

Coefficient Estimates for Subclasses of Regular Functions

Abdul Rahman S. Juma ${ }^{1}$, Mohammed H. Saloomi ${ }^{*}{ }^{\mathbf{2}}$
${ }^{1}$ Department of Mathematics,University of Anbar,Ramadi, Iraq
${ }^{2}$ Department of Mathematics, University of Baghdad, Baghdad Iraq

Abstract

The aim of this paper is to introduce and investigate new subclasses of regular functions defined in \mathfrak{U}. The coefficients estimate $\left|a_{2}\right|,\left|a_{3}\right|$ and $\left|a_{3}-\mu a_{2}^{2}\right|$ for functions in these subclasses are determined. Many of new and known consequences are shown as particular cases of our outcomes.

Keywords: regular functions, Univalent function, Subordination, Majorization, Fekete-Szego.

تقـيرات المعامل لفئات جزئيه من الدوال التحليليه

$$
\begin{aligned}
& \text { 2** عبدالرحمن سلمان جمعه }{ }^{\text {¹ }} \text { محمد حسن سلومي } \\
& \text { 1 }{ }^{1} \text { فسم الرياضيات، جامعة الانبار، الرمادي، العراق } \\
& \text { 22 فسم الرياضيات، جامعة بغداد، بغداد، العراق }
\end{aligned}
$$

الخلاصة

$$
\begin{aligned}
& \text { الهـف من هذا البحث هو تقايم واستقصاء فئات جزئيه جديدة من الدوال التحليليه المعرفه في قرص } \\
& \text { الوحدة . تققير المعاملات } \\
& \text { العديد من الننائج الجديدة والمعروفة على أنها حالات خاصة لنتائجنا. }
\end{aligned}
$$

1. Introudction

Let \mathcal{A} be the class of all regular functions f in the unit disk $\mathfrak{U}=\{z:|z|<1\}$,of the following form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

and normalized by $f^{\prime}(0)=1$ and $f(0)=0$.
A function $f(z) \in \mathcal{A}$ is subordinate to regular function $F(z)$ if there is Schwarz function $k(z)$ which is regular satisfying $k(0)=0,|k(z)|<1$ in \mathfrak{U}, and

$$
f(z)=F(k(z))
$$

in this case we write

$$
\begin{equation*}
f<F \text { or } f(z)<F(z)(z \in \mathfrak{U}) \tag{1.2}
\end{equation*}
$$

Furthermore, if the F is univalent in \mathfrak{U}, then $f<F$ is equivalent to $f(0)=F(0)$ and $f(\mathfrak{U}) \subset$ $F(\mathfrak{U})$.For more details on the notion of subordination, (see [1]).
Let $f(z)$ and $F(z)$ be regular in the open unit disk \mathfrak{U}. Then we say that f is majorized by $F \mathfrak{i n} \mathfrak{U}$ (see [2]) and write

$$
f(\mathrm{z}) \prec \prec F(\mathrm{z})(\mathrm{z} \in \mathfrak{U}),
$$

if there exists a regular function $\phi(\mathrm{z})$ in \mathfrak{U}, such that $|\phi(\mathrm{z})| \leq 1$ and $f(\mathrm{z})=\phi(\mathrm{z}) F(\mathrm{z})(\mathrm{z} \in \mathfrak{U})$.

[^0]Ma and Minda [3], defined the classes as follow:

$$
\begin{aligned}
& \mathrm{K}(\phi):=\left\{h \in \mathcal{A}: 1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)} \prec \phi(\mathrm{z}) ; \mathrm{z} \in \mathfrak{U}\right\} \\
& \mathrm{S} *(\phi):=\left\{h \in \mathcal{A}: \frac{z h^{\prime}(\mathrm{z})}{h(\mathrm{z})} \prec \phi(\mathrm{z}) ; \mathrm{z} \in \mathfrak{U}\right\}
\end{aligned}
$$

We suppose that the function $\phi(z)$ is a regular and univalent with a positive real part in the disk \mathfrak{U}, satisfying $\phi(0)=1, \phi^{\prime}(0)>0$ and $\phi(\mathfrak{U})$ is starlike region with the respect to 1 and symmetric with the respect to the real axis. The classes $K(\phi)$ and $S^{*}(\phi)$, are called convex of Ma-Minda type and starlike of Ma-Minda type respectively.
At this work, it is supposed that

$$
k(z)=k_{1} z+k_{2} z^{2}+k_{3} z^{3}+\cdots
$$

and

$$
\phi(z)=1+d_{1} z+d_{2} z^{2}+d_{3} z^{3}+\cdots, \quad d_{1}>0
$$

where ϕ is a regular in \mathfrak{U} and $\phi(0)=1$. Motivated by the work in [4], we introduce the classes as follows.
Definition (1.1).Let the class $\mathcal{Z}_{\beta}(\phi)(0 \leq \beta \leq 1)$ consist of functions $f \in \mathcal{A}$ satisfying the subordination condition

$$
\frac{\beta \mathrm{z} f^{\prime}(\mathrm{z})}{(1-\beta) z+\beta f(\mathrm{z})}+(1-\beta)\left[\frac{\mathrm{z} f^{\prime \prime}(\mathrm{z})}{f^{\prime}(\mathrm{z})}+1\right]<\phi(z)
$$

Definition (1.2) Let the class $\mathcal{L}_{\lambda}(\beta, \phi),(0 \leq \beta<1,0 \leq \lambda \leq 1)$ consist of functions $f \in \mathcal{A}$ satisfying the subordination condition

$$
(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}\left[\frac{f(z)}{z}\right]^{\beta}+\lambda\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]^{1-\beta} \prec \phi(z)
$$

Definition (1.3) Let the class $\mathcal{B}_{\alpha}(\phi)(0 \leq \alpha \leq 1)$ consist of functions $f \in \mathcal{A}$ satisfying the subordination condition

$$
\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{f^{\prime}(z)+z f^{\prime \prime}(z)}{f^{\prime}(z)+\alpha z f^{\prime \prime}(z)}<\phi(z) .
$$

Definition (1.4) Let the class $\mathcal{A}_{\alpha}^{\gamma}(\beta, \phi)(\alpha>0, \beta \geq 0,0 \leq \gamma \leq 1)$, consist of functions $f \in \mathcal{A}$ satisfying the subordination condition

$$
\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{\alpha}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{\beta}+\gamma\left(f^{\prime}(z)-1\right) \prec \phi(z)
$$

In this paper, the Fekete-Szego inequality for the functions in these subclasses are obtained. More details of Fekete-Szego coefficient for various classes (see [5, 6, 7, 8, 9])
To prove our results, we shall use the next lemma.
Lemma (1.5) [9]. Let w be regular function normalized by $|w(z)|<1, w(0)=0$, and

$$
\mathrm{w}(z)=w_{1} \mathrm{z}+w_{2} \mathrm{z}^{2}+w_{3} \mathrm{z}^{3}+\cdots
$$

Then
$\left|w_{2}-\mu w_{1}^{2}\right| \leq \max \{1,|\mu|\}$, where μ is complex number.

2. Main Results.

Theorem (2.1). Let $f \in \mathcal{A}$ belongs to $Z_{\beta}(\phi)$. Then

$$
\left|a_{2}\right| \leq \frac{\mathrm{d}_{1}}{2-\beta^{2}},\left|a_{3}\right| \leq \frac{d_{1}}{\left|6-3 \beta-\beta^{2}\right|} \max \left\{1,\left|\frac{\beta^{3}-2 \beta^{2}+24 \beta-24}{\left(2-\beta^{2}\right)^{2}} \mathrm{~d}_{1}-\frac{d_{2}}{d_{1}}\right|\right\}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{d_{1}}{\left|6-3 \beta-\beta^{2}\right|} \max \left\{1,\left|\frac{\mu\left(6-3 \beta-\beta^{2}\right)+\beta^{3}-2 \beta^{2}+24 \beta-24}{\left(2-\beta^{2}\right)^{2}} \mathrm{~d}_{1}-\frac{d_{2}}{d_{1}}\right|\right\}
$$

Proof: Since $f \in Z_{\beta}(\phi)$, there exist regular function w with $|w(z)|<1$ and $w(0)=0$ such that:

$$
\begin{equation*}
\frac{\beta \mathrm{zf} f^{\prime}(\mathrm{z})}{(1-\beta) z+\beta f(z)}+(1-\beta)\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]=\phi(w(z)) \tag{2.3}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{\beta z f^{\prime}(z)}{(1-\beta) z+\beta f(z)}=\beta+\left(2 \beta-\beta^{2}\right) a_{2} z+\left[\left(3 \beta-\beta^{2}\right) a_{3}-\beta\left(2 \beta-\beta^{2}\right) z_{2}^{2}\right]+\cdots \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\beta)\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)=(1-\beta)+2(1-\beta) a_{2} z+6(1-\beta)\left(a_{3}-4 a_{2}^{2}\right) z^{2} \ldots \tag{2.5}
\end{equation*}
$$

from (2.4) and (2.5), we get the following

$$
\begin{align*}
& \frac{\beta \mathrm{z} f^{\prime}(\mathrm{z})}{(1-\beta) \mathrm{z}+\beta f(\mathrm{z})}+(1-\beta)\left[\frac{\mathrm{zf} f^{\prime \prime}(\mathrm{z})}{f^{\prime}(\mathrm{z})}+1\right]= \\
& \quad 1+\left(2-\beta^{2}\right) a_{2} z+\left[\left(6-3 \beta-\beta^{2}\right) a_{3}-\left(24-24 \beta+2 \beta^{2}-\beta^{3}\right) a_{2}^{2}\right] \mathrm{z}^{2} \ldots \tag{2.6}
\end{align*}
$$

and

$$
\begin{equation*}
\phi\left(\mathrm{w}(\mathrm{z})=1+d_{1} w_{1} \mathrm{z}+\left(d_{1} w_{2}+d_{2} w_{1}^{2}\right) \mathrm{z}^{2} \ldots\right. \tag{2.7}
\end{equation*}
$$

Putting (2.6) and (2.7) in (2.3) and equating coefficient both sides, we get

$$
a_{2}=\frac{d_{1} w_{1}}{2-\beta^{2}}
$$

and

$$
a_{3}=\frac{d_{1}}{6-3 \beta-\beta^{2}}\left[d_{1} w_{2}+d_{2} w_{1}^{2}-\frac{\beta^{3}-2 \beta^{2}+24 \beta-24}{\left(2-\beta^{2}\right)^{2}} d_{1}^{2} w_{1}^{2}\right]
$$

By using the well-known inequality, $\left|w_{1}\right| \leq 1$, we obtain

$$
\left|a_{2}\right| \leq \frac{\mathrm{d}_{1}}{2-\beta^{2}}
$$

Further

$$
a_{3}-\mu a_{2}^{2}=\frac{d_{1}}{6-3 \beta-\beta^{2}}\left[d_{1} w_{2}+d_{2} w_{1}^{2}-\frac{\beta^{3}-2 \beta^{2}+24 \beta-24}{\left(2-\beta^{2}\right)^{2}} d_{1}{ }^{2} w_{1}{ }^{2}\right]-\mu \frac{d_{1}{ }^{2} w_{1}^{2}}{\left(2-\beta^{2}\right)^{2}}
$$

Applying Lemma (1.5) to

$$
\left|w_{2}-\left\{\frac{\mu\left(6-3 \beta-\beta^{2}\right)+\beta^{3}-2 \beta^{2}+24 \beta-24}{\left(2-\beta^{2}\right)^{2}} \mathrm{~d}_{1}-\frac{d_{2}}{d_{1}}\right\} w_{1}^{2}\right| .
$$

We conclude that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{d_{1}}{\left|6-3 \beta-\beta^{2}\right|} \max \left\{1,\left|\frac{\mu\left(6-3 \beta-\beta^{2}\right)+\beta^{3}-2 \beta^{2}+24 \beta-24}{\left(2-\beta^{2}\right)^{2}} \mathrm{~d}_{1}-\frac{d_{2}}{d_{1}}\right|\right\}
$$

For $\mu=0$, the above relation will give estimate of $\left|a_{3}\right|$.
Remark (2.2): For $\beta=0$, we have

$$
Z_{0}(\phi):=\mathcal{K}(\phi)
$$

Also for $\beta=1$, we have

$$
Z_{1}(\phi):=S^{*}(\phi)
$$

In this case, $\mathcal{K}(\phi)$ and $S^{*}(\phi)$, were studied by Ma and Minda (see [3]).
We observe that on choosing $\beta=\frac{1}{2}$ in previous theorem, we obtain the next corollary.
Corollary (2.3): Let f be in the class $\mathcal{Z}_{\frac{1}{2}}(\phi)$.Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{4}{7} d_{1} \\
\left|a_{3}\right| \leq \frac{4 d_{1}}{17} \max \left\{1,\left|\frac{99 d_{1}}{8}+\frac{d_{2}}{d_{1}}\right|\right\}
\end{gathered}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{4 d_{1}}{17} \max \left\{1,\left|\frac{17}{4} \mu-\frac{99 d_{1}}{8}-\frac{d_{2}}{d_{1}}\right|\right\}
$$

Theorem (2.4) If $f \in \mathcal{A}$ satisfies

$$
\frac{\beta z f^{\prime}(z)}{(1-\beta) z+\beta f(z)}+(1-\beta)\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right] \ll \phi(z)
$$

then

$$
\left|a_{2}\right| \leq \frac{\mathrm{d}_{1}}{2-\beta^{2}},\left|a_{3}\right| \leq \frac{d_{1}}{\left|6-3 \beta-\beta^{2}\right|}\left|\frac{\beta^{3}-2 \beta^{2}+24 \beta-24}{\left(2-\beta^{2}\right)^{2}} \mathrm{~d}_{1}-\frac{d_{2}}{d_{1}}\right|
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{d_{1}}{\left|6-3 \beta-\beta^{2}\right|}\left|\frac{\mu\left(6-3 \beta-\beta^{2}\right)+\beta^{3}-2 \beta^{2}+24 \beta-24}{\left(2-\beta^{2}\right)^{2}} \mathrm{~d}_{1}-\frac{d_{2}}{d_{1}}\right|
$$

Proof: The required proof is obtained by setting $\mathrm{w}(z)=z$ in the previous proof.
Theorem (2.5) If f is given by (1.1) belong to $\mathcal{L}_{\lambda}(\beta, \phi)$, then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{d_{1}}{|\beta-3 \lambda \beta+\lambda+1|} \tag{2.8}\\
\left|a_{3}\right| \leq \frac{d_{1}}{|\beta-7 \lambda \beta+4 \lambda+2|} \max \left\{1,\left|\frac{\frac{3}{2} \lambda \beta^{2}+\frac{3}{2} \lambda \beta-3 \lambda+\frac{1}{2} \beta^{2}+\frac{1}{2} \beta-1}{(\beta-3 \lambda \beta+\lambda+1)^{2}} d_{1}+\frac{d_{2}}{d_{1}}\right|\right\}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{d_{1}}{|\beta-7 \lambda \beta+4 \lambda+2|} \max \left\{1,\left|\frac{\frac{3}{2} \lambda \beta^{2}+\frac{3}{2} \lambda \beta-3 \lambda+\frac{1}{2} \beta^{2}+\frac{1}{2} \beta-1}{(\beta-3 \lambda \beta+\lambda+1)^{2}} d_{1}-\frac{\mu(\beta-7 \lambda \beta+4 \lambda+2) d_{1}}{(\beta-3 \lambda \beta+\lambda+1)^{2}}-\frac{d_{2}}{d_{1}}\right|\right\} \tag{2.9}
\end{equation*}
$$

Proof: Let $f \in \mathcal{L}_{\lambda}(\beta, \phi)$.Then there exists a regular function w with $\mathrm{w}(0)=0$ and $|w(z)|<1$ such that:

$$
\begin{equation*}
(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{\beta}+\lambda\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)^{1-\beta}=\phi(w(z)) . \tag{2.10}
\end{equation*}
$$

Since

$$
\begin{aligned}
& (1-\lambda) \frac{z f^{\prime}(z)}{f(\mathrm{z})}\left(\frac{f(\mathrm{z})}{\mathrm{z}}\right)^{\beta}+\lambda\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)^{1-\beta}= \\
& \left.1+(\beta-3 \lambda \beta+\lambda+1) a_{2} z+\left[(\beta-7 \lambda \beta+4 \lambda+2) a_{3}+\left\{\frac{3}{2} \lambda \beta^{2}+\frac{3}{2} \lambda \beta-3 \lambda+\frac{1}{2} \beta^{2}+\frac{1}{2} \beta-1\right\} a_{2}^{2}\right)\right] z^{2}
\end{aligned}
$$

$$
\begin{equation*}
+\ldots \ldots \tag{2.11}
\end{equation*}
$$

Putting (2.7) and (2.11) in (2.10) and equating coefficients both sides, we get

$$
a_{2}=\frac{d_{1} w_{1}}{\beta-3 \lambda \beta+\lambda+1}
$$

By using the well-known inequality, $\left|w_{1}\right| \leq 1$, on a_{2}, we obtain (2.8).
Also

$$
a_{3}-\mu a_{2}^{2}=\frac{d_{1}}{\beta-7 \lambda \beta+4 \lambda+2}\left[w_{2}-\left(\frac{\frac{3}{2} \lambda \beta^{2}+\frac{3}{2} \lambda \beta-3 \lambda+\frac{1}{2} \beta^{2}+\frac{1}{2} \beta-1}{(\beta-3 \lambda \beta+\lambda+1)^{2}} d_{1}-\frac{\mu(\beta-7 \lambda \beta+4 \lambda+2) d_{1}}{(\beta-3 \lambda \beta+\lambda+1)^{2}}-\frac{d_{2}}{d_{1}}\right) w_{1}^{2}\right]
$$

Applying Lemma (1.5) in previous relation, we obtain (2.9).
For $\mu=0$, in (2.9), we get the upper bound to $\left|a_{3}\right|$.
Remark (2.6): Setting $\beta=0$, and $\lambda=0$, we have

$$
\mathcal{L}_{0}(0, \phi):=\mathrm{S}^{*}(\phi)
$$

and for $\beta=0$, and $\lambda=1$, we obtain

$$
\mathcal{L}_{1}(0, \phi):=\mathcal{K}(\phi)
$$

These classes were introduced by Ma and Minda see [3].
For $\lambda=1$, we get the class $\mathcal{L}_{1}(\beta, \phi):=\mathcal{L}(\beta, \phi)$, and for $\lambda=0$, we obtain the class $\mathcal{L}_{0}(\beta, \phi):=\mathcal{L}^{\beta}(\phi)$, in this case, we obtain the next corollaries.
Corollary (2.7): Let f be in the $\operatorname{class} \mathcal{L}(\beta, \phi)$, .Then

$$
\left|a_{2}\right| \leq \frac{d_{1}}{|2-2 \beta|}, \quad a_{3} \left\lvert\, \leq \frac{d_{1}}{|6-6 \beta|} \max \left\{1,\left|\frac{2 \beta^{2}+2 \beta-4}{(2-2 \beta)^{2}} d_{1}+\frac{d_{2}}{d_{1}}\right|\right\} .\right.
$$

And

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{d_{1}}{|6-6 \beta|} \max \left\{1,\left|\frac{2 \beta^{2}+2 \beta-4}{(2-2 \beta)^{2}} d_{1}-\frac{\mu(6-6 \beta) d_{1}}{(2-2 \beta)^{2}}-\frac{d_{2}}{d_{1}}\right|\right\} .
$$

Corollary (2.8): Let f of the form (1.1), belong to the class $\mathcal{L}^{\beta}(\phi)$.Then

$$
\left|a_{2}\right| \leq \frac{d_{1}}{|\beta+1|},\left|a_{3}\right| \leq \frac{d_{1}}{|\beta+2|} \max \left\{1,\left|\frac{\frac{1}{2} \beta^{2}+\frac{1}{2} \beta-1}{(\beta+1)^{2}} d_{1}+\frac{d_{2}}{d_{1}}\right|\right\}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{d_{1}}{|\beta+2|} \max \left\{1,\left|\frac{\frac{1}{2} \beta^{2}+\frac{1}{2} \beta-1}{(\beta+1)^{2}} d_{1}-\frac{\mu(\beta+2) d_{1}}{(\beta+1)^{2}}-\frac{d_{2}}{d_{1}}\right|\right\}
$$

Setting $\lambda=\frac{1}{2}$ in previous theorem we get the next corollary.
Corollary (2.9): Let f be in the class $\mathcal{L}_{\frac{1}{2}}(\beta, \phi)$.Then

$$
\left|a_{2}\right| \leq \frac{d_{1}}{\frac{3}{2}-\frac{1}{2} \beta},\left|a_{3}\right| \leq \frac{d_{1}}{4-\frac{5}{2} \beta} \max \left\{1,\left|\frac{\frac{5}{4} \beta^{2}+\frac{5}{4} \beta-\frac{5}{2}}{\left(\frac{3}{2}-\frac{1}{2} \beta\right)^{2}} d_{1}-\frac{d_{2}}{d_{1}}\right|\right\}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{d_{1}}{4-\frac{5}{2} \beta} \max \left\{1,\left|\left(\frac{\frac{5}{4} \beta^{2}+\frac{5}{4} \beta-\frac{5}{2}+\mu\left(4-\frac{5}{2} \beta\right)}{\left(\frac{3}{2}-\frac{1}{2} \beta\right)^{2}}\right) d_{1}-\frac{d_{2}}{d_{1}}\right|\right\} .
$$

Theorem (2.10): If $f \in \mathcal{A}$ satisfies

$$
(1-\lambda) \frac{\mathrm{zf}(\mathrm{z})}{f(\mathrm{z})}\left[\frac{f(\mathrm{z})}{\mathrm{z}}\right]^{\beta}+\lambda\left[\frac{\mathrm{zf}(\mathrm{z})}{f^{\prime}(\mathrm{z})}+1\right]^{1-\beta} \ll \phi(\mathrm{z})
$$

then

$$
\left|a_{2}\right| \leq \frac{d_{1}}{|\beta-3 \lambda \beta+\lambda+1|},\left|a_{3}\right| \leq \frac{d_{1}}{|\beta-7 \lambda \beta+4 \lambda+2|}\left|\frac{\frac{3}{2} \lambda \beta^{2}+\frac{3}{2} \lambda \beta-3 \lambda+\frac{1}{2} \beta^{2}+\frac{1}{2} \beta-1}{(\beta-3 \lambda \beta+\lambda+1)^{2}} d_{1}+\frac{d_{2}}{d_{1}}\right|
$$

and

$$
\left.\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{d_{1}}{|\beta-7 \lambda \beta+4 \lambda+2|}, \left\lvert\, \frac{\left(\frac{3}{2} \lambda \beta^{2}+\frac{3}{2} \lambda \beta-3 \lambda+\frac{1}{2} \beta^{2}+\frac{1}{2} \beta-1-\mu(\beta-7 \lambda \beta+4 \lambda+2)\right.}{(\beta-3 \lambda \beta+\lambda+1)^{2}}\right.\right) \left.d_{1}-\frac{d_{2}}{d_{1}} \right\rvert\,
$$

Proof: The required proof is obtained by setting $\mathrm{w}(z)=z$ in the previous proof.
Theorem (2.11) If f is given by (1.1) belong to $\mathcal{B}_{\alpha}(\phi)$, then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{\mathrm{d}_{1}}{2(2 \alpha+1)}, \tag{2.12}\\
\left|a_{3}\right| \leq \frac{d_{1}}{8} \max \left\{1,\left|\frac{\alpha^{2}-\alpha-1}{(2 \alpha+1)^{2}} \mathrm{~d}_{1}-\frac{d_{2}}{d_{1}}\right|\right\}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{d_{1}}{8} \max \left\{1,\left|\frac{2 \mu+\alpha^{2}-\alpha-1}{(2 \alpha+1)^{2}} \mathrm{~d}_{1}-\frac{d_{2}}{d_{1}}\right|\right\} \tag{2.13}
\end{equation*}
$$

Proof: Let $f \in \mathcal{B}_{\alpha}(\phi)$.Then there exists regular function with $|w(\mathrm{z})|<1$ and $\mathrm{w}(0)=0$ such that:

$$
\begin{equation*}
\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{f^{\prime}(z)+z f^{\prime \prime}(z)}{f^{\prime}(z)+\alpha z f^{\prime \prime}(z)}=\phi(w(z)) \tag{2.14}
\end{equation*}
$$

Since

$$
\begin{equation*}
\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{f^{\prime}(z)+z f^{\prime \prime}(z)}{f^{\prime}(z)+\alpha z f^{\prime \prime}(z)}=1+2(2 \alpha+1) a_{2} z+4\left[2 a_{3}-\left(1+\alpha-\alpha^{2}\right) a_{2}^{2}\right] z^{2} \ldots \tag{2.15}
\end{equation*}
$$

putting (2.7) and (2.15) in (2.14) and equating coefficient both sides, we get

$$
a_{2}=\frac{d_{1} w_{1}}{2(2 \alpha+1)}
$$

By using the well-known inequality, $\left|w_{1}\right| \leq 1$, on a_{2}, we obtain (2.12).
Also

$$
a_{3}-\mu a_{2}^{2}=\frac{d_{1}}{8}\left\{w_{2}+\left(\frac{1+\alpha-\alpha^{2}}{(2 \alpha+1)^{2}} \mathrm{~d}_{1}+\frac{d_{2}}{d_{1}}\right) w_{1}^{2}\right\}-\frac{\mu d_{1}^{2} w_{1}^{2}}{4(2 \alpha+1)^{2}}
$$

applying Lemma (1.5) to previous relation, we obtain (2.13).
For $\mu=0$, the above will reduce to the estimate of $\left|a_{3}\right|$.
Remark (2.12): For $\alpha=0,1$, in Theorem (2.11), we have

$$
\mathcal{B}_{0}(\phi):=\mathcal{K}(\phi), \mathcal{B}_{1}(\phi):=\mathcal{K}(\phi)
$$

This class was introduced by Ma and Minda see [3].
Putting $\alpha=\frac{1}{2}$ in previous theorem, we obtain the following corollary.
Corollary (2.13): Let f be in the class $\mathcal{B}_{\frac{1}{2}}(\phi)$. Then

$$
\left|a_{2}\right| \leq \frac{d_{1}}{4},\left|a_{3}\right| \leq \frac{d_{1}}{8} \max \left\{1,\left|\frac{5}{16} d_{1}+\frac{d_{2}}{d_{1}}\right|\right\}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{d_{1}}{8} \max \left\{1,\left|\frac{2 \mu-\frac{5}{4}}{4} d_{1}+\frac{d_{2}}{d_{1}}\right|\right\} .
$$

Theorem (2.14): If $f \in \mathcal{A}$ satisfies

$$
\alpha \frac{z f^{\prime \prime}(\mathrm{z})}{f^{\prime}(\mathrm{z})}+\frac{f^{\prime}(\mathrm{z})+\mathrm{z} f^{\prime \prime}(\mathrm{z})}{f^{\prime}(\mathrm{z})+\alpha z f^{\prime \prime}(\mathrm{z})}<\phi(\mathrm{z})
$$

then

$$
\left|a_{2}\right| \leq \frac{\mathrm{d}_{1}}{2(2 \alpha+1)},\left|a_{3}\right| \leq \frac{d_{1}}{8}\left|\frac{\alpha^{2}-\alpha-1}{(2 \alpha+1)^{2}} \mathrm{~d}_{1}+\frac{d_{2}}{d_{1}}\right| .
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{d_{1}}{8}\left|\frac{2 \mu+\alpha^{2}-\alpha-1}{(2 \alpha+1)^{2}} \mathrm{~d}_{1}-\frac{d_{2}}{d_{1}}\right| .
$$

Proof: The required proof is obtained by setting $\mathrm{w}(z)=z$ in the previous proof.
Theorem (2.15) If f is given by (1.1) belong to $\mathcal{A}_{\alpha}^{\gamma}(\beta, \phi)$, then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{d_{1}}{2|\gamma|+(\alpha+2 \beta)}, \tag{2.16}\\
\left|a_{3}\right| \leq \frac{2 d_{1}}{3|\gamma|+4(\alpha+3 \beta)} \max \left\{1,\left|\frac{2 d_{1}\left((\alpha+2 \beta)^{2}-3(\alpha+4 \beta)\right)}{2[\gamma+(\alpha+2 \beta)]^{2}}-\frac{2 d_{2}}{d_{1}}\right|\right\} . \tag{2.17}
\end{gather*}
$$

and
$\left.\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 d_{1}}{3|\gamma|+4(\alpha+3 \beta)} \max \left\{1, \left\lvert\, \frac{2 d_{1}\left((\alpha+2 \beta)^{2}-3(\alpha+4 \beta)\right)+\mu d_{1}(3 \gamma+4(\alpha+3 \beta))}{2[\gamma+(\alpha+2 \beta)]^{2}}-\frac{2 d_{2}}{d_{1}}\right.\right\}\right\}$.
Proof: Let $\mathrm{f} \in \mathcal{A}_{\alpha}^{\gamma}(\beta, \phi)$.Then there is a regular function w with $|w(\mathrm{z})|<1$ and $\mathrm{w}(0)=0$ such that:

$$
\begin{equation*}
\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{\alpha}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{\beta}+\gamma\left(f^{\prime}(z)-1\right)<\phi(w(z) . \tag{2.18}
\end{equation*}
$$

Since

$$
\begin{align*}
& {\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{\alpha}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{\beta}+\gamma\left(f^{\prime}(\mathrm{z})-1\right)=} \\
& \quad 1+\left(((\alpha+2 \beta)+2 \gamma) a_{2} z+\frac{1}{2}\left[\left((\alpha+2 \beta)^{2}-3(\alpha+4 \beta)\right) a_{2}^{2}+(4(\alpha+3 \beta)+3 \gamma) a_{3}\right] z^{2}+\ldots\right. \tag{2.19}
\end{align*}
$$

Putting (2.7) and (2.19) in (2.18) and equating coefficient both sides, we get

$$
a_{2}=\frac{d_{1} w_{1}}{(\alpha+2 \beta)+2 \gamma}
$$

By using the well-known inequality, $\left|w_{1}\right| \leq 1$, on a_{2}, we obtain (2.16).
Also
$a_{3}-\mu a_{2}^{2}=\frac{2 d_{1}}{4(\alpha+3 \beta)+3 \gamma}\left[w_{2}-\left\{\frac{(\alpha+2 \beta)^{2} d_{1}-3(\alpha+4 \beta) d_{1}}{2[(\alpha+2 \beta)+2 \gamma]^{2}}-\frac{d_{2}}{d_{1}}\right\} w_{1}^{2}-\frac{\mu d_{1}{ }^{2} w_{1}^{2}}{((\alpha+2 \beta)+2 \gamma)^{2}}\right.$
Applying Lemma (1.5) to previous relation, we obtain (2.17).
For $\mu=0$, the above relation will reduce to the estimate of $\left|a_{3}\right|$.
Remark (2.16): When $\gamma=\beta=0, \alpha=1$, and $\phi(z)=\frac{1+(1-2 \alpha) z}{1-z}$ in Theorem (2.15), then we get the estimates in [10, Corollary (3.3)]. For $\gamma=0$, Theorem (2.15) gives a special case of the estimates [11, Theorem (2.7)], for $\mathrm{k}=1$.
Taking $\alpha=1, \beta=1$ and $\gamma=1$ in Theorem (2.15), we get the following corollary.
Corollary (2.17): Let f be in the class $\mathcal{A}(\phi)$. Then

$$
\left|a_{2}\right| \leq \frac{d_{1}}{5},\left|a_{3}\right| \leq \frac{2 d_{1}}{19} \max \left\{1,\left|\frac{18 d_{1}-15}{32}-\frac{2 d_{2}}{d_{1}}\right|\right\} .
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 d_{1}}{19} \max \left\{1,\left|\frac{18 d_{1}-15+19 \mu d_{1}}{32}-\frac{2 d_{2}}{d_{1}}\right|\right\} .
$$

For $\beta=0$ in previous theorem, we get the following corollary.
Corollary (2.18): Let f be in the class $\mathcal{A}_{\alpha}^{\gamma}(\phi)$.Then

$$
\left|a_{2}\right| \leq \frac{d_{1}}{2|\gamma|+\alpha},\left|a_{3}\right| \leq \frac{2 d_{1}}{3|\gamma|+4 \alpha} \max \left\{1,\left|\frac{2 d_{1}\left(\alpha^{2}-3 \alpha\right)}{2[\gamma+\alpha]^{2}}-\frac{2 d_{2}}{d_{1}}\right|\right\}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 d_{1}}{3|\gamma|+4 \alpha} \max \left\{1,\left|\frac{2 d_{1}\left(\alpha^{2}-3 \alpha\right)+\mu d_{1}(3 \gamma+4 \alpha)}{2[\gamma+\alpha]^{2}}-\frac{2 d_{2}}{d_{1}}\right|\right\} .
$$

Put $\gamma=1$ and $\beta=0$ in previous theorem, we obtain the next corollary.

Corollary (2.19) If f is given by (1.1) belong to $\mathcal{A}_{\alpha}(\phi)$, then

$$
\left|a_{2}\right| \leq \frac{d_{1}}{2+\alpha},\left|a_{3}\right| \leq \frac{2 d_{1}}{3+4 \alpha} \max \left\{1,\left|\frac{2 d_{1}\left(\alpha^{2}-3 \alpha\right)}{2(1+\alpha)^{2}}-\frac{2 d_{2}}{d_{1}}\right|\right\} .
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 d_{1}}{3+4 \alpha} \max \left\{1,\left|\frac{2 d_{1}\left(\alpha^{2}-3 \alpha\right)+\mu d_{1}(3+4 \alpha)}{2(1+\alpha)^{2}}-\frac{2 d_{2}}{d_{1}}\right|\right\}
$$

Theorem (2.20): If $f \in \mathcal{A}$ satisfies

$$
\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{\alpha}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{\beta}+\gamma\left(f^{\prime}(z)-1\right) \ll \phi(z)
$$

then

$$
\left|a_{2}\right| \leq \frac{d_{1}}{2|\gamma|+(\alpha+2 \beta)},\left|a_{3}\right| \leq \frac{2 d_{1}}{3|\gamma|+4(\alpha+3 \beta)}\left\{\left|\frac{2 d_{1}\left((\alpha+2 \beta)^{2}-3(\alpha+4 \beta)\right)}{2[\gamma+(\alpha+2 \beta)]^{2}}-\frac{2 d_{2}}{d_{1}}\right|\right\}
$$

and

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 d_{1}}{3|\gamma|+4(\alpha+3 \beta)}\left\{\left|\frac{2 d_{1}\left((\alpha+2 \beta)^{2}-3(\alpha+4 \beta)\right)+\mu d_{1}(3 \gamma+4(\alpha+3 \beta))}{2[\gamma+(\alpha+2 \beta)]^{2}}-\frac{2 d_{2}}{d_{1}}\right|\right\} .
$$

Proof: The result follows by taking $w(z)=z$ in the proof of Theorem(2.15).

References

1. Duren, P. 1977. Subordination, in complex analysis.Lecture Note in mathematics, Springer, Berlin. Germany, 599.22-29
2. Altmtas, O. and Owa, S. 1970. Majorization and Quasi-subordination for certain of Analytic functions" Proceeding of the Japan Academy A, 68(76): 1-9.
3. Ma, W.C. and Minda, D. 1992. A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Tianjin, 157-169.
4. Mohd, M.H. and Darus, M. 2012. Fekete Szego problems for Quasi-subordination classes, Abst. Appl. Anal., Article ID 192956.
5. Shanmugam, T.N. Sivasubramanian, S. and Darus, M. 2007. Fekete-Szego inequality for certain classes of analytic functions, Mathematica, 34: 29-34.
6. Srivastava, H.M., Mishra, A.K. and Das, M.K. 2001. The Fekete-Szego problem for subclass of close-to-convex functions, Complex Variables Theory Appl. 44(2): 145-163.
7. Tuneski, N. and Darus, M. 2002. Fekete-Szego functional for non-Bazilevi functions Acta Math". Acad. Paedagog. Nyházi. (N.S.), 18(2): 63-65.
8. Juma, A. R.S. 2016. Coefficient bounds for quasi-subordination classes, Diyala Journal for pure sciences, 12(3): 68-82.
9. Keogh, F.R. and Merkes, E.P. 1969. A coefficient Inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20: 8-12.
10. Goyal, S.P. and Kumar, R. 2014. Fekete-Szego problem and Coefficient estimates of quasisubordination classes, Journal of Rajasthan Academy of Physical Sciences, 13(2): 133-142.
11. Ali, R.M., Lee, S.K., Ravichandran, V. and Subramanian, S. 2009. The Fekete-Szego coefficient functional for transforms of analytic functions, Bulletin of the Iranian Mathematical Society, 35(2): 119-142.

[^0]: *Email: mohammed_h1963@yahoo.com

