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Abstract  

        Every finite dimensional normed algebra is isomorphic to the finite direct 

product of   or  , it is also proved these algebras are ultrasemiprime algebras. In 

this paper, the ultrasemiprime proof of the finite direct product of   and   is 

generalized to the finite direct product of any ultrasemiprime algebras. 
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  الخلاصة 
، كذلك   أو   كل جبر مظتيي البعد معياري يتشاكل تشاكلًا متقابلًا مع الضرب الطباشر الطظتيي من      

جبهر شبو أولية مطيزة. في ىذا البحث برىان الشبو أولية الططيزة لمضرب الجبهر ىي  تم  برىان ان ىذه
 .ةمطيز  ةر شبو أوليه ى الضرب الطباشر الطظتيي لأي جبتم تعطيطيا ال  و   الطباشر الطظتيي لـ 

 

1. Introduction 

      Throughout this paper, all algebras are associative unless otherwise stated. Mathieu [1]  

introduced the ultraprime algebra by defining a norm on the algebra of quotients. The normed 

algebra   is ultraprime if there exists     such that  ‖ ‖‖ ‖  ‖    ‖ for all      , 

where          is a linear operator defined by     ( )     . An example of ultraprime 

algebra is that every prime   -algebra   is ultraprime and  ‖    ‖  ‖ ‖‖ ‖ for all     

  [2]. Ultraprime algebras were studied by many researchers[3][4][5]. If     for all    , 

then the definition of ultraprime algebra   transfers to the definition of ultrasemiprime 

algebra. Every ultraprime algebra is ultrasemiprime, however, the converse is not true, 

Mohammed [6, Theorem 5] proved that every finite dimensional normed algebra isomorphic 

to    and     where      are ultrasemiprime, but    and    are not prime so that they are 

not ultraprime algebras.  
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Mohammed [6, Theorem 5] also proved that the finite direct product of   or   is an 

ultrasemiprime which is a special case in the finite direct product of ultrasemiprime algebras, 

because   and   are ultrasemiprime. In this paper, the generalization of Theorem 5 has been 

given for the finite direct product of ultrasemiprime algebras. 

 

1. The ultrasemiprime algebras 

     Mathieu [1] studied the ultraprime algebras and gave an analytical adjective for algebra of 

quotients. He also defined an ultrasemiprime algebra which is given as follows: 

 The normed algebra   is an ultrasemiprime if there exists     such that    ‖ ‖  ‖    ‖   

for all    . Every   -algebra is an ultrasemiprime[7]. 

 

     An ultrafilter is a subset of a partially ordered set that is maximal among all proper filters. 

Let   be an index set and (  )    a family of normed spaces denoted by   (    ), the space of 

all bounded families (  )    with      . Let   is an ultrafilter on  , define    
*(  )      

 (    )      ‖  ‖   +. The quotient   (    )    is called the ultraproduct of 

the normed spaces    with respect to the ultrafilter  . When one takes     ,      for all 

   , where   is normed space and an ultrafilter   on  . Then ( )  is called ultrapower of   

with respect to   and is denoted by  ̂   [1]. 

 

     Mathieu [1, Lemma 1.1] gave two equivalent conditions for ultraprime algebras, they are 

shown in the next lemma. 

 

Lemma 2.1 [1] 

     The following conditions are equivalent for the normed algebra  . 

1. For any pair (  ) (  ),     of sequences in   such that ‖  ‖  ‖  ‖    for all    , 

there exists a bounded sequence (  ),     such that (      ),     does not tend to zero. 

2.   is an ultraprime algebra. 

3. The algebra of ultrapower of   on  ,  ̂  is prime, where    the free ultrafilter on    
In the following theorem, a condition that is similar to the first equivalent condition in Lemma 

2.1 for the ultraprime is used. This gives an equivalent condition to ultrasemiprime algebra. 

 

Theorem 2.2 

     The following statements are equivalent to a normed algebra  . 

1. For any sequence (  )     in   with ‖  ‖     for all      there exists a bounded 

sequence (  ),     in   such that the sequence (      )     does not converge to zero. 

2. There exists a positive number  , such that   ‖ ‖  ‖    ‖ for all   in  . 

 

Proof: 

     Let condition (1) be true and a positive number   for the sequence (  ) in   * + to satisfy 

(2) for all     does not exist. When    ,  ‖      ‖  ‖  ‖
 , when    , a positive 

number    that satisfies (2)  does not exist. That means ‖      ‖  
 

 
‖  ‖

 , when   
 

 
. For 

n=3 and   
 

 
 get ‖      ‖  

 

 
‖  ‖

 , similarly  ‖      ‖  
 

 
‖  ‖

 , put    
  

‖  ‖
  we get 

(  ) sequence in   such that ‖  ‖   , using (1) there exists abounded sequence (  ) in   

such that (      ) does not converge to zero, without losing generality assume  ‖  ‖    for 

all     are taken. 

Now       ‖      ‖        
‖  ‖

 

 
   . So      

   

‖      ‖

‖  ‖
       ‖      ‖. 

https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Partially_ordered_set
https://en.wikipedia.org/wiki/Maximal_element
https://en.wikipedia.org/wiki/Proper_filter
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We get the sequence (      ) converges to zero, then we get a contradiction, that means (2) 

is true. 

 

     Conversely, let (2) be true and (  ) be any sequence in   with ‖  ‖    for all      

when           using (2),  ‖  ‖
  ‖      ‖        *‖     ‖ ‖ ‖   +, for any 

    there exists at least one element      such that 

‖      ‖        *‖     ‖ ‖ ‖   +    ‖      ‖      ‖  ‖
     

In a special case, we take that ‖  ‖     and     in the term above for     . Now, when 

            by using (2), we get   ‖  ‖
  ‖      ‖        *‖     ‖ ‖ ‖   +, for 

    there exists at least one element      with ‖  ‖      such that 

‖      ‖        *‖     ‖ ‖ ‖   +    ‖      ‖     ‖  ‖
     

 Similarly, we get a bounded sequence (  ) in  , so  ‖  ‖
    ‖      ‖ since ‖  ‖  

   for all    . Therefore,     ‖      ‖ for all    , since       that means the 

sequence (      ) does not convergent to zero. 

3. Finite direct product of ultrasemiprime algebras 

     The direct product of prime algebras needs not to be  prime [8, Example 2.33], and the 

direct product of ultraprime algebras needs not to be ultraprime. We show that it is different 

when the algebras are ultrasemiprime. 

 

     In [6], the authors proved that every finite dimensional normed algebra is an 

ultrasemiprime. The finite dimensional normed algebras are isomorphic to    or    [9, 

Theorem 2.3.1]. That means the finite direct product of   or   are ultrasemiprime. 

The following Theorem gives the ultrasemiprime of a finite direct product of any 

ultrasemiprime algebras, which does not satisfy ultraprime algebra. In another way, it is a 

generalization to the ultrasemiprime of finite direct product of the fields   and    which are 

proved by Mohammed[6]. The direct product of algebra has taken with usual addition, scalar 

multiplication and multiplication. 

 

Theorem 3.1 

     Let     be any ultrasemiprime algebras. Then     is an ultrasemiprime with norm 

‖(   )‖        
   
*‖ ‖  ‖ ‖+ 

 

Proof: 

     Let     be ultrasemiprime normed algebras, put    is the constant of ultrasemiprime  ,    

is the constant of ultrasemiprime   and       *      +. Let (   )     , ‖(   )‖  
   *‖ ‖  ‖ ‖ +. In general, either ‖ ‖  ‖ ‖ or ‖ ‖  ‖ ‖, the equality can be written 

in both cases without affecting the proof. Now, either ‖(   )‖  ‖ ‖ or ‖(   )‖  ‖ ‖.  
In the first case, If  ‖ ‖  ‖ ‖ , then ‖(   )‖  ‖ ‖. Hence, 

‖ (   ) (   )‖     
(   )     

*‖(   )(   )(   )‖ ‖(   )‖    +   

                          (   )    *‖(       )‖ ‖(   )‖    +   

Since ‖(       )‖     *‖   ‖  ‖   ‖+ and ‖(   )‖     *‖ ‖  ‖ ‖+, so   

‖ (   ) (   )‖      (   )    {
   *‖   ‖  ‖   ‖+    *‖ ‖  ‖ ‖+   

 
}  

Accordingly, we have four possibilities for ‖ (   ) (   )‖ 

i. When ‖   ‖  ‖   ‖  and ‖ ‖  ‖ ‖ 
The ‖(   )‖     *‖ ‖  ‖ ‖+    ‖ ‖, by hypothesis ‖ ‖  ‖ ‖   , we have 

‖ (   ) (   )‖      (   )    {
   *‖   ‖  ‖   ‖+    *‖ ‖  ‖ ‖+   

 
}  
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                             *‖   ‖ ‖ ‖    +  ‖    ‖ 

                         ‖ ‖
    since   is an ultrasemiprime 

                         ‖(   )‖
  since ‖(   )‖  ‖ ‖ 

Therefore,  ‖ (   ) (   )‖    ‖(   )‖
  

ii. When ‖   ‖  ‖   ‖ and ‖ ‖  ‖ ‖  
The probability of equalization has been written in both cases without affecting the proof 

The ‖(   )‖     *‖ ‖  ‖ ‖+    ‖ ‖, by hypothesis ‖ ‖  ‖ ‖   , 

‖ (   ) (   )‖      (   )    {
   *‖   ‖  ‖   ‖+    *‖ ‖  ‖ ‖+   

 
}  

                             *‖   ‖ ‖ ‖   +  ‖    ‖ 

                          ‖ ‖
     ‖(   )‖

    

Therefore, ‖ (   ) (   )‖    ‖(   )‖
  

iii. When ‖   ‖  ‖   ‖  ‖ ‖  ‖ ‖ 
The ‖(   )‖     *‖ ‖  ‖ ‖+    ‖ ‖, by hypothesis ‖ ‖  ‖ ‖   , 

‖ (   ) (   )‖      (   )    {
   *‖   ‖  ‖   ‖+    *‖ ‖  ‖ ‖+   

 
}  

                              *‖   ‖ ‖ ‖   +  

                             *‖   ‖ ‖ ‖   + since ‖   ‖  ‖   ‖ 

                         ‖    ‖ 

                         ‖ ‖
        ‖(   )‖

    

Therefore, ‖ (   ) (   )‖    ‖(   )‖
  

iv. When ‖   ‖  ‖   ‖  ‖ ‖  ‖ ‖  
The ‖(   )‖     *‖ ‖  ‖ ‖+    ‖ ‖, by hypothesis  ‖ ‖  ‖ ‖   , 

‖ (   ) (   )‖      (   )    {
   *‖   ‖  ‖   ‖+    *‖ ‖  ‖ ‖+   

 
}  

                              *‖   ‖ ‖ ‖   +  

                            *‖   ‖ ‖ ‖   + since ‖   ‖  ‖   ‖ 

                        ‖    ‖     ‖ ‖
       ‖(   )‖

    

‖ (   ) (   )‖    ‖(   )‖
 . For the four possibilities, ‖ (   ) (   )‖    ‖(   )‖

  when 

‖ ‖  ‖ ‖. 
The second case, when ‖ ‖  ‖ ‖, then ‖(   )‖  ‖ ‖, we also have four possibilities for 

‖ (   ) (   )‖ 

i. When ‖   ‖  ‖   ‖   ‖ ‖  ‖ ‖ 
The ‖(   )‖     *‖ ‖  ‖ ‖+    ‖ ‖, by hypothesis  ‖ ‖  ‖ ‖   , we have 

‖ (   ) (   )‖      (   )    {
   *‖   ‖  ‖   ‖+    *‖ ‖  ‖ ‖+   

 
}  

                             *‖   ‖ ‖ ‖    +  
                             *‖   ‖ ‖ ‖    + since ‖   ‖  ‖   ‖ 

                          ‖    ‖     ‖ ‖
    since   is an ultrasemiprime 

                          ‖(   )‖
  since ‖(   )‖  ‖ ‖ 

  ‖ (   ) (   )‖    ‖(   )‖
 . The proof of the rest of the possibilities is similar to first case 

‖ (   ) (   )‖    ‖(   )‖
 . From the first and second case, we have  ‖ (   ) (   )‖  

 ‖(   )‖  for all (   )      

 

     In Theorem 3.1, we proved that the finite direct product of ultrasemiprime algebras 

depends on its definition using the maximum norm between the finite direct product of 

algebras. The following Theorem depends on the equivalent condition of ultrasemiprime 

given in Theorem 2.2(1) using the sum norm between the finite direct product of algebras.  
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Theorem 3.2  

     Let      be any ultrasemiprime algebras. Then     is an ultrasemiprime, with norm 

defined by ‖(   )‖  ‖ ‖  ‖ ‖. 
 

Proof: 

     Let (  )     be a sequence in    , such that ‖  ‖    for all    , so there exists 

a sequence (  )     in   and (  )     in   such that    (     ),    . 

Assume that     is not an ultrasemiprime algebra. From Theorem 2.2(1) , any bounded 

sequence (  )     in     does not exist that makes the sequence (      )  not 

converge to zero. That means for any bounded sequence (  )     in   the sequence 
(      ) is convergent to zero.  

There are three possibilities, without losing generality; elements equal to zero are not 

considered. 

i. When       and      for all     

ii. When       and       for all     

iii. When         and      for all     

     The first possibility, when       and      for all    , then    (    ), now  

(
  

‖  ‖
)      is a sequence in    Since   is an ultrasemiprime algebra from Theorem 2.2(1), 

there exists a bounded sequence (  )     in   with a bound     such that 

(
  

‖  ‖
  
  

‖  ‖
)      does not converge to zero. Also,  (

  

‖  ‖
  
  

‖  ‖
)  

 

‖  ‖ 
(      ) does 

not converge to zero, that means (      ) does not converge to zero. 

Define (  )    , by    (    ) where (  )     is a sequence in  . (  ) is a bounded 

sequence because ‖  ‖  ‖  ‖      

Now, (      ) are convergent to zero, so (      )  (    )(    )(    )  (        ), 
(      ) are convergent to zero, then must (      ) are convergent to zero, which is 

contradiction so (      ) does not convergent to zero. 

The second possibility, when       and      for all    , then    (    ), the proof  

of this possibility is similar to the first one. 

The third possibility, when         and      for all    , then    (     ), now  

(
  

‖  ‖
)      is a sequence in  , since   is an ultrasemiprime algebra from Theorem 2.2(1), 

there exists a bounded sequence (  )     in   with a bound     such that 

(
  

‖  ‖
  
  

‖  ‖
)      does not converge to zero. (

  

‖  ‖
  
  

‖  ‖
)  

 

‖  ‖ 
(      ) does not 

converge to zero, that means (      ) does not converge to zero. In a similar way for the 

sequence (  )     in  , there exists a bounded sequence (  )     in   with  a bound    

and (      ) does not converge to zero. 

 

     Define (  )    , by    (     ) where (  )     is a sequence in   and  (  )   
  is a sequence in  . (  ) is a bounded sequence, because ‖  ‖  ‖(     )‖  ‖  ‖  
‖  ‖        . 
 

     Now (      ) is convergent to zero, so 

 (      )  (     )(     )(     )  (             ), 
(      ) is convergent to zero, then  (      ) and (      ) must  converge to zero, which 

is a contradiction, so that  (      ) does not converge to zero. Therefore,     is an 

ultrasemiprime algebra. 
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Corollary 3.3  

     The finite direct product of ultrasemiprime algebras is ultrasemiprime with sum norm or 

maximum norm. 

 Corollary 3.4 

The finite direct product of ultraprime algebras is ultrasemiprime with sum norm or maximum 

norm. 

Corollary 3.5  

Every finite dimensional normed algebras is ultrasemiprime. 

 

Proof: 

     Every finite dimensional normed algebra is isomorphic to    or    [9, Theorem 2.3.1]. 

From corollary 3.3,    and    are ultrasemiprime with maximum or sum norm. But the 

norms under finite dimensional normed algebras are equivalent [10, Theorem 2.4.5]. 

Therefore,    and    are ultrasemiprime with any norm. 

 

Conclusions 

    In this work, a generalization of the ultrasemiprime proof of the finite direct product of   

and   to the finite direct product of any ultrasemiprime algebras is given. Some related results 

and properties are also given and discussed. 
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