

ISSN: 0067-2904

Generalized Commuting Mapping in Prime and Semiprime Rings

Auday Hekmat Mahmood
Department of Mathematics, College of Education, University of Mustansiriyah, Baghdad - Iraq.

Received: 4/7/2021 Accepted: 11/12/2021 Published: 30/8/2022

Abstract

Let R be an associative ring. The essential purpose of the present paper is to introduce the concept of generalized commuting mapping of R. Let U be a nonempty subset of R, a mapping $\mathfrak{F}: R \rightarrow R$ is called a generalized commuting mapping on U if there exist a mapping $\mathcal{G}: \mathrm{R} \rightarrow \mathrm{R}$ such that $[\mathscr{F}(\omega), \mathcal{G}(\omega)]=0$, holds for all $\omega \in$ U. Some results concerning the new concept are presented.

Key words and phrases: Derivation, Semiderivations, Commuting mapping, Prime ring, Semiprime rings.
الدوال الأبدالية المعممة على الحلقات الأولية وشبة الأولية

> قسم الرياضيات, كلية التربية , الجامعة المستنصرية, محمود بغداد, العراق

الخلاصة

. R حلقة تجميعية . الغاية الأساسية من هذا البحث تقديم مفهوم الدوال الأبدالية المعممة على

هذا العمل.

1-Introduction

Throughout this paper, R will represent to an associative ring with center $Z(\mathrm{R})$. By Q_{R} we will denote the Martindale ring of quotient of R . The extended centroid of R is refer to the center of Q_{R}, which denote by \mathcal{C}, and the extended centroid is a field, furthermore $Z(\mathrm{R}) \subseteq \mathcal{C}$ [1]. Given $n \geq 2$, a ring R in which $n t=0$ implies that $t=0$ is called an n -torsion free ring [2]. We denote by $[\omega, t]$ to the commutator $\omega t-t \omega$. The commutator identities $[\omega t, s]=[\omega, s] t$ $+\omega[t, s]$ and $[\omega, t s]=[\omega, t] s+t[\omega, s]$ are frequently used [3]. Recall that a ring R with a property that whenever $\omega \mathrm{R} t=\{0\}$ implies either $\omega=0$ or $t=0$ is said to be a prime ring and is semiprime if whenever $\omega \mathrm{R} \omega=(0)$ implies $\omega=0$ [4]. An equivalent definition of this concept is given as follows: A ring R is said to be semiprime if whenever U is an ideal of R satisfies $U^{k}=(0)$ implies $U=(0)$ [5].

[^0]An additive mapping $\delta: \mathrm{R} \rightarrow \mathrm{R}$ in which $[(\tau), \tau] \in \mathcal{Z}(\mathrm{R})$ whenever $\tau \in \mathrm{R}$ is said to be centralizing on R . In a special case, δ is called commuting on R if $[(\tau), \tau]=0$, whenever $\tau \in \mathrm{R}$ [6]. A mapping $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ is called a derivation of R if for any $\tau, t \in \mathrm{R}$ we have $\mathrm{d}(\tau+t)=$ $\mathrm{d}(\tau)+\mathrm{d}(t)$ and $\mathrm{d}(\tau t)=\mathrm{d}(\tau) t+\tau \mathrm{d}(t)$ [7]. By a semi derivation mapping of a ring R , we shall mean a mapping $\mathcal{D}: \mathrm{R} \rightarrow \mathrm{R}$ with additive property together with a mapping $\mathcal{G}: \mathrm{R} \rightarrow \mathrm{R}$ such that $\mathcal{D}(\tau t)=\mathcal{D}(\tau) \mathcal{G}(t)+\tau \mathcal{D}(t)=\mathcal{D}(\tau) t+\mathcal{G}(\tau) \mathcal{D}(t)$ and $\mathcal{D}(\mathcal{G}(\tau))=\mathcal{G}(\mathcal{D}(\tau))$ [8].
In this work, the notions of generalized commuting mapping are introduced. Furthermore, we investigate some necessary conditions that make every \mathcal{G}-commuting mapping a commuting mapping on R .

2. Preliminary results:

We begin this section by introducing the concept of generalized commuting mapping.

Definition2.1:

Let R be a ring and U be a non-trivial subset of R. An additive mapping $\mathfrak{F}: R \rightarrow R$ is said to be a generalized commuting mapping (or \mathcal{G} - commuting mapping) on U if there exist a mapping $\mathcal{G}: \mathrm{R} \rightarrow \mathrm{R}$ such that $[\mathscr{F}(\omega), \mathcal{G}(\omega)]=0$, fulfilled for all $\omega \in \mathrm{U}$.

Remark 2.2:

Every commuting mapping ρ is a generalized commuting mapping \mathcal{J}-commuting mapping, where \mathcal{J} is the identity mapping, but the converse is not true in general as we see in the following illustrative example:

Example2.3:

Let R be a ring having a nilpotent $0 \neq a \in \mathrm{R}$ with $a^{2}=0$ and let U be the right ideal of R generated by a. Define mappings $\mathfrak{F}, \mathcal{G}: \mathrm{R} \rightarrow \mathrm{R}$ by $\mathcal{G}(t)=[a, t]$ and $\mathfrak{F}(t)=t a$. Then, \mathfrak{F} is \mathcal{G} commuting mapping on U but not commuting.
We list some remarks and Lemmas which will be needed throughout this paper.
Lemma 2.4: [9]
Let R be a 2 -torsion free semiprime ring and let $a, b \in \mathrm{R}$. then the following conditions are equivalent:
i. $\quad a u b=0, \quad$ for all $u \in \mathrm{R}$.
ii. $\quad b u a=0, \quad$ for all $u \in \mathrm{R}$.
iii. $\quad a u b+b u a=0, \quad$ for all $u \in \mathrm{R}$.

Furthermore, $a b=b a=0$ whenever any one of these conditions is fulfilled.

Lemma 2.5: [10]

Let R be a prime ring and \mathcal{C} be the extended centroid of R. Let $a, \mathrm{~b} \in \mathrm{R}$ be such that $a x \mathrm{~b}=\mathrm{b} x a$ fulfilled for all $x \in \mathrm{R}$. If $a \neq 0$, then there exists $\lambda \in C$ with $\mathrm{b}=\lambda a$.
Lemma 2.6: [11]
Let \mathfrak{K} be a semiprime ring of characteristic $\neq 2$ and $\mathfrak{F}: \mathrm{R} \rightarrow \mathrm{R}$ be a non-trivial derivation satisfies $[[\mathfrak{F}(u), u], \mathfrak{F}(u)]=0$, for any $u \in \mathfrak{K}$, then \mathfrak{F} is a commuting mapping on \mathfrak{K}.

3 . Results on generalized commuting mapping:

Theorem 3.1: Let R be a prime ring of characteristic $\neq 2$ and $\mathcal{F}, \mathcal{G}: \mathrm{R} \rightarrow \mathrm{R}$ are nonzero derivations such that \mathcal{F} is a \mathcal{G} - commuting mapping on R. Then either \mathcal{F} or \mathcal{G} forced to be commuting mapping on R.
Proof: By our hypothesis, we have:

$$
\begin{equation*}
[\mathcal{F}(\sigma), \mathcal{G}(\sigma)]=0, \text { for all } \sigma \in \mathrm{R} \tag{1}
\end{equation*}
$$

A linearization of the relation (1) leads to:

$$
\begin{equation*}
[\mathcal{F}(\sigma), \mathcal{G}(\tau)]+[\mathcal{F}(\tau), \mathcal{G}(\sigma)]=0 \text {, whenever } \sigma, \tau \in \mathrm{R} . \tag{2}
\end{equation*}
$$

Taking $\tau \sigma$ instead of τ in (2), we obtain:
$[\mathcal{F}(\sigma), \mathcal{G}(\tau)] \sigma+\mathcal{G}(\tau)[\mathcal{F}(\sigma), \sigma]+[\mathcal{F}(\sigma), \tau] \mathcal{G}(\sigma)+\tau[\mathcal{F}(\sigma), \mathcal{G}(\sigma)]+[\mathcal{F}(\tau), \mathcal{G}(\sigma)] \sigma+$ $\mathcal{F}(\tau)[\sigma, \mathcal{G}(\sigma)]+\tau[\mathcal{F}(\sigma), \mathcal{G}(\sigma)]+[\tau, \mathcal{G}(\sigma)] \mathcal{F}(\sigma)=0$, whenever $\sigma, \tau \in \mathrm{R}$.
Using (1) and (2), we get:

$$
\begin{equation*}
\mathcal{G}(\tau)[\mathcal{F}(\sigma), \sigma]+[\mathcal{F}(\sigma), \tau] \mathcal{G}(\sigma)+\mathcal{F}(\tau)[\sigma, \mathcal{G}(\sigma)]+[\sigma, \mathcal{G}(\sigma)] \mathcal{F}(\sigma)=0 \text {, whenever } \sigma, \tau \in \mathrm{R} \tag{3}
\end{equation*}
$$

If we replace σ by $\sigma \tau$ in (3), then it implies that:
$\mathcal{G}(\sigma) \tau[\mathcal{F}(\sigma), \sigma]+\sigma \mathcal{G}(\tau)[\mathcal{F}(\sigma), \sigma]+[\mathcal{F}(\sigma), \sigma] \tau \mathcal{G}(\sigma)+\sigma[\mathcal{F}(\sigma), \tau] \mathcal{G}(\sigma)+\mathcal{F}(\sigma) \tau[\sigma$, $\mathcal{G}(\sigma)]+\sigma \mathcal{F}(\tau)[\sigma, \mathcal{G}(\sigma)]+\sigma[\tau, \mathcal{G}(\sigma)] \mathcal{F}(\sigma)+[\sigma, \mathcal{G}(\sigma)] \tau \mathcal{F}(\sigma)=0$, whenever $\sigma, \tau \in \mathrm{R}$.
In view of (3), this relation reduces to:
$\mathcal{G}(\sigma) \tau[\mathcal{F}(\sigma), \sigma]+[\mathcal{F}(\sigma), \sigma] \tau \mathcal{G}(\sigma)-\mathcal{F}(\sigma) \tau[\mathcal{G}(\sigma), \sigma]-[\mathcal{G}(\sigma), \sigma] \tau \mathcal{F}(\sigma)=0$, whenever σ, τ $\in R$.
The left multiplication of (4) by $\mathcal{F}(\sigma)$ gives:

$$
\begin{gather*}
\mathcal{F}(\sigma) \mathcal{G}(\sigma) \tau[\mathcal{F}(\sigma), \sigma]+\mathcal{F}(\sigma)[\mathcal{F}(\sigma), \sigma] \tau \mathcal{G}(\sigma)-\mathcal{F}(\sigma)^{2} \tau[\mathcal{G}(\sigma), \sigma]-\mathcal{F}(\sigma)[\mathcal{G}(\sigma), \sigma] \tau \mathcal{F}(\sigma) \tag{4}\\
=0, \text { whenever } \sigma, \tau \in \mathrm{R} . \tag{5}
\end{gather*}
$$

Putting $\mathcal{F}(\mathcal{\sigma}) \tau$ instead of in (4) we get:

$$
\mathcal{G}(\sigma) \mathcal{F}(\sigma) \tau[\mathcal{F}(\sigma), \sigma]+[\mathcal{F}(\sigma), \sigma] \mathcal{F}(\sigma) \tau \mathcal{G}(\sigma)-\mathcal{F}(\sigma)^{2} \tau[\mathcal{G}(\sigma), \sigma]-[\mathcal{G}(\sigma), \sigma] \mathcal{F}(\sigma) \tau \mathcal{F}(\sigma)
$$

$$
\begin{equation*}
=0, \text { whenever } \sigma, \tau \in \mathrm{R} \tag{6}
\end{equation*}
$$

The subtracting of (5) from (6) leads to:
$\{\mathcal{G}(\sigma) \mathcal{F}(\sigma) \tau[\mathcal{F}(\sigma), \sigma]-\mathcal{F}(\sigma) \mathcal{G}(\sigma) \tau[\mathcal{F}(\sigma), \sigma]\}+\{[\mathcal{F}(\sigma), \sigma] \mathcal{F}(\sigma) \tau \mathcal{G}(\sigma)-\mathcal{F}(\sigma)[\mathcal{F}(\sigma)$, $\sigma] \tau \mathcal{G}(\sigma)\}+\left\{\mathcal{F}(\sigma)^{2} \tau[\mathcal{G}(\sigma), \sigma]-\mathcal{F}(\sigma)^{2} \tau[\mathcal{G}(\sigma), \sigma]\right\}+\{\mathcal{F}(\sigma)[\mathcal{G}(\sigma), \sigma] \tau \mathcal{F}(\sigma)-[\mathcal{G}(\sigma), \sigma]$ $\mathcal{F}(\sigma) \tau \mathcal{F}(\sigma)\}$
In view of (1), the last relation reduces to:
$[[\mathcal{F}(\sigma), \sigma], \mathcal{F}(\sigma)] \mathcal{G}(\sigma)+[\mathcal{F}(\sigma),[\mathcal{G}(\sigma), \sigma]] \tau \mathcal{F}(\sigma)=0$, whenever $\sigma, \tau \in \mathrm{R}$.
Now, in the above relation, the substitution $[\mathcal{F}(\sigma), \sigma]$ instead of ones and right multiplication by $[\mathcal{F}(\sigma), \sigma]$ in another gives:
$[[\mathcal{F}(\sigma), \sigma], \mathcal{F}(\sigma)] \tau[\mathcal{F}(\sigma), \sigma] \mathcal{G}(\sigma)+[\mathcal{F}(\sigma),[\mathcal{G}(\sigma), \sigma]] \tau[\mathcal{F}(\sigma), \sigma] \mathcal{F}(\sigma)=0$, whenever $\sigma, \tau \in$ R.
$[[\mathcal{F}(\sigma), \sigma], \mathcal{F}(\sigma)] \mathcal{G}(\sigma)[\mathcal{F}(\sigma), \sigma]+[\mathcal{F}(\sigma),[\mathcal{G}(\sigma), \sigma]] \tau \mathcal{F}(\sigma)[\mathcal{F}(\sigma), \sigma]=0$, whenever σ, τ $\in R$.
Comparing the above expressions, we get:
$[[\mathcal{F}(\sigma), \sigma], \mathcal{F}(\sigma)][[\mathcal{F}(\sigma), \sigma], \mathcal{G}(\sigma)]+[[\mathcal{G}(\sigma), \sigma], \mathcal{F}(\sigma)] \tau[[\mathcal{F}(\sigma), \sigma], \mathcal{F}(\sigma)]=0$, for all σ, τ $\in \mathrm{R}$.
According to Jacobi identity and the commutator properties, the last relation can be written as:
$[[\mathcal{F}(\sigma), \sigma], \mathcal{F}(\sigma)] \quad[[\mathcal{F}(\sigma)],, \mathcal{G}(\sigma)]+[[\mathcal{F}(\sigma), \sigma], \mathcal{G}(\sigma)] \tau[[\mathcal{F}(\sigma), \sigma], \mathcal{F}(\sigma)]=0$, whenever σ, $\tau \in \mathrm{R}$.
An application of lemma (2.4) it follows that:
$[[\mathcal{F}(\sigma), \sigma], \mathcal{F}(\sigma)][[\mathcal{F}(\sigma), \sigma], \mathcal{G}(\sigma)]=0$, whenever $\sigma, \tau \in \mathrm{R}$.
However, since R is a ring having primeness property, we get either $[[\mathcal{F}(\sigma), \sigma], \mathcal{F}(\sigma)]=0$, whenever $\sigma \in \mathrm{R}$, consequently \mathcal{F} is a commuting mapping on R , or

$$
\begin{equation*}
[[\mathcal{F}(\sigma), \sigma], \mathcal{G}(\sigma)]=0, \text { whenever } \sigma \in \mathrm{R} . \tag{7}
\end{equation*}
$$

Taking $z+\sigma$ instead of σ in (7), we see that
$[[\mathcal{F}(\sigma), \sigma], \mathcal{G}(z)]+[[\mathcal{F}(\sigma), z], \mathcal{G}(t)]+[[\mathcal{F}(z), \sigma], \mathcal{G}(t)]+[[\mathcal{F}(\sigma), z], \mathcal{G}(z)]+[[\mathcal{F}(z), \sigma], \mathcal{G}(z)]$ $+[[\mathcal{F}(z), z], \mathcal{G}(\sigma)]=0$, whenever $\sigma, z \in \mathrm{R}$.
The substitution $2 z$ instead of z in above relation and comparing the new relation with the above, we get by 2 -torsionity free of R :
$[[\mathcal{F}(\sigma), z], \mathcal{G}(z)]+[[\mathcal{F}(z), \sigma], \mathcal{G}(z)]+[[\mathcal{F}(z), z], \mathcal{G}(\sigma)]=0$, whenever $\sigma, z \in \mathrm{R}$.
Now, we use a same procedure that used to get (4) from (2), we arrive at:
$2[\mathcal{F}(z), z] \sigma[z, \mathcal{G}(z)]+[z, \mathcal{G}(z)] \circ[\mathcal{F}(z), z]+\mathcal{F}(z)[\sigma, z][z, \mathcal{G}(z)]+\mathcal{G}(z) \sigma[[\mathcal{F}(z), z], z$ $]+[[\mathcal{F}(z), z], z] \circ \mathcal{G}(z)=0$, whenever $\sigma, z \in \mathrm{R}$.
Putting $\mathcal{G}(z) \sigma$ instead of σ in the last relation, we obtain:
$2[\mathcal{F}(z), z] \mathcal{G}(z) \sigma[z, \mathcal{G}(z)]+[z, \mathcal{G}(z)] \mathcal{G}(z) \circ[\mathcal{F}(z), z]+\mathcal{F}(z) \mathcal{G}(z)[\sigma, z][z, \mathcal{G}(z)]+\mathcal{F}(z)$
$[\mathcal{G}(z), z] \circ[z, \mathcal{G}(z)]+\mathcal{G}(z)^{2} \circ[[\mathcal{F}(z), z], z]+[[\mathcal{F}(z), z], z] \mathcal{G}(z) \circ \mathcal{G}(z)=0$, whenever σ, z $\in R$.
Multiply (9) from the left by $\mathcal{G}(z)$, we see
$2 \mathcal{G}(z)[\mathcal{F}(z), z] \sigma[z, \mathcal{G}(z)]+\mathcal{G}(z)[z, \mathcal{G}(z)] \sigma[\mathcal{F}(z), z]+\mathcal{G}(z) \mathcal{F}(z)[\sigma, z][z, \mathcal{G}(z)]+\mathcal{G}(z)^{2} \sigma$ $[[\mathcal{F}(z), z], z]+\mathcal{G}(z)[[\mathcal{F}(z), z], z] \circ \mathcal{G}(z)=0$, whenever $\sigma, z \in \mathrm{R}$.
Subtracting (10) from (9) leads to:
$2[[\mathcal{F}(z), z], \mathcal{G}(z)] \sigma[z, \mathcal{G}(z)]+[[z, \mathcal{G}(z)], \mathcal{G}(z)] \sigma[\mathcal{F}(z), z]+[\mathcal{F}(z), \mathcal{G}(z)][\sigma, z][z, \mathcal{G}(z)]+$ $[[[\mathcal{F}(z), z], z], \mathcal{G}(z)] \circ \mathcal{G}(z)+\mathcal{F}(z)[\mathcal{G}(z), z] \circ[z, \mathcal{G}(z)]=0$, whenever $\sigma, z \in \mathrm{R}$.
By (7) and (1) the first and the third term are zeros respectively. So for any $\sigma, z \in R$, we have $[[z, \mathcal{G}(z)], \mathcal{G}(z)] \circ[\mathcal{F}(z)]+,[[[\mathcal{F}(z), z], z], \mathcal{G}(z)] \circ \mathcal{G}(z)+\mathcal{F}(z)[\mathcal{G}(z), z] \circ[z, \mathcal{G}(z)]=0$.
Now, in the above relation the substitution $\mathcal{F}(z)$ for t ones and right multiplication by $\mathcal{F}(z)$ in another gives:
$[[z, \mathcal{G}(z)], \mathcal{G}(z)] \sigma \mathcal{F}(z)[\mathcal{F}(z), z]+[[[\mathcal{F}(z), z], z], \mathcal{G}(z)] \circ \mathcal{F}(z) \mathcal{G}(z)+\mathcal{F}(z)[\mathcal{G}(z), z] \sigma$ $\mathcal{F}(z)[z, \mathcal{G}(z)]=0$, whenever $t, z \in \mathrm{R}$.
$[[z, \mathcal{G}(z)], \mathcal{G}(z)] \sigma[\mathcal{F}(z), z] \mathcal{F}(z)+[[[\mathcal{F}(z), z], z], \mathcal{G}(z)] \circ \mathcal{G}(z) \mathcal{F}(z)+\mathcal{F}(z)[\mathcal{G}(z), z] \circ[z$, $\mathcal{G}(z)] \mathcal{F}(z)=0$, whenever $\mathcal{\sigma}, z \in \mathrm{R}$.
Again, Subtracting (11) from (12) we get because of (1) and the commutator identity that:
$[[, \mathcal{G}(z), z], \mathcal{G}(z)] \sigma[[\mathcal{F}(z), z], \mathcal{F}(z)]+\mathcal{F}(z)[\mathcal{G}(z), z] \sigma[[\mathcal{G}(z), z], \mathcal{F}(z)]=0$, whenever σ, z $\in \mathrm{R}$.
The last relation can be written because of Jacobi identity as:
$[[\mathcal{G}(z), z], \mathcal{G}(z)] \circ[[\mathcal{F}(z), z], \mathcal{F}(z)]+\mathcal{F}(z)[\mathcal{G}(z), z] \sigma[[\mathcal{F}(z), z], \mathcal{G}(z)]-\mathcal{F}(z)[\mathcal{G}(z), z] \sigma[z$, $[\mathcal{G}(z), \mathcal{F}(z)]]=0$, whenever $\sigma, z \in \mathrm{R}$.
In view of (7) and (1), the above relation reduces to:
$[[\mathcal{G}(z), z], \mathcal{G}(z)] \sigma[[\mathcal{F}(z), z], \mathcal{F}(z)]=0$, whenever $\sigma, z \in \mathrm{R}$.
Using the primeness of R , since $[[\mathcal{F}(z), z], \mathcal{F}(z)] \neq 0$, for all $z \in \mathrm{R}$, then
$[[, \mathcal{G}(z), z], \mathcal{G}(z)]=0$, whenever $z \in \mathrm{R}$.
Finally, an application of Lemma (2.6) forced \mathcal{G} to be commuting on R.
Theorem 3.2: Let R be a prime ring and $\mathcal{D}: R \rightarrow R$ be a nonzero semiderivations with associated homomorphism $\mathcal{G}: \mathrm{R} \rightarrow \mathrm{R}$. If \mathcal{D} is a \mathcal{G}-commuting mapping on R , then either \mathcal{D} or \mathcal{G} is a commuting mapping on R .
Proof:
For any $t \in \mathrm{R}$, we have:

$$
\begin{equation*}
[\mathcal{D}(t), \mathcal{G}(t)]=0 \tag{13}
\end{equation*}
$$

Setting $t=t+\omega$ in (13) and using (13), we get:

$$
\begin{equation*}
[\mathcal{D}(t), \mathcal{G}(\omega)]+[\mathcal{D}(\omega), \mathcal{G}(t)]=0, \forall \omega, t \in \mathrm{R} \tag{14}
\end{equation*}
$$

Putting $t \omega$ instead of ω in above relation, we find:
$[\mathcal{D}(t), \mathcal{G}(t)] \mathcal{G}(\omega)+\mathcal{G}(t)[\mathcal{D}(t), \mathcal{G}(\omega)]+[\mathcal{D}(t), \mathcal{G}(t)] \omega+\mathcal{D}(t)[\omega, \mathcal{G}(t)]+\mathcal{G}(t)[\mathcal{D}(\omega), \mathcal{G}(t$ $)]+[\mathcal{D}(t), \mathcal{G}(t)] \mathcal{D}(\omega)=0, \forall \omega, t \in \mathrm{R}$.
In view of (13) and (14), the last relation reduces to:

$$
\begin{equation*}
\mathcal{D}(t)[\omega, \mathcal{G}(t)]=0, \forall \omega, t \in \mathrm{R} . \tag{15}
\end{equation*}
$$

The substitution ωt for ω in (15) leads to:

$$
\begin{equation*}
\mathcal{D}(t) \omega[\mathcal{G}(t), t]=0, \forall \omega, t \in \mathrm{R} \tag{16}
\end{equation*}
$$

Now, in (16), the left multiplication by t ones and putting $t \omega$ instead of ω in another gives:

$$
\begin{align*}
& t \mathcal{D}(t) \omega[\mathcal{G}(t), t]=0, \forall \omega, t \in \mathrm{R} . \tag{17}\\
& \mathcal{D}(t) t \omega[\mathcal{G}(t), t]=0, \forall \omega, t \in \mathrm{R} . \tag{18}
\end{align*}
$$

Subtracting (17) from (18) implies that:
$[\mathcal{D}(t), t] \omega[\mathcal{G}(t), t]=0, \forall \omega, t \in \mathrm{R}$.

Since R is prime, then we have either $[\mathcal{D}(t), t]=0$, for all $t \in \mathrm{R}$, that is \mathcal{D} is a commuting mapping on R or
$[\mathcal{G}(t), t]=0$, for all $t \in \mathrm{R}$.
Hence, \mathcal{G} is a commuting mapping on R .
Theorem 3.3:Let R be a prime ring of characteristic $\neq 2$ and $\mathcal{H}, \mathcal{K}: \mathrm{R} \rightarrow \mathrm{R}$ be a nonzero left centralizer such that \mathcal{H} is a \mathcal{K} - commuting mapping on R . Then, $[\mathcal{H}(t), t]=\lambda[\mathcal{K}(t), t]$, for all $t \in \mathrm{R}$ and some $\lambda \in \mathcal{C}$.

Proof :

From our hypothesis, we have:

$$
\begin{equation*}
[\mathcal{H}(t), \mathcal{K}(t)]=0 \text {, whenever } t \in \mathrm{R} . \tag{19}
\end{equation*}
$$

Taking $t+z$ instead of t in (19) gives

$$
[\mathcal{H}(t), \mathcal{K}(z)]+[\mathcal{H}(z), \mathcal{K}(t)]=0, \text { whenever } t, z \in \mathrm{R} .
$$

Replacing z by $z t$ in the last relation, we arrive because (19) that

$$
\begin{equation*}
\mathcal{K}(z)[\mathcal{H}(t), t]+\mathcal{H}(z)[t, \mathcal{K}(t)]=0, \text { whenever } t, z \in \mathrm{R} . \tag{20}
\end{equation*}
$$

Substituting $t z$ for in (20), we get:

$$
\begin{equation*}
\mathcal{K}(t) z[\mathcal{H}(t), t]+\mathcal{H}(t) z[t, \mathcal{K}(t)]=0, \text { whenever } t, z \in \mathrm{R} . \tag{21}
\end{equation*}
$$

Now, the left multiplication of (21) by in ones and putting instead of in another gives

$$
\begin{gather*}
t \mathcal{K}(t) z[\mathcal{H}(t), t]+t \mathcal{H}(t) z[t, \mathcal{K}(t)]=0 \text {, whenever } t, z \in \mathrm{R} . \tag{22}\\
\mathcal{K}(t) t z[\mathcal{H}(t), t]+\mathcal{H}(t) t z[t, \mathcal{K}(t)]=0, \text { whenever } t, z \in \mathrm{R} . \tag{23}
\end{gather*}
$$

From relations (22) and (23), we obtain
$[\mathcal{K}(t), t] z[\mathcal{H}(t), t]-[\mathcal{H}(t), t] z[\mathcal{K}(t), t]=0$, whenever $t, z \in \mathrm{R}$.
In view of Lemma (2.5), it follows that for some λ in the extended centroid of R , we have:
$[\mathcal{H}(t), t]=\lambda[\mathcal{K}(t), t]$, whenever $t \in \mathrm{R}$.

Conclusions

In this article, we introduce the concept of generalized commuting mapping of a ring R . Some basic properties of this concept have been given and discussed. Furthermore, many results concerning with generalized commuting mapping have been investigated.

References

[1] M. Brešar, "Commuting maps: A survey", Taiwanese Journal of mathematics.; Vol. 8, No. 3, pp. 361-397, 2004.
[2] H. J. Mayne, "Centralizing mapping of prime rings", Canad. Math. Bull. Vol. 27, No.1, pp. 122-126, 1984.
[3] A. Shahad and H. M. Abdulrahman, "On Commutativity of Prime and Semiprime Rings with Reverse Derivations".; Iraqi Journal of Science. Vol. 60, No. 7, pp. 1546-1550, 2019.
[4] K. Maryam and H. M. Abdulrahman, "Some Results of (α, β)-derivations on Prime Semirings". Iraqi Journal of Science. Vol. 60, No 5, pp. 1154-1160, 2019.
[5] H. E. Bell and W. S. Martindale, "Centralizing mappings of Semiprime Rings". Cand. Math. Bull. Vol, 30, pp. 92-101, 1987.
[6] M. Bres̆ar, "Centralizing Mapping and Derivations in Prime Rings", J. of Algebra. Vol. 156, pp. 385-394, 1991.
[7] K. Anwar and S. Ruqaya, "On Skew Left *-n-derivations of *-Rings ", Iraqi Journal of Science. Vol. 59, No 4B, pp. 2100-2106, 2018.
[8] H. E. Bell and W. S. Martindale, "Semiderivations and Commutativity in prime rings", Canad. Math. Bull. Vol. 31, No.4, pp. 500-508, 1988.
[9] M. Brešar and J. Vokman, "Orthogonal derivations and an extension of Theorem of Posner", Radovi Matematički. Vol 5, pp. 237-246, 1991.
[10] H. J. Mayne, "Centralizing mapping of prime rings", Canad. Math. Bull. Vol. 27, No. 1, pp. 122126, 1984.
[11] H. M. Auday, A. J. Alan and N. S. Mahdi, "Relatively Commuting Mappings and Symmetric Biderivations in Semiprime Rings". Journal of Engineering and applied Sciences. Vol. 13 (Special Issue), pp. 10932-10935, 2018.

[^0]: *Email: audayhekmat@yahoo.com

