Abduljaleel and Yaseen

Iraqi Journal of Science, 2022, Vol. 63, No. 4, pp: 1729-1735 DOI: 10.24996/ijs.2022.63.4.30

ISSN: 0067-2904

On Large-Lifting and Large-Supplemented Modules

Amira A. Abduljaleel*, Sahira M. Yaseen

Mathematics Department, College of Science, University of Baghdad, Baghdad, Iraq

Received: 30/6/2021 Accepted: 27/7/2021 Published: 30/4/2022

Abstract

In this paper, we introduce the concepts of Large-lifting and Largesupplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.

Keywords. L-small, L-lifting module, L-supplemented module.

حول مقاسات الرفع الاساسية والمقاسات المكملة الاساسية

امیرہ عامر عبد الجلیل * , ساہرۃ محمود یاسین قسم الریاضیات , کلیة العلوم , جامعة بغداد , بغداد, العراق

الخلاصة

الغرض من هذا البحث هو تقديم مفاهيم حول مقاسات الرفع الاساسية والمقاسات المكملة الاساسية وهي تعميم لمقاسات الرفع والمقاسات المكملة , وسوف نقوم بأستعراض بعض الخواص والنتائج لهذا النوع الجديد من المقاسات.

1. Introduction

Throughout this paper, we assume that R is a commutative ring with identity. A submodule N of an R-module M is called Large (essential) submodule in M, $(N \leq_{\rho} M)$. if for every nonzero submodule K of M, then $N \cap K \neq 0$ [1]. A proper submodule N of an Rmodule M is called small $(N \ll M)$, if for any submodule K of M such that N + K = Mimplies that K = M [1]. Assume that N and K are submodules of M, where M is R module, then N is called supplement of K in M, if N is minimal with respect to the property M = N + NK. This is equivalent to M = N + K and $N \cap K \ll N$, if every submodule of M has a supplement in M, then M is called supplemented module [2]. An R-module M is called lifting, if for every submodule N of M there exists a submodule K of N such that $M = K \oplus H$ and $N \cap H \ll H$ where H be a submodule of M equivalently M is called lifting, if and only if for every submodule N of M there exists a submodule K of N such that $M = K \oplus H$ and $N \cap H \ll$ M [2]. In [3], we give the concept of Large-small (L-small) submodule, it is given as follows; Let N be a proper submodule of M, then N is called L-small submodule of M ($N \ll_L M$), if N + K = M where $K \leq M$, then K is essential submodule of M ($K \leq_e M$). In [4], we also give the concept of Large-coessential (L-coessential) submodule . It is given as follows; Let M be an R-module and K, N are submodules of M such that $K \leq N \leq M$, then K is said to be Large-coessential submodule, if $\frac{N}{\kappa} \ll_L \frac{M}{\kappa}$. This paper consists two sections, in section one we

^{*}Email: amiraaaa142@gmail.com

give the concept of Large-lifting (L-lifting) modules and some of its properties, such that an R-module M is said to be L-lifting, if for every submodule N of M there exists a submodule K of N such that $M = K \bigoplus H$ and $N \cap H \ll_L M$ where H is a submodule of M. In section two we introduce the concept of Large-supplemented (L-supplemented) modules, such that an R-module M is called L-supplemented, if every submodule of M has L-supplement in M, where a submodule N is called L-supplement of K in M, if M = N + K and $N \cap K \ll_L N$. In Lemma(1.1), Lemma(1.2) and Lemma(1.3) we give some properties in [3] and [4] that we need it in this paper.

Lemma1.1[3]: (1) Let M be an R-module and K, N be submodules of M such that $K \le N \le M$, if $N \ll_L M$ then $K \ll_L M$.

(2) Let $f: M \to M$ be an epimorphism where M and M are an R-modules such that $N \ll_L M$ then $f^{-1}(N) \ll_L M$.

(3) Let *M* be an R-module and *K*, *N* be submodules of *M* where *K* is a closed in *M* such that $K \le N \le M$, if $N \ll_L M$ then $K \ll_L M$ and $\frac{N}{K} \ll_L \frac{M}{K}$.

(4) Let *M* be an R-module and *K*, *N* be submodules of *M* such that $K \le N \le M$, and *N* is direct summand of *M*, if $K \ll_L M$, then $K \ll_L N$.

Lemma1.2[3]: (1) Let $M = \bigoplus_{i \in I} M_i$ be fully stable module, if $N_i \ll_L M_i$ then $\bigoplus_{i \in I} N_i \ll_L \bigoplus_{i \in I} M_i$.

(2) Let *M* be an R-module such that *M* is faithful, finitely generated and multiplication module and let *I* be an ideal of R then $I \ll_L R$ if and only if $IM \ll_L M$.

Lemma1.3[4]: (1) Let *M* be an R-module and *K*, *N* be submodules of *M* such that $K \le N \le M$, if $\frac{N}{K} \ll_L \frac{M}{K}$ then $N \ll_L M$.

(2) Let *M* be an R-module and *K*, *N*, and *U* be submodules of *M* such that $K \le N \le U \le M$, then $N \le_{L.ce} U$ in *M* if and only if, $\frac{N}{K} \le_{L.ce} \frac{U}{K}$ in $\frac{M}{K}$.

Now, we need to prove the following lemma.

Lemma1.4: Let $M = M_1 \oplus M_2$ then $N_1 \ll_L M_1$ and $N_2 \ll_L M_2$ if and only if, $N_1 \oplus N_2 \ll_L M_1 \oplus M_2$.

Proof: (\Rightarrow) Let $U_1 \oplus U_2$ be a submodule of $M_1 \oplus M_2$ such that $N_1 \oplus N_2 + U_1 \oplus U_2 = M_1 \oplus M_2$. So that $(N_1 + U_1) \oplus (N_2 + U_2) = M_1 \oplus M_2$ and hence $N_1 + U_1 = M_1$ and $N_2 + U_2 = M_2$. Since $N_1 \ll_L M_1$ and $N_2 \ll_L M_2$, then $U_1 \leq_e M_1$ and $U_2 \leq_e M_2$, this implies that $U_1 \oplus U_2 \leq_e M_1 \oplus M_2$ by [1], and therefore $N_1 \oplus N_2 \ll_L M_1 \oplus M_2$.

(\Leftarrow) Let $N_1 \oplus N_2 \ll_L M_1 \oplus M_2 = M$. Since $N_1 \leq N_1 \oplus N_2 \ll_L M_1 \oplus M_2 = M$ then by Lemma(1.1), we have $N_1 \ll_L M$ and since $N_1 \leq M_1 \leq M$ and M_1 is direct summand of M then by Lemma(1.1) we get $N_1 \ll_L M_1$. Similarly we have $N_2 \ll_L M_2$.

2. Large-Lifting modules.

In this section we introduce the concept of Large-lifting modules and some properties of it are considered.

Definition 2.1: An R-module *M* is called Large-lifting (L-lifting), if for every submodule *N* of *M* there exists a submodule *K* of *N* such that $M = K \bigoplus H$ and $N \cap H \ll_L M$ where *H* is a submodule of *M*.

Remarks and Examples 2.2:

(1) Every lifting is L-lifting.

Proof: Let *M* be a lifting module and $N \le M$, then $M = K \oplus H$ where $K \le N$ and $N \cap H \ll M$ so $N \cap H \ll_L M$ where $H \le M$ by [3].

(2) The following example shows that the converse of (1) is not true.

Example: Z as Z- module is L-lifting since for $N = nZ \le Z$, there exists $\{\overline{0}\}$ direct summand of nZ such that $M = Z = \{\overline{0}\} + Z$ and $nZ \cap Z = nZ \ll_L Z$ by [3], also if $N = Z \le Z$, let $K = Z \le N$ such that $Z = Z \oplus \{\overline{0}\}$ and $Z \cap \{\overline{0}\} = \{\overline{0}\} \ll_L Z$, but Z is not lifting since nZ no t small submodule in Z.

(3) Z_{24} as Z-module is not L-lifting since, Let $N = Z_{24}$, the only direct summand of Z_{24} are $\{\overline{0}\}$ and $3Z_{24}$, $8Z_{24}$ such that $Z_{24} = K \oplus H$. If $K = \{\overline{0}\}$ thus $H = Z_{24}$ and $N \cap H = Z_{24} \cap Z_{24} = Z_{24}$ which is not L-small in Z_{24} and if $K = 3Z_{24}$ thus $H = 8Z_{24}$ and $Z_{24} \cap 8Z_{24} = 8Z_{24}$ which is not L-small in Z_{24} and if $K = 8Z_{24}$ thus $H = 3Z_{24} \cap 3Z_{24} = 3Z_{24}$ which is not L-small in Z_{24} .

(4) Every semisimple module is lifting [2], hence L-lifting by (1). Thus Z_6 as Z-module is L-lifting.

(5) Let M be a semisimple module, then M is lifting if and only if M is L-lifting.

(6) Every hollow module is lifting [2], hence L-lifting by (1). Thus Z_4 as Z-module is hollow, so it is L-lifting.

Recall that an R-module M is called L-hollow module if every proper submodule of M is L-small submodule in M [3].

Remark 2.3: Every L-hollow module is L-lifting.

Proof: Let *M* be L-hollow module and *N* be a proper submodule of *M* and let $M = \{\overline{0}\} \oplus M$ and $N \cap M = N \ll_L M$, so that *M* is L-lifting.

The converse of previous remark is not true, the following example: Z_6 as Z-module is Llifting by (4) but not L-hollow by [3].

Remark 2.4: Every Local module is hollow so L-hollow [3], hence it is L-lifting by Remark(2.3), where an R-module M is called local if it is hollow and has a unique maximal submodule [5].

Proposition 2.5: Let M be an indecomposable, then M is L-hollow if and only if M is L-lifting.

Proof: (\Rightarrow) Clear from Remark (2.3).

(⇐) Let *M* is L-lifting and *N* be a proper submodule of *M* and let $K \le N$ such that $M = K \bigoplus H$ where $H \le M$ and $N \cap H \ll_L M$, since *M* is indecomposable, then either K = 0 or K = M. If K = M then N = M and this is a contradiction, so that K = 0, and hence M = H, so $N = N \cap M = N \cap H \ll_L M$ hence $N \ll_L M$. Therefore *M* is L-hollow.

The characterization of L-lifting module is given by the next theorem.

Theorem 2.6: Let *M* be an R-module, then the following statements are equivalent:

1- *M* is L-lifting module .

2- Every submodule N of M can be written as $N = V \oplus W$ where V direct summand of M and $W \ll_L M$.

3- Every submodule N of M there exists a direct summand K of M such that $K \le N$ and $\frac{N}{K} \ll_L \frac{M}{K}$.

Proof: (1) \Rightarrow (2) Let *N* be a submodule of *M* then there exists a submodule *K* of *N* such that $M = K \oplus H$ and $N \cap H \ll_L M$ where *H* is a submodule of *M*. Now $N = N \cap M = N \cap (K \oplus H) = K \oplus (N \cap H)$ by modular law. Let V = K and $W = N \cap H$, so $N = V \oplus W$ where *V* direct summand of *M* and $W \ll_L M$.

(2) \Rightarrow (3) Let *N* be a submodule of *M* and $N = V \oplus W$ where *V* direct summand of *M* and $W \ll_L M$. It is enough to show that $\frac{N}{V} \ll_L \frac{M}{V}$. Let $\frac{U}{V} \leq \frac{M}{V}$ such that $\frac{N}{V} + \frac{U}{V} = \frac{M}{V}$ so $\frac{V \oplus W}{V} + \frac{U}{V} = \frac{M}{V}$, hence M = V + W + U = W + U. Since $W \ll_L M$, then $U \leq_e M$, and since *V* direct summand of *M* then *V* is closed in *M*, from [6-10], we have $\frac{U}{V} \leq_e \frac{M}{V}$, so that $\frac{N}{V} \ll_L \frac{M}{V}$.

(3) \Rightarrow (1) Let *N* be a submodule of *M* then there exists a submodule *K* of *N* such that $M = K \oplus H$ and $\frac{N}{K} \ll_L \frac{M}{K}$. By Lemma(1.3), we have $N \ll_L M$ by and since $N \cap H \leq N \leq M$ so we get $N \cap H \ll_L M$ by Lemma(1.1).

Proposition 2.7: Let M be an indecomposable module, then M is not L-lifting for every nontrivial submodule N of M.

Proof: Suppose that *M* is L-lifting and by theorem (2.6), let N = K + H where *K* direct summand of *M* and $H \ll_L M$, since *M* be an indecomposable then K = 0, hence $N = H \ll_L M$ and this is contradiction, so *M* is not L-lifting for every nontrivial submodule *N* of *M*.

Proposition 2.8: Any direct summand of L-lifting module is L-lifting.

Proof: Let *M* be L-lifting and assume that $M = M_1 \oplus M_2$. In order to show M_1 is L-lifting, let $N \leq M_1$ so that $N \leq M$ and by theorem (2.6), let $N = V \oplus W$ where *V* direct summand of *M* and $W \ll_L M$ hence $W \ll_L M_1$ by Lemma(1.1). Now, $M = V \oplus H$ where $H \leq M$, since *V* direct summand of *M*, then we get the result if we prove *V* direct summand of M_1 , so $M_1 = M_1 \cap M = M_1 \cap (V \oplus H) = V \oplus (M_1 \cap H)$ by modular law, hence *V* direct summand of M_1 , so M_1 is L-lifting.

Theorem 2.9: Let *M* be an R-module, then the following statements are equivalent: 1- *M* is L-lifting module.

2- For each submodule N of M, there exists $\varphi \in \text{End}(M)$ such that $\varphi^2 = \varphi$, $\varphi(M) \leq N$ and $(1 - \varphi)(N) \ll_L M$.

Proof: (1) \Rightarrow (2) Let *N* be a submodule of *M* then there exists a submodule *K* of *N* such that $M = K \oplus H$ and $N \cap H \ll_L M$ where *H* be a submodule of *M*. Let $\emptyset : M \to K$ be a projection map clearly $\emptyset^2 = \emptyset$ and $M = K \oplus H = \emptyset(M) \oplus (1 - \emptyset)(M), \ \emptyset(M) \le N$. Now $(1 - \emptyset)(N) = N \cap (1 - \emptyset)(M) = N \cap H \ll_L M$, so $(1 - \emptyset)(N) \ll_L M$.

 $(2) \Rightarrow (1)$ Let N be a submodule of M then there exists $\emptyset \in \text{End}(M)$ such that $\emptyset^2 = \emptyset$, $\emptyset(M) \leq N$ and $(1 - \emptyset)(N) \ll_L M$. Clearly that $M = \emptyset(M) \oplus (1 - \emptyset)(M)$, let $K = \emptyset(M)$ and $H = (1 - \emptyset)(M)$, hence $N \cap H = N \cap (1 - \emptyset)(M)$. To show that $N \cap (1 - \emptyset)(M) =$ $(1 - \emptyset)(N)$, let $u = (1 - \emptyset)(v) \in N \cap (1 - \emptyset)(M)$, since $(1 - \emptyset)^2 = (1 - \emptyset)$ so u = $(1 - \emptyset)^2(v) = (1 - \emptyset)(v) \in (1 - \emptyset)(N)$. Now let $u = (1 - \emptyset)(v) \in (1 - \emptyset)(N)$; $v \in N$, then $u \in (1 - \emptyset)(M)$, $u = (1 - \emptyset)(v) \in N$, hence $u \in N \cap (1 - \emptyset)(M)$ so $N \cap H = N \cap$ $(1 - \emptyset)(M) = (1 - \emptyset)(N) \ll_L M$, hence $N \cap H \ll_L M$, so M is L-lifting module.

Remark 2.10: The following example shows that if M is L-lifting module and N is a submodule of M, then $\frac{M}{N}$ need not to be L-lifting module.

Example: Let Z be L-lifting module and $24Z \le Z$ but $\frac{Z}{24Z} \simeq Z_{24}$ which is not L-lifting by (2.2).

Now, we introduce the following proposition in which $\frac{M}{N}$ be L-lifting module.

Proposition 2.11: Let *M* be L-lifting module and *W* be a submodule of *M* such that for every direct summand *K* of *M*, $\frac{K+W}{W}$ direct summand of $\frac{M}{W}$, then $\frac{M}{W}$ is L-lifting.

Proof: Let $\frac{N}{W} \leq \frac{M}{W}$, since *M* is L-lifting, then by theorem (2.6), there exists $K \leq N$ such that $M = K \oplus H$; $H \leq M$ and $\frac{N}{K} \ll_L \frac{M}{K}$, because of K + W is direct summand of *M*, we have $\frac{N}{K+W} \ll_L \frac{M}{K+W}$ so $K + W \leq_{L.ce} N$ in *M* and by Lemma(1.3), we get $\frac{K+W}{W} \leq_{L.ce} \frac{N}{W}$ in $\frac{M}{W}$, hence $\frac{N/W}{(K+W)/W} \ll_L \frac{M/W}{(K+W)/W}$, therefore $\frac{M}{W}$ is L-lifting.

An R-module M is called distributive, if for all submodules K, N and U of M, then $K \cap (N + U) = (K \cap N) + (K \cap U)$ [9].

Corollary 2.12: Let *M* be L-lifting and distributive module and let *W* be a submodule of *M* then $\frac{M}{W}$ is L-lifting.

Proof: Let *K* be a direct summand of *M*, such that $M = K \oplus U$ for some submodule *U* of *M*, hence $\frac{M}{W} = \frac{K \oplus U}{W} = \frac{K + W}{W} + \frac{U + W}{W}$ and since *M* is distribution module, then $(K + W) \cap$

 $(U+W) = ((K+W) \cap U) + ((K+W) \cap W) = (K \cap U) + (W \cap U) + (K \cap W) + W = W$, hence $\frac{M}{W} = \frac{K+W}{W} \bigoplus \frac{U+W}{W}$ and by proposition (2.11), we get $\frac{M}{W}$ is L-lifting.

Lemma 2.13 [6]: Let $M = M_1 \oplus M_2$ be an R-module, then $\frac{M}{A} = \frac{A^* + M_1}{A} \oplus \frac{A + M_2}{A}$ for every fully invariant submodule A of M.

Corollary 2.14: Let *M* be L-lifting module if *W* is fully invariant submodule of *M* then $\frac{M}{W}$ is L-lifting.

Proof: It directly comes from Lemma (2.13) and proposition (2.11).

3. Large-Supplemented modules

In this section we introduce the concept of Large-supplemented modules. Some results are also given .

Definition 3.1: Let *M* be an R-module and *N*, *K* are submodules of *M*, then *N* is called Large-supplement (L-supplement) of *K* in *M*, if M = N + K and $N \cap K \ll_L N$. If every submodule of *M* has L-supplement, then *M* is called L-supplemented module.

Remarks and Examples 3.2:

(1) Every supplemented module is L-supplemented.

Proof: Let *M* be a supplemented and *N* be a submodule of *M*, then *N* is a supplement of *K* in *M*, so M = N + K and $N \cap K \ll N$ hence $N \cap K \ll_L N$ by [3], so *N* is L-supplement of *K* in *M*, hence *M* is L-supplemented.

(2) Next example indicates that the converse of (1) is not true.

Example: Z as Z-module is L-supplemented since let $n, m \in N$, nZ is L-supplement of mZ since Z = nZ + mZ and $nZ \cap mZ = (nm)Z \ll_L nZ$, but Z is not supplemented since nZ is not supplement in Z since Z = nZ + mZ and $nZ \cap mZ = (nm)Z$ but (nm)Z is not small in nZ, since $\{\overline{0}\}$ is the only small submodule.

(3) Let M be a semisimple module, then M is supplemented if and only if, M is L-supplemented.

(4) Next example shows that if N and K are submodules of M, and N is L-supplement of K in M, then it is not necessary that K is L-supplement of N in M.

Example: In Z_4 as Z-module, Z_4 is L-supplement of $\{\overline{0}, \overline{2}\}$ in Z_4 since $Z_4 = Z_4 + \{\overline{0}, \overline{2}\}$ and $Z_4 \cap \{\overline{0}, \overline{2}\} = \{\overline{0}, \overline{2}\} \ll_L Z_4$ but $\{\overline{0}, \overline{2}\}$ is not L-supplement of Z_4 in Z_4 since $Z_4 = \{\overline{0}, \overline{2}\} + Z_4$ and $\{\overline{0}, \overline{2}\} \cap Z_4 = \{\overline{0}, \overline{2}\}$ but $\{\overline{0}, \overline{2}\}$ is not L-small in $\{\overline{0}, \overline{2}\}$.

(5) In Z_6 as Z-module where $Z_6 = \{\overline{0}, \overline{3}\} \oplus \{\overline{0}, \overline{2}, \overline{4}\}$ then $\{\overline{0}, \overline{3}\}$ is L-supplement of $\{\overline{0}, \overline{2}, \overline{4}\}$ since $Z_6 = \{\overline{0}, \overline{3}\} + \{\overline{0}, \overline{2}, \overline{4}\}$ and $\{\overline{0}, \overline{3}\} \cap \{\overline{0}, \overline{2}, \overline{4}\} = \{\overline{0}\} \ll_L \{\overline{0}, \overline{3}\}$ also $\{\overline{0}, \overline{2}, \overline{4}\}$ is L-supplement of $\{\overline{0}, \overline{3}\}$.

(6) Every semisimple module is L-supplemented.

(7) In [2], authors proved that every direct summand of M is supplement submodule of M, hence it is L-supplement by (1).

(8) Let *M* be an R-module and *N* be L-hollow of *M*, then *N* is L-supplement of each proper submodule *K* of *M* such that M = N + K.

Proof: Let *K* be a proper submodule of *M* such that M = N + K. It is clear that $N \cap K \neq N$, since if $N \cap K = N$, then $N \leq K$ hence K = M and this is a contradiction. Since *N* is L-hollow then $N \cap K \ll_L N$, so *N* is L-supplement of *K* in *M*.

(9) Let *M* be an R-module, then every L-small submodule of *M* has L-supplement in *M*.

Proof: Let N be L-small submodule of M, so that M = N + M and $N \cap M = N \ll_L M$, therefore M is L-supplement of N in M.

(10) The converse of (9) is not true, for example Z_6 as Z-module.

Proposition 3.3: Let *M* be an R-module and *N*, *K* be submodules of *M* such that $N \le K \le M$ and *N* is closed in *K*, if *K* is L-supplement of *H* in *M* then $\frac{K}{N}$ is L-supplement of $\frac{H+N}{N}$ in $\frac{M}{N}$.

Proof: Since K is L-supplement of H in M, then we have M = K + H and $K \cap H \ll_L K$. Now

 $\frac{\frac{M}{N} = \frac{K+H}{N} = \frac{K}{N} + \frac{H+N}{N}}{N}, \text{ we have to show that } \frac{K}{N} \cap \frac{H+N}{N} \ll_L \frac{K}{N}, \text{ so that } \frac{K}{N} \cap \frac{H+N}{N} = \frac{K \cap (H+N)}{N} = \frac{(K \cap H)+N}{N} \text{ by modular law. Let } \frac{U}{N} \leq \frac{K}{N} \text{ where } U \leq K \text{ and } N \leq U \text{ such that } \frac{(K \cap H)+N}{N} + \frac{U}{N} = \frac{K}{N}, \text{ so } \frac{(K \cap H)+N+U}{N} = \frac{K}{N} \text{ hence } (K \cap H) + N + U = K \text{ and since } N \leq U \text{ we have } (K \cap H) + U = K, \text{ since } K \cap H \ll_L K \text{ then } U \leq_e K \text{ but } N \leq U \leq K \text{ and } N \text{ is closed in } K. \text{ from [10-15], we get } \frac{U}{N} \leq_e \frac{K}{N}, \text{ therefore } \frac{K}{N} \text{ is L-supplement of } \frac{H+N}{N} \text{ in } \frac{M}{N}.$

Proposition 3.4: Let $f: M \to M^{\circ}$ be an epimorphism, if M° is L-supplemented module then M is L-supplemented.

Proof: Let $H \leq M$, then $f(H) \leq M$, since M is L-supplemented then there exists K is L-supplement of f(H) in M, so M = K + f(H) and $K \cap f(H) \ll_L K$. Now $f^{-1}(K + f(H)) = f^{-1}(M)$ hence $f^{-1}(K) + H = M$ and since $K \cap f(H) \ll_L K$ then $f^{-1}(K \cap f(H)) \ll_L f^{-1}(K)$ by Lemma(1.1), hence $f^{-1}(K) \cap H \ll_L f^{-1}(K)$ so, $f^{-1}(K)$ is L-supplement of H in M, hence M is L-supplemented.

Proposition 3.5: Let *M* be an R-module and *N*, *K* are submodules of *M* such that *K* is L-supplement of *N* in *M*, if M = H + K for some submodule *H* of *N*, then *K* is L-supplement of *H* in *M*.

Proof: Suppose M = H + K for some submodule H of N and K is L-supplement of N in M, so we have M = N + K and $N \cap K \ll_L K$, and since $H \cap K \leq N \cap K \ll_L K$, then $H \cap K \ll_L K$ by Lemma(1.1), hence K is L-supplement of H in M.

Proposition 3.6: Let *M* be an R-module and *N*, *K* and *U* are submodules of *M* such that $N \leq K$, if *N* is L-supplement of *U* in *M* then *N* is L-supplement of $U \cap K$ in *K*.

Proof: Since N is L-supplement of U in M then we have, M = N + U and $N \cap U \ll_L N$. Now $K = M \cap K = (N + U) \cap K = N + (U \cap K)$ by modular law, and since $\cap (U \cap K) \leq N \cap U \ll_L N$, so we get $N \cap (U \cap K) \ll_L N$ by Lemma(1.1), hence N is L-supplement of $U \cap K$ in K.

Proposition 3.7: Let $M = M_1 \oplus M_2$, if N_1 is L-supplement of N_2 in M_1 and K_1 is L-supplement of K_2 in M_2 , then $N_1 \oplus K_1$ is L-supplement of $N_2 \oplus K_2$ in M.

Proof: Since N_1 is L-supplement of N_2 in M_1 and K_1 is L-supplement of K_2 in M_2 , then we have $M_1 = N_1 + N_2$ and $N_1 \cap N_2 \ll_L N_1$, we also have $M_2 = K_1 + K_2$ and $K_1 \cap K_2 \ll_L K_1$, so $M = M_1 \oplus M_2 = (N_1 + N_2) \oplus (K_1 + K_2) = (N_1 \oplus K_1) + (N_2 \oplus K_2)$, since $N_1 \cap N_2 \ll_L N_1$ and $K_1 \cap K_2 \ll_L K_1$ then by Lemma(1.4), we have $(N_1 \cap N_2) \oplus (K_1 \cap K_2) \ll_L N_1 \oplus K_1$. Clearly $(N_1 \oplus K_1) \cap (N_2 \oplus K_2) = (N_1 \cap N_2) \oplus (K_1 \cap K_2) \ll_L N_1 \oplus K_1$, hence $N_1 \oplus K_1$ is L-supplement of $N_2 \oplus K_2$ in M.

Proposition 3.8: Let M be faithful, finitely generated and multiplication module over commutative ring R and N be a submodule of M, if N is L-supplement of IM in M, then J is L-supplement of I in R, where I, J are ideals of R.

Proof: Since *N* is L-supplement of *IM* in *M*, then we have M = N + IM and $N \cap IM \ll_L N$, since *M* is multiplication then N = JM. Now M = RM = IM + JM = (I + J)M, and since *M* is faithful, finitely generated and multiplication, then *M* is cancellation by [8], so R = I + J also we have $IM \cap N = IM \cap JM = (I \cap J)M \ll_L N = JM$, hence $(I \cap J)M \ll_L JM$. To show $I \cap J \ll_L J$, let *H* be an ideal of R such that $(I \cap J) + H = J$, so $(I \cap J)M + HM = JM$ and since $(I \cap J)M \ll_L JM$, then $HM \leq_e JM$ so $H \leq_e J$ so we get the result, and hence *J* is L-supplement of *I* in R.

The characterization of L-supplement submodules is given in the next theorem.

Theorem 3.9: Let M be an R-module and N, K are submodules of M, then the following statements are equivalent:

1- K is L-supplement of N in M.

2- M = N + K and for every non-essential submodule H of K, then $M \neq N + H$.

Proof: (1) \Rightarrow (2) Assume *K* is L-supplement of *N* in *M*, so we have M = N + K and $N \cap K \ll_L K$ and suppose M = N + H where *H* is non-essential submodule of *K*, so $K = K \cap M = K \cap (N + H) = H + (N \cap K)$ by modular law, and since $N \cap K \ll_L K$ so we have $H \leq_e K$ and this is a contradiction, so that $M \neq N + H$.

(2) \Rightarrow (1) From (2) M = N + K, we must show $N \cap K \ll_L K$. Let $U \leq K$ such that $(N \cap K) + U = K$, if U is non-essential submodule of K, then by assumption $M \neq N + U$, so $M = N + K = N + (N \cap K) + U = N + U$ and this is a contradiction, so that $U \leq_e K$, hence $N \cap K \ll_L K$, and we get K is L-supplement of N in M.

Proposition 3.10: Let *M* be an R-module and M_1 , *H* are submodules of *M*, such that M_1 is L-supplemented module, if $M_1 + H$ has L-supplement in *M* then *H* has L-supplement in *M*.

Proof: By assumption $M_1 + H$ has L-supplement in M, so there exists $U \le M$ such that $M_1 + H + U = M$ and $(M_1 + H) \cap U \ll_L U$, since M_1 is L-supplemented then $(H + U) \cap M_1 \le M_1$ has L-supplement in M_1 , so there exists $V \le M_1$ such that $((H + U) \cap M_1) + V = M_1$ and $(H + U) \cap V \ll_L V$. Now $M = M_1 + H + U = ((H + U) \cap M_1) + V + H + U = H + (V + U)$. One can easily show $H \cap (V + U) \le ((H + V) \cap U) + ((H + U) \cap V) \le ((H + M_1) \cap U) + ((H + U) \cap V) \ll_L U + V$ by Lemma(1.4), so $H \cap (V + U) \ll_L U + V$ and V + U is L-supplement of H in M, hence H has L-supplement in M.

Proposition 3.11: Let $M = M_1 \oplus M_2$ such that M_1 and M_2 are L-supplemented modules then M is L-supplemented module.

Proof: Let $H \le M$ and since $M_1 + M_2 + H = M$, so it is trivial has L-supplement in M. By proposition (3.10) and since M_1 is L-supplemented, then $M_2 + H$ has L-supplement in M, again by proposition (3.10) and since M_2 is L-supplemented, then H has L-supplement in M, and hence M is L-supplemented module.

References

- [1] Kasch, F., Modules and Rings, Academic Press, Inc-London.1982.
- [2] A. B. Hamdouni, On lifting modules. M.S. Thesis, University of Baghdad, Iraq, 2001.
- [3] Amira A. A. and Sahira M. Y., "On Large-Small submodule and Large-Hollow module", *Journal* of *Physics: Conference Series*, vol. 1818, 2021.
- [4] Amira A. A. and Sahira M. Y., "Large-Coessential and Large-Coclosed submodules", *Iraqi* Journal of Science, voll. 62, no. 11, pp. 4065-4070, 2021.
- [5] P. M. Hama Ali, Hollow modules and semihollow modules, M.S. Thesis, University of Baghdad, Iraq, (2005).
- [6] N. Orhan , D. K Tutuncu and R .Tribak, "On Hollow-lifting Modules", *Taiwanese J. Math*, vol. 11 , No. 2, pp. 545-568, 2007.
- [7] Ali K. and Wasan Kh., "On J-Lifting Modules", Journal of Physics: Conference Series, vol.1530, no. 1, 012025, 2020.
- [8] A.G. Naoum, "1/2 Cancellation Modules". *Kyungpook Mathematical Journal*, vol. 36, no. 1, pp. 97-106, 1969.
- [9] V. Erdogdu, "Distributive modules", Can. Math. Bull, pp. 248-254, 1987.
- [10] Goodearl, K. R, Ring Theory, Nonsingular Rings and Modules, Marcel Dekkl, 1976.
- [11] Sarah Sh. and Bahar H., "Some Generalization on δ -Lifting modules", *Iraqi journal of science*, vol.53, no. 3, pp 633-643, 2012.
- [12] Layla H. H. and Sahira. M. Y., "On Semiannahilator Supplement Submodules", *Iraqi journal of science*, vol. Special Issue, pp. 16-20, 2020.
- **[13]** Enas M. K. and Wasan Kh., "On μ-lifting Modules", *Iraqi journal of science*, vol. 60, no. 2, pp. 371-380, 2019.
- [14] Sahira M. Y. and Wasan Kh., "Pure-supplemented Modules", *Iraqi Journal of Science*. vol. 53, no. 4, pp. 882-886, 2012.
- [15] Noor M. M. and Wasan Kh., "Generalized-hollow Lifting_g modules", *Iraqi Journal of Science*, vol. 59, no. 2B, pp..917-921, 2018.