figure 2- (A): Voronoi Diagram, (B): Delauany Trianulation. 

 

Definition 1.6. Thes alpha complexes of a space X, denoted by      , is a subcomplex of  

Delaunay triangulation. Let         and let                     where        be 

a closed ball with radius   and center  . Additionally, let    be a Voronoi cell, then alpha 

complexes are as follows:       {             (        )   }.   with a very 

small value leads to the situation in which no collide occurs among Voronoi cells; 

consequently, the complex is the same as the cloud point.    is the Delaunay triangulation 

when a very large   is taken. If   is moderate in between, we get different complexes, i.e, 

            , then we have filtered simplicial complex                   

         [37]. 

    By the end of this section, we have described one of the powerful methods in the art of 

computational topology, and with the aforementioned methods founded, we now have the 

tools to examine the expressivity of MLPR in the domain of topological data analysis. 

4. Proposed Methodology  

    The initialization of an effective architecture design is the most significant part to improve 

ANN performance. In this section, we are about to explain the applying of persistent 

homology to characterize the efficiency of MLPR architectures. The TC of a training dataset 

impacts the expressivity of MLPR. More specifically, an MLPR with simple architecture 

would fail to express a dataset with high TC. In contrast, a dataset with simple TC does not 

require a more complicated architecture in order to be expressed. In domain of architecture 

selection, If a search space contains a group of architectures that some of might be suitable for 

expressing the training dataset’s homology, elimination of the rest that incapable to express 

the dataset’s persistent complexity diminishes the search space significantly, and thus help in 

reaching the optimal architecture. Thus, diminishing of a search space should be started by 

computing the dataset complexity. In the forthcoming paragraphs, we have shown how to 

install a simple effective approach to compute the persistent homology of a dataset, which 
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passes through three phases; the reduction phase, the construction phase, and the extraction 

phase. 

    Consider that S is a high-dimensional training dataset, has a specific TC, which needs to be 

forwarded to MLPR. before selecting the architectural parameters (depth, width) of MLPR, 

dataset S is embedded with a useful extractable homology that may help in specifying a better 

capacity of MLPR. To extract such homology, the reduction phase is carried out, in which the 

high dimensions of S should be reduced to 3-dimensions by employing a dimensionality 

reduction technique. 

   The dimensionality reduction for high-dimensional space   in a low-dimensional space   

with a small error nearly preserves Persistent homology. As several data-embedding 

algorithms try to be homeomorphism between   and   that is     by  corollary 1.1 we 

have             . Thus, thereby overcoming the impediments of existing persistent 

homology algorithms which do not operate well with high-dimensional datasets. A 

dimensionality reduction method t-SNE is used to achieve this matter.  

    After reducing the dimensions, the construction phase takes place, in this phase, the filtered 

simplicial complex of the reducted S is computed by utilizing a filtration method. Regarding 

this matter, the     algorithm, described in section 3, is exploited to construct the filtered 

simplicial complex of the dataset S, and thus, at the end of filtration, the topological features 

of S are stored in the form of a persistence barcode to be ready for computed the persistent 

homology by extracting the BN. Since dataset S is embedded in 3D form,  The persistence 

barcode will curry the topological information of three features which are clusters, circles, and 

gaps. 

    In the extraction stage, the BN of  S should be extracted from the barcode. There are a few 

extracting methods for doing such matter; However, In our work, we proposed a method that 

depends on the principle of interval. In our barcode, a fixed-length interval scans the entire 

barcode with a fixed radius   that can pack the prominent topological features, stores them in 

a BN vector. in more detail, we initially select a fixed   value which represents how many 

units would be inside the decision boundary of the scanning interval on the barcode’s x-axis. 

Thus, starting from the left endpoint of the barcode, the BN of the topological features is 

computed at the initial interval boundary which is [0,  ]. At every scanning step towards the 

right endpoint of the barcode, the interval boundary increasing by a specific real value, and 

the BN of the topological features is computed accumulatively to be stored in a vector [  ,   , 

  ] in such a way that any previously arisen features will not be considered in the 

accumulation at the current interval. This process goes on till reaching the right endpoint of 

the barcode at which the final BN is obtained.  

 
Figure 3-Simple Barcode Example. 
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    To further clarify our method, Figure 3 shows a simple 3D barcode that is ready to extract 

BN out of it. Suppose we choose    , then we compute the BN of the topological features 

at the first interval [   ], and store that BN in a vector [  ,   ,   ]. Here, the BN represents 

every feature bar that passes through the entire current interval, which means it does not 

appear or die inside that interval. For [   ], BN contains only two clusters that pass through 

the current interval that makes the BN vector stores [     ]. The scanning interval moves right 

by one unit to reach [   ] at which there are two cycles penetrate it, along with the previously 

appeared two clusters. Hence, the BN would be [     ]. Table 1  has shown the BN extracting 

for the rest of the interval, besides, the final BN was also determined during the last interval, 

which was [     ]. Note that the scanning step does not have to be an integer value, but it 

depends on the complexity of the barcode.  

 

 Table 1- BN for Each Interval 

Interval Betti Number 

[0,5] [2,0,0] 

[   ] [2,2,0] 

[   ] [2,3,0] 

[   ] [2,3,1] 

[   ] [2,3,1] 

[    ] [2,3,2] 

 

    After discovering the complexity of the dataset, the next stage is to train the MLPR through 

one layer with an increasing width to detect the one layered architecture through which 

MLPR can express the  TC of the dataset. Turning to the depth, MLPR has to be trained with 

search spaces   consisting of     architectures in which n is depth size; m is width size. By 

using such search space we expect to be able to discover the relationship between data 

complexity and MLPR architectures. 

5. Methods Setup and Results 

    In this section, we have described the applied datasets, computed results of persistent 

homology, and the preparation of MLPR. Furthermore, we have shown several MLPR 

training results that have been subjected to various datasets complexities. All algorithms were 

programmed utilizing PYTHON 3.8 in Jupyter within the ANACONDA environment
1
.  

5.1 Datasets description 

    In 2018, we got lucky that a huge data of Volve field was unveiled by oil company in 

Norway; thus it was a good opportunity for researchers, IT companies, and universities to 

utilize this data to solve several oil issues. The Volve Data Village data set used for this study 

is a licensed material and subjected to the Terms and Conditions. The intellectual property 

copyrights of the dataset are owned by Equinor, Exxon Mobil Exploration & Production 

Norway AS, and Bayerngas Norge AS. The author of this study is licensed to use the 

materials and affirm that there is no endorsement for this study made by Equinor and the 

former volve partners. The Volve field is located in the Norwegian North Sea, with a field life 

of 2008-2016, produced 10,037,081 SM3 of oil from Hugin Formation. 21 wellbores were 

drilled and logged with different tools to reveal some of the geological and petrophysical 

information. This information is important to decide upon the completion and the depletion 

plan of the oil field. The well logs of Volve Field were used in this study to understand the 

topology of the Volve filed data as a function of Neural Network topology. 
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   On the other hand, since MLP cannot train with missing values in the datasets, thus, before 

starting the training process of MLP, it is viable to clean out our datasets that contain several 

empty records. Therefore, the dataset was examined and prepared to be suitable for our 

model. After the data cleaning phase, with an attempt to be varying in terms of shape and 

amount, we have extracted five random datasets samples            from the full Volve 

filed dataset such that           having   dimensions (features) and m observations 

(examples), where          and    . The number of data points in each dataset is 

denoted by     
 
 , see the forthcoming table. The dataset's nine features are Gama Ray, 

caliper, resistivity, neutron porosity, bulk density, density correction, measured depth, True 

vertical depth, and P-sonic. 

    On the other hand, we have considered the first 8 features as inputs for training every 

architecture of MLP regressor to predict a single output which is the P- sonic log. 

Furthermore, those features were reduced to 3 inputs using t-SNE method and supplied to the 

    algorithm, as an input vector. Thus, we denote those training datasets as    
   

 
      

 , 

such that    
       ,        .  

5-2 Persistent Homology Setup and results 

    Before implementing any persistent-related step, all five datasets need to be normalized. 

For this purpose, we have utilized the Yeo Johnson Power Transformation method. As 

previously declared, the dimensions of datasets have to be reduced to 3D utilizing t-SNE. 

Figure 4 shows the dimensionality reduction of   
   

 
      

 .  

    The datasets are now ready to be passed to the     algorithm for the filtration procedure. It 

is to mention that we initially wanted to utilize the VR algorithm but, unfortunately, our 

computer suddenly stopped working since VR required high computations because it 

performs the distance formula on every pair of data points in the dataset. In contrast, the     

algorithm is characterized by dealing only with the Voronoi cells and closed balls. Thus, we 

have concluded that VR is suitable when datasets are small and trivial if high capabilities of 

cloud computing are not available. On the other hand,     is away better approach that can 

deal effectively with a huge dataset. After we had executed the     algorithm on   , the results 

of simplicial complexes     
   for the five datasets were stored in the form of the persistence 

barcode as shown in Figure 5. Then, We have extracted the BN,     
  , utilizing our barcode 

reading method. Table 2 shows all the results along with the final homologies. 
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Figure 4- Persistence Barcode for Datasets. 

 

Table 2- BN and Homology Groups 

DataSets     
 
      

       
       

   

  
  1000 27461 [2,0,0] [        ] 

  
  3000 83163 [2,1,0] [        ] 

  
  7000 199089 [1,4,1] [        ] 

  
  15000 425033 [1,7,1] [        ] 

  
  20000 560473 [1,5,1] [        ] 

 

5.3 MLPR setup and results 

    To examine the influence of data homology on the ability of MLPR architectures 

expressivity, we evaluated MLPR architectures by their ability to learn and express the 

homology on datasets of different TC with a growing number of layers and hidden units.  

     In the beginning, we have shown the difficulty level of MLPR width to express the 

homology of our five datasets by exploring the training error of MLPR architectures, each 

with a single layer and an increasing width   {        }, where h is the number of 

neurons. Furthermore, we have analyzed the ability of MLP architectures to express the 

homology of our datasets by considering an increasing depth   {       } and width 



Alhelfi and Ali                                          Iraqi Journal of Science, 2022, Vol. 63, No. 5, pp: 2262-2278                           

2273 

 

   {        }, where      . Hence, a fully connected architecture with RELU 

activation function has been considered to implement such analyses. For each architecture, 

The input layer was fed with the 8 well logging features and expected to predict one feature 

which is the P-sonic log. For a suitable convergence, We have run Adam optimizer for 200 

iterations with a momentum of 0.9 and a fixed learning step of 0.01 to minimize the objective. 

     For understanding all the blow figures, we have considered the training error of 0.044 as 

an expectable error for determining whether an architecture has succeeded to express the 

homology. Hence, if the training errors of many consecutive architectures were stable under 

0.044, we can say that those architectures own the best architectural capacity to express the 

dataset concerned. 

 
Figure 5-Training Error VS MLPR Architectures with Increasing Neurons. 

 

    Figure 5 shows the final training errors (loss function values)  for each MLPR architecture 

with a single layer and increasing neurons till 60. It is obvious at first sight of training error 

that a dataset with less complexity has a better chance to capture the best architecture so early. 

Since   
  was the more complex dataset, architectures have struggled through the entirety of 

the above figure to reach the training threshold. As a result, it requires more than 60 hidden 

neurons for   
  to stable under the training threshold. Throughout the above figure, there is a 

jostle between   
  and   

 . However,   
  has reached the training threshold at architecture 

with 13 neurons and continuously owned stability under that threshold till the end due to 

simplicity in its homology compared to   
 . In contrast, since    

  is embedded with two 

clusters with a very long lifespan, as shown in its barcode, it was expressed by the 

architectures with 42 neurons to 60. On the other hand, the existence of seven circles and one 

gap on   
  has made it more complex than   

  and   
 . Finally,   

  and   
  homologies 

have been successfully expressed with a less number of neurons since they have the most 

uncomplex homology in the set. A fewer number of neurons was able to express the 

homology of   
  compared to   

 . However, both of those datasets have nearly the same 

complexity with a slight simplicity to the   
  as we see in the next figure. 
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Figure 6-Training Error for Each MLP Architectures with Increasing Neurons and layers. 

 

    Figure 6 Shows the training errors of increasing neurons and layers. Our goal is to detect 

the best number of layers that make the architecture stable under the training threshold. As the 

layers increases, a huge number of architectures have gained a training error under the 

threshold, which is 0.044 for all datasets. Furthermore, the more complex the homology, the 

more layers it requires to reach a low training error. For   
 , the majority of architectures 

with two and three layers were stable under the threshold. Thus, in order to acquire a training 

error below the threshold error,   
  can be content with two or three layers, and there would 

be no need to increase the computational complexity with more layers unless a lower 

acceptable error is targeted such as 0.034. 

    In the same vein, since   
  has the more complex homology, architectures with four layers 

have perfectly expressed the homology of   
 , it seems fairly obvious in the architectures in 

between 30 to 60 neurons. On the other hand,   
 ,   

 , and   
  , which are the simplest 

datasets, have possessed stability under the acceptable error early in all layers; thus, no high 

number of layers is required to express their homology. Nevertheless, if we change the 

acceptable error to a lower value such as 0.024, we can see that   
  and   

  require more 

layers to stable under such error, but not   
 , which has owned the stability under this low 

acceptable error even in four layers due to the simplicity in its homology which is the simplest 

homology among all datasets. 

    From the above figures, we also have concluded that if a dataset has more than one cluster 

on its homology, a few architectures would possess stability which can be noticed through the 

zigzag of   
 and   

 . Thus, clusters significantly affect the training process of regression 

hyperplane, force the training errors of architectures to behave like a zigzag. hence, the 

number of consecutive architectures that successfully express the homology would be very 

small. It is obvious that increasing the number of layers reduces the training error; however, to 

prevent selecting the architectures that exist at the peak of zigzags,  the more clusters, the 
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more careful should consider during selecting the architecture. In contrast, architectures that 

attempt to express a homology with only circles or gaps dose not suffer any zigzag. 

Consequently, increasing the number of layers, commensurate with the number of circles and 

gaps,  is an outstanding idea to get an acceptable training error. 

 
Figure 7-Training Error VS MLPR Architectures with Increasing Layers. 

 

     In Figure 7, we have set the number of neurons to 20, increased the layers to 10 in order to 

further clarify the relationship of changing layers with the ability of architectures to express 

homology. In short, the dataset with high complexity would struggle to find a better training 

error, especially, when embedded with more clusters. Furthermore,  the more complex the 

dataset, the more layer it requires to reach a better training error than other datasets. Based on 

Figure 7, Table 3 shows the depth of each architecture at which the homology of each dataset 

was expressed successfully with the lowest training error. 

 

Table 3- Architecture Expressivity. 

DataSet     
   Training Error Layer 

  
  [        ] 0.0373 2 

  
  [        ] 0.0393 7 

  
  [        ] 0.0216 6 

  
  [        ] 0.0340 6 

  
  [        ] 0.0249 3 

 

     As a conclusion from all the above empirical analysis, when training a dataset, instead of 

randomly initializing the architectural parameters of MLPR, it is better to have a look at the 

dataset’s homology to extract useful information that leads to diminishing the search space of 

architectures. under this theory, we have concluded that a dataset with more clusters in its 

homology has to be expressed with an architecture that provides a severe nonlinearity by 
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extending the depth and width of MLPR to reach an acceptable training error. This is due to 

the suffering of the MLPR hyperplane to fit on the clusters data points. In contrast, circles in 

data homology have a lower impact on MLPR training ability than clusters. Thus, circles can 

be treated with a moderate consideration in determining the architecture, thereby fixing the 

size of depth, and increasing the width units might be a robust behavior to reach an acceptable 

training error without exposing MLPR to high computations. On the other hand, gaps make 

no high distinctness on the MLPR training process, and thus, concentrating on the impacts 

that clusters and circles make are more essential than wasting resources and time on low 

impact features. 

     It is worthy to draw the attention of readers that the abovementioned methodology can be 

considered as progress toward finding a notion that takes the topological features of the 

training dataset to outputs the optimal, or nearly optimal, depth and width of an MLPR. For 

finding such a notion, a huge amount of various datasets along with cloud computing 

capabilities must be available for further analysis. 

6. Conclusion  

    In this paper, we considered the problem of neural networks architecture's initial selection. 

This problem is very popular in deep learning community. Usually, in deep neural networks, 

hidden neurons and layers are selected randomly, or with redundance numbers of neurons and 

layers. Several mathematical tools have been proposed to avoid the imperfections of those 

two categories of selections. The majority of those tools have adopted statistical methods to 

define a relation between dataset and architecture, others adopted a gradient-based, evolution, 

and swarm optimization algorithm to detect the optimal architecture. We have considered this 

problem from an algebraic topology perspective by utilizing the topological complexity of the 

dataset that is, the optimality of architecture can be measured by its ability to express the 

homology of that dataset. For measuring the complexity of datasets, we have dive into the 

topological data analysis field which provides robust tools to measure the data complexity, 

and thus, we have proposed a compound algorithm to compute the persistent homology that 

takes advantage of three methods which were t-SNE method, alpha complexity method, and a 

persistence barcode reading method for extracting the Betti number. We applied this method 

to MLPR with different data complexities and various architectures. Our empirical analysis 

has shown that MLPR suffers to express the high complex dataset, it requires more 

(neurons/layers) to reach low training error. In contrast, the less data complexity, the fewer 

(neurons/layers) it requires to reach a better capacity. Thus, using such a methodology will 

avoid the arbitrary selection of ANN's architecture and diminishing architectures of the search 

space. Our methodology can be exploited with the help of cloud computing to find an 

equation that may be utilized to set an optimal initial architecture as we will attempt to do in 

the future. 
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