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Abstract   

    The main goal of this paper is to introduce the higher derivatives multivalent 

harmonic function class, which is defined by the general linear operator. As a result, 

geometric properties such as coefficient estimation, convex combination, extreme 

point, distortion theorem and convolution property are obtained. Finally, we show 

that this class is invariant under the Bernandi-Libera-Livingston integral for 

harmonic functions. 

 

Keywords: Harmonic, Multivalent functions, Higher derivatives, Linear operator, 
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المرتبطة مع المؤثر الخطي العامصنف من الدوال التهافقية متعددة التكافؤ للمشتقات العليا   
 

جاسم الحميد عبد قاسم*, دلفي مصدق علي  
العخاق,بغجاد, بغجاد جامعة, العمهم كمية, الخياضيات قدم  

 الخلاصة
الهجف الخئيدي من هحا البحث هه تقجيم صنف من  الجوال التهافقية متعجدة التكافؤ لممذتقات العميا ،        

 والتي تم تحجيجها بهاسطة المؤثخ الخطي العام. نتيجة لحلك ، تم الحرهل عمى الخرائص الهنجسية مثل تقجيخ
أن هحا  الالتهاء. أخيخًا ، تم بخهان المعامل ، الجمع المحجب ، النقطة المتطخفة ، نظخية التذهيه ، خاصية

 . لمجوال التهافقية Bernandi-Libera-Livingston الرنف ثابت  ضمن تكامل
1. Introduction 

    The function         is said to be continuous in the complex domain      harmonic,    

if both   and   are real harmonic functions in    we can write      ̅ in any simply 

connected domain    , where    and   are analytic functions in    We call   the analytic part 

and   the co-analytic part of    .  See Clunie and Shil-small, -  
    Let  ( ) be the family of all harmonic function       ̅ that are sense preserving in the 

open unit          *  | |   +, where  

 ( )     ∑      
      ,  ( )  ∑      

        |      |                                     (   )  

For  ( )      ( ) reduces to   ( )  the class of all multivalent analytic functions if the co-

analytic part of   is zero. For  ( )   ( ), we introduce the linear operator 

  
     (     )( )   ( )   ( )  as follows: 
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     (     ) ( )     ∑

(    )     (    )   

(   )     (    )    (    )   
.
   

   
/
 

  
 
                              (   )  

where          *         +⁄                  *         +⁄        | |  

  and        .  

    For complex parameters         and        (    *         +⁄          | |  

 )  the   hypergeometric    ∑
(    )     (    )   

(   )     (    )    (    )   

 
                                       (   )  

  (              *       +       *     +    )  
    The   shifted factorial for     and     is defined by   

(   )        (   )  (   )(    )(     )  (       )   
     It should be noted that the linear operator (   ) generalizes many operators that are studied 

by some authors as follows:  

1- If    , then we obtain the linear operator that is considered by Abdul Ameer and  Juma 

, -   
2- If        , then we obtain the linear operator that is considered by  Juma and 

Darus, -   

3- If            , then   
     (     ) ( )    (     ) where   (     ) is the 

linear operator that is introduced by Mohammed and Darus, -   

For                    where         and     (                         )  

we have the following operators: 

4- If                                       then we obtain the 

operator that is considered by Prajapat and Bulboca, -. 
5- If                                   then we have the operator that is 

considered by Noor and Bukhari, -. 
6- If                                           then we obtain the 

Choi-Saigo-Srivastava  operator , -. 
7- If                             then we obtain   the Srivastava-Attiya 

operator, -. 
8- If                                  then we obtain the Cho and 

Srivastava operator, -. 
9- If             (   )                           then we obtain 

the Salagean  operator ,  -. 
10- If                                      then we obtain the 

Bernardi operator,  -. 
11- If                                         then we obtain the 

Carlson –Shaffer   operator,  -. 
12- If            then we obtain the Dziok-Srivastava operator,  -. Some of these 

operators contained some other operators for more details see,     -). 
           We extend the linear operator (   ) on complex valued harmonic function       ̅  
which is defined by (   ) as  follows:  

                   
     (     ) ( )    

     (     ) ( )    
     (     ) ( )

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                (   )   

where   
     (     ) ( )     ∑

(    )     (    )   

(   )     (    )    (    )   
.
   

   
/
 

  
 
       , 

                 
     (     ) ( )  ∑

(    )     (    )   

(   )     (    )    (    )   
.
   

   
/
 

  
 
               

     where         *         +⁄                  *         +⁄  | |    

and              *       +. As a special notation for convenience, we make 

                                (     )    
(    )     (    )   

(   )     (    )    (    )   
.
   

   
/
 

                                         (   ) 
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Definition(   ): A function    ( ) is said to be a member of the class     (       ) if 

the following condition holds: 

                             (
    .  

     (     ) ( )/
   

     .  
     (     ) ( )/

   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

  .  
     (     ) ( )/

 
   .  

     (     ) ( )/
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )                             (   )  

wherever   ( ) and  ( ) are given by   (   ) , for                   
 

 
     

  | |     , where  

.  
     (     ) ( )/

 

 
  

(   ) 
     ∑

  

(   ) 
   (     )       

                                        (   )  

.  
     (     ) ( )/

 

 

∑
  

(   ) 
   (     )        

                                                             (   )  

            Further, let     
̅̅ ̅̅ ̅(       ) be the subclass of      (       )   which includes 

harmonic function ( )   ( )   ( )̅̅ ̅̅ ̅̅  , where   

 ( )     ∑       
       ( )  ∑       

                                                                    (   ) 

Remark(   ): Using the values        and     in the class      (       ) , we have the 

class that is presented by Abdulamer et al. , , -    
   Several authors studied a class of multivalent harmonic functions for other conditions, like 

Atshan et al. ,  -   
2. Coefficient bounds 

    In this section, the main important results are stated and proved with sufficient coefficient 

conditions to functions of harmonic multivalent classes. 

Theorem(   ): Let  ( )   ( )   ( )̅̅ ̅̅ ̅̅    with   ( ) and  ( ) defined as in equation (   ).  

If  ∑
  

(     ) 
.  

 

(   )
 /    (     )  

 
       

                  ∑
  

(     ) 
.  

 

(   )
 /    (     )  

 
         

  

(     ) 
.  

 

(   )
 / (   )    

   , where                      
 

 
       | |         , then   ( ) 

is harmonic, multivalent in    and  ( )     (       )with    (     ) defined by (   ).  
Proof: If (2.1) is true, we have to show that 

  (
    .  

     (     ) ( )/
   

     .  
     (     ) ( )/

   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

  .  
     (     ) ( )/

 
   .  

     (     ) ( )/
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )    .

 ( )

 ( )
/      

Using   ( )    if and only if  |  (   )|  |  (   )| , it suffices to indicate that 

| ( )   (   ) ( )|  | ( )   (   ) ( )|     
 In order to compensate for  ( ) and   ( ) , we 

use | ( )   (   ) ( )|  

|    .  
     (     ) ( )/

   

     .  
     (     ) ( )/

   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

 (   ) [  .  
     (     ) ( )/

 

   .  
     (     ) ( )/

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
]|  

 

|.
  

(     ) 
  (   )

  

(   ) 
/    ∑ .

  

(     ) 
  (   )

  

(   ) 
/    (     )     

      

∑ .
  

(     ) 
  (   )

  

(   ) 
/    (     )   ̅  

       |  
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 |
  

(     ) 
  (   )

  

(   ) 
| | | 

 ∑ |
  

(     ) 
  (   )

  

(   ) 
|    (     )  | | 

 

     

 ∑ |
  

(     ) 
  (   )

  

(   ) 
|    (     )  | ̅| 

 

       

       (   ) 

Now, in order to compensate for  ( ) and   ( ) , we use 

| ( )   (   ) ( )|, then we get  

| ( )   (   ) ( )|  |    .  
     (     ) ( )/

   

     .  
     (     ) ( )/

   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

 (   ) [  .  
     (     ) ( )/

 

   .  
     (     ) ( )/

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
]|  

 

|.
  

(     ) 
  (   )

  

(   ) 
/    ∑ .

  

(     ) 
  (   )

  

(   ) 
/    (     )     

      

∑ .
  

(     ) 
  (   )

  

(   ) 
/    (     )   ̅  

       |  

 

 |
  

(     ) 
  (   )

  

(   ) 
| | |  

∑ |
  

(     ) 
  (   )

  

(   ) 
|    (     )  | |  

      ∑ |
  

(     ) 
  

       

 (   )
  

(   ) 
|    (     )  | ̅|                                                             (   )  

Then we compensate for equation (   ) and  (   ), and we get_  

| ( )   (   ) ( )|  | ( )   (   ) ( )|  

= |
  

(     ) 
  (   )

  

(   ) 
| | |  

∑ |
  

(     ) 
  (   )

  

(   ) 
|    (     )  | |  

      ∑ |
  

(     ) 
  

       

 (   )
  

(   ) 
|    (     )  | ̅|  |

  

(     ) 
  (   )

  

(   ) 
| | |  ∑ |

  

(     ) 
  

     

 (   )
  

(   ) 
|    (     )  | |  

∑ |
  

(     ) 
  (   )

  

(   ) 
|    (     )  | ̅|  

         

 ∑
  

(     ) 
.  

 

(   )
 /    (     )  

 
                    

   ∑
  

(     ) 
.  

 

(   )
 /    (     )  

 
          

  

(     ) 
.  

 

(   )
 /      

Then we get  

∑
  

(     ) 
.  

 

(   )
 /    (     )  

 
        

                            ∑
  

(     ) 
.  

 

(   )
 /    (     )  

 
        

  

(     ) 
.  

 

(   )
 /  

This completes the proof of Theorem 1. 

          The function is harmonic multivalent  
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 ( )  

   ∑
  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

 
          

                                             ∑
  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

 
           ̅̅ ̅̅ ̅̅ ̅̅                                         (   )       

where  ∑ |  | 
      ∑ |  |    

    , we indicate that the coefficient bound which is 

defined by  (   ) is true. 

Because 

 ∑
  

(     ) 
.  

 

(   )
 /   (     )

  

(     ) 
.  

 

(   )
 /

 
     |  |  ∑

  

(     ) 
.  

 

(   )
 /   (     )

  

(     ) 
.  

 

(   )
 /

 
       |  |     

∑
  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

 

  

(     ) 
.  

 

(   )
 /   (     )

  

(     ) 
.  

 

(   )
 /

 
     |  |    

∑
  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

 

  

(     ) 
.  

 

(   )
 /   (     )

  

(     ) 
.  

 

(   )
 /

 
       |  |=∑ |  | 

      

∑ |  |    
       .  

        Here, we need to show that the condition of  (   ) is as well necessary for the function  
     ̅  wherever    and    are defined by (   )  
Theorem(   ): Suppose that       ̅  is given by (   ) consequently,      

̅̅ ̅̅ ̅(       ) 
if and only if the coefficient in condition  (   ) holds. 

Proof: We want to prove that “only if “part of the theorem since   
̅̅ ̅̅ ̅(       )  

   (       )   

Consequently by(   ), we get       (
    .  

     (     ) ( )/
   

     .  
     (     ) ( )/

   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

  .  
     (     ) ( )/

 
   .  

     (     ) ( )/
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )       

Or, equally  

  

(

 
 

0
  

(     ) 
   ∑

  

(     ) 
   (     )     

      ∑
  

(     ) 
   (     )   ̅  

       1

   0
  

(   ) 
   ∑

  

(   ) 
   (     )     

      ∑
  

(   ) 
   (     )   ̅  

       1

  

(   ) 
   ∑

  

(   ) 
   (     )     

      ∑
  

(   ) 
   (     )   ̅  

       

)

 
 

     

  

(

 
 

  

(     ) 
0  

  

(   )
1   ∑

  

(     ) 
0  

  

(   )
1   (     )     

      

∑
  

(     ) 
0  

  

(   )
1   (     )   ̅  

       

  

(   ) 
   ∑

  

(   ) 
   (     )     

      ∑
  

(   ) 
   (     )   ̅  

       

)

 
 

                               (   )  

The above condition (   ) must hold for all values of   , where    is a positive number and 

         , we must have  

[
 
 
 
 
 

  

(     ) 
0   

  

(   )
1   ∑

  

(     ) 
0  

  

(   )
1   (     )     

     

 ∑ 0  
  

(   )
1   (     )   ̅  

       
  

(     ) 
  

(   ) 
   ∑

  

(   ) 
   (     )     

      ∑
  

(   ) 
   (     )   ̅  

       

]
 
 
 
 
 

                                         (   )  

    We note that if the condition (   ) does not true then the numerator of  (   ) when   goes 

to 1 is negative. This contradicts the condition for      
̅̅ ̅̅ ̅(       ). Therefore, the proof is 

complete 
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3. Convolution (Hadamard product) 

    In this section, we prove that the class    
̅̅ ̅̅ ̅(       ) is closed under convolution. In the 

case of harmonic functions ,  

 ( )     ∑ |  | 
        ∑ |  | ̅  

        And     ( )     ∑ |  | 
        

∑ |  | ̅  
       . 

       The convolution of  ( ) and  ( ) is given by  

(   )( )   ( )   ( )     ∑ |    | 
        ∑ |    | ̅   

                       (   )  

 

Theorem(   ): Let  ( )     
̅̅ ̅̅ ̅(        ) and  ( )     

̅̅ ̅̅ ̅(         ). Then 

       
̅̅ ̅̅ ̅(         )     

̅̅ ̅̅ ̅(        ) for               
Proof: We want to show that the coefficient     satisfies the required condition that is given 

in Theorem(   ). For   ( )     
̅̅ ̅̅ ̅(         ), we note that |  |    and |  |   . Now, 

for the convolution function      we obtain   

∑
  

(     ) 
.  

 

(   )
   /   (     )

  

(     ) 
.  

 

(   )
   /

|  ||  | 
      

∑
  

(     ) 
.  

 

(   )
   /   (     )

  

(     ) 
.  

 

(   )
   /

|  ||  |        
        

  ∑
  

(     ) 
.  

 

(   )
  /   (     )

  

(     ) 
.  

 

(   )
  /

|  | 
      ∑

  

(     ) 
.  

 

(   )
  /   (     )

  

(     ) 
.  

 

(   )
  /

|  |         
         

Since            and  ( )     
̅̅ ̅̅ ̅(        ). Therefore,  

            
̅̅ ̅̅ ̅(         )     

̅̅ ̅̅ ̅(        )  
4. Convex combination  

    In this section, we show that    
̅̅ ̅̅ ̅(       ) is closed under the convex combination of its 

member. 

    Consider that the function   ( ) is defined   for every        by   

  ( )     ∑ |    
| 

        ∑ |    
| 

        ̅                                                                 (   )  

 Theorem(   ): If the function     ( ) that is defined by (   ) in the class   
̅̅ ̅̅ ̅(       ) 

                 Then the function    ( ) that are defined by    ( )  ∑   
 
      ( ),   

     are also in the class    
̅̅ ̅̅ ̅(       )  where ∑   

 
       

Proof: According to the definition of    ( ), we can write  

    ( )     ∑ (∑   
 
   |    

|) 
        ∑ (∑   

 
   |    

|) 
        ̅  . 

Further, since    ( ) are in   
̅̅ ̅̅ ̅(       ), for every     , then  

∑
  

(     ) 
.  

 

(   )
 /    (     )(∑   

 
   |    

|) 
        

                                                  ∑
  

(     ) 
.  

 

(   )
 /    (     )(∑   

 
   |    

|)      
         

∑   
 
   .∑

  

(     ) 
.  

 

(   )
 /    (     )|    

|   
     ∑

  

(     ) 
.   

       

 

(   )
 /    (     )|    

|  /  

 ∑   
 
   (

  

(     ) 
.  

 

(   )
 /)  

  

(     ) 
.  

 

(   )
 /   

Therefore, the proof is completed. 

 5.  Extreme points  

    We get the extreme points for the class    
̅̅ ̅̅ ̅(       ) in this section. 

Theorem(   ): Let    be a function that is defined by (   ). Then      
̅̅ ̅̅ ̅(       ) if and 

only if  
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 ( )  ∑ (    ( )      ( ))                                                                                   (   ) 
         

where    ( )       ( )     (

  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

)                  

  ( )     (

  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

)  ̅                  

and  ∑ (     )      
 
                

Specifically, the extreme points of    
̅̅ ̅̅ ̅(       ) are *  + and  *  +.  

Proof: For the function  ( )  of the form (   )  we have  

 ( )  ∑ (    ( )      ( ))   
         

 ∑   (   (

  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

)   )              ∑   (    
       

 
       

(

  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

)  ̅ )    

 
   

∑ (

  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

)     ∑ (

  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

)   ̅  
           

        

Therefore, 

∑ (

  

(     ) 
.  

 

(   )
 /   (     )

  

(     ) 
.  

 

(   )
 /

) |  |  ∑ (

  

(     ) 
.  

 

(   )
 /   (     )

  

(     ) 
.  

 

(   )
 /

) |  | 
          

      

 ∑
  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

 

  

(     ) 
.  

 

(   )
 /   (     )

  

(     ) 
.  

 

(   )
 /

 
     |  |    

                                               ∑
  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

  
       

  

(     ) 
.  

 

(   )
 /   (     )

  

(     ) 
.  

 

(   )
 /

|  |  

=∑ |  | 
      ∑ |  |    

              and so      
̅̅ ̅̅ ̅(       )  

Conversely, suppose that      
̅̅ ̅̅ ̅(       )   

Setting      

  

(     ) 
.  

 

(   )
 /   (     )

  

(     ) 
.  

 

(   )
 /

|  |                       

     

  

(     ) 
.  

 

(   )
 /   (     )

  

(     ) 
.  

 

(   )
 /

|  |                     , and  

         (∑   
 
      ∑   

 
       )  As a result, we can write     as follows,  

 ( )     ∑ |  |   ∑ |  | ̅  
          

       

 

   ∑
  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

      ∑
  

(     ) 
.  

 

(   )
 /

  

(     ) 
.  

 

(   )
 /   (     )

   ̅  
          

       

       ( )       ∑   ( )   ∑   ( ) 
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Therefore, the proof is completed. 
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6.  Distortion Bounds  

    The distortion bounds for functions in    
̅̅ ̅̅ ̅(       )are given by the following theorem   

which yields a covering result for this class.   

Theorem(   ): If       ̅     
̅̅ ̅̅ ̅(       )  provided by (   ) and | |       then  
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Proof: First, we shall prove the left hand side of inequality   (   ).  Let      
̅̅ ̅̅ ̅(       )  

Hence,  
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In the same way, the right-hand inequality in (   ) is easy to prove   
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7. Integral operator  

    In this section, we will show the class     
̅̅ ̅̅ ̅(       ) is closed under the generalized 

Bernardi-Libera-Livingstone integral operator     . The generalized Bernardi-Libera-

Livingstone integral operator for an analytic function f  is defined by 

  ( ( ))  
   

  
∫      ( )

 

 

   (    )  

For harmonic functions       ̅ , however it is defined by  

            ( ( ))  
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 (    )                                (   )  

Theorem(   ): If       
̅̅ ̅̅ ̅(       )  then   ( ( ))     
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Proof: By definition of   (  ( ))  that is given in (   )  it follows that 
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Therefore, by Theorem(   ), we have     ( ( ))     
̅̅ ̅̅ ̅(       ). 

Conclusion 

In this work, the higher derivatives multivalent harmonic function class which is defined by 

the general linear operator has been introduced. Some geometric properties, namely 

coefficient estimation, convex combination, extreme point, distortion theorem and 

convolution property have been given. The invariant property of this class under the 

Bernandi-Libera-Livingston integral for harmonic functions has been shown 
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