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Abstract 

     In this paper, the aquatic food chain model, consisting of Phytoplankton, 

Zooplankton, and Fish, in the contaminated environment is proposed and studied. 

Modified Leslie–Gower model with Holling type IV functional response are used to 

describe the growth of Fish and the food transition throughout the food chain, 

respectively. The toxic substance affects directly the Phytoplankton and indirectly 

the other species. The local stability analysis of all possible equilibrium points is 

done. The persistence conditions of the model are established. The basin of 

attraction for each point is specified using the Lyapunov function. Bifurcation 

analysis near the coexistence equilibrium point is investigated. Detecting the 

existence of chaos is carried out using bifurcation diagrams. Numerical simulation 

shows that the food chain has rich dynamics including chaos. Moreover, the 

existence of toxic substances works as a stabilizing factor in the model. 
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 ديناميكيه نظام السلسلة الغذائية المائية في البيئة الملوثة
 

 رؤى حاتم طالب1, مي محمد هلال*2, رائد كامل ناجي3

 1 قدم الخياضيات,كميو التخبيو لمعمهم الرخفو,جامعو كخبلاء، كخبلاء، العخاق
 2 قدم الخياضيات, كميو التخبية لمعمهم الرخفة ابن الييثم, جامعة بغجاد، بغجاد، العخاق

، بغجاد، العخاققدم الخياضيات, كميو العمهم , جامعة بغجاد  3 

 الخلاصه
في ىحا البحث تم اقتخاح ودراسة نمهذج الدمدمة الغحائية المائية المكهن من العهالق النباتية والعهالق       

كهر المعجل مع الاستجابة الهظيفية من النهع -الحيهانية والأسماك في البيئة الممهثة. تم استخجام نمهذج ليدلي
ي في جميع أنحاء الدمدمة الغحائية عمى التهالي. تؤثخ الخابع من ىهلينج لهصف نمه الأسماك والانتقال الغحائ

تحميل الاستقخارية المادة الدامة بذكل مباشخ عمى العهالق النباتية وعمى الأنهاع الأخخى بذكل غيخ مباشخ. 
تم بناء شخوط الثبات لمنمهذج. حجدنا حهض التجاذب لكل نقطة من   المحمية لجميع نقاط التهازن تم اجخاءه.

ازن النمهذج باستخجام دالة ليابانهف. بحثنا التذعب المحمي بالقخب من نقطة الاتدان المهجبة. تم نقاط ته 
التحخي عن وجهد الفهضى في النمهذج باستخجام مخطط التذعب. بينت المحاكاة العجدية لمنمهذج وجهد 
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الدامة يعمل كعامل استقخار  ديناميكية غنية لمنمهذج بما في ذلك الفهضى. بالاضافة لما تقجم فان وجهد المهاد
 لجيناميكية النمهذج. 

1. Introduction 

Mathematical biology is the most important subject to study  real-world systems in both 

ecology and epidemiology. Ecological systems are real-world systems in which the 

interaction between their compartments is nonlinear. Such systems have stimulated great 

interest in the development of mathematical models for several ecological systems so that a 

remarkable variety of dynamic behaviour's including periodic and chaos were discovered. The 

food chain, which represents one of the most important ecological systems, is a linear 

sequence of organisms where nutrients and energy is transferred from one organism to the 

other. A food chain explains which organism eats another organism in the environment. 

Since the marine ecosystems cover around 70% of the Earth’s surface and account for nearly 

half of global primary production that supports human life. In the last few decades, many 

mathematical models have been developed and applied in aquatic ecosystems [1]. These 

models simulate the transport of nutrients or aquatic populations. The aquatic ecosystem 

provides an incubation area for the plankton population, fishes and invertebrates, and 

conserves the rest of the coastline by bounding wave action and controlling water [2]. The 

plankton population plays a vital role in the aquatic food chain system. The food chain 

demonstrates the feeding style or connection between living creatures. A trophic level 

indicates the successive stages in a food chain, starting with producers at the bottom, followed 

by a sequence of consumers. Every level in a food chain is recognized as a trophic level. 

Plankton species have defense mechanisms against predation through their production of 

toxins [3]. Such defensive behavior has a considerable impact on phytoplankton–zooplankton 

dynamics [4–7]. Upadhyay and Chattopadhyay [8] demonstrated that the defense mechanisms 

against predation by plankton may sometimes act as a biocontrol by the stabilizing effect 

towards the plankton population. The flowering of such algal and fish predation on 

zooplankton has a great negative effect on zooplankton and the marine ecosystem. 

On the other hand, the study of the aquatic food chains in a polluted marine environment by 

external toxicity has been considered by many researchers. It is observed that external toxicity 

plays a pivotal role in the aquatic ecosystem, different dynamical behavior in such a food 

chain has been obtained, see for example [9-14]. Recently, Raw et al [2] have studied a three 

species plankton–fish system that incorporates external toxicity and nonlinear harvesting. 

They consider that the growth of species is affected by an external toxic substance, however, 

the predation rate is considered as Holling type II functional response. It is observed that there 

are complex dynamics in the system. 

According to the above, a variety of aquatic mathematical models are proposed and studied. 

These models are considered different biological factors such as toxicity, harvesting, delay, 

etc. Raw and Mishra [15] proposed and studied a tri-trophic reaction-diffusion model that 

incorporates Holling type III and Monod–Haldane functional response for food chain 

consisting of phytoplankton, zooplankton, and fish, in the existence of toxic grouped 

phytoplankton on zooplankton and fish populations. They observed that the inhibitory effect 

is able to destabilize the homogeneous steady-state and also able to produce chaos in the 

plankton–fish system. Recently, Thakur and Ojha [16] proposed and studied delayed 

plankton–fish model with Monod–Haldane-type functional response. They observed that the 

system is rich in complex dynamics, and due to defense ability in prey and middle predator 

system shows extinction in top predator. 

The main objective of this paper is to propose and studied a tri-trophic aquatic food chain 

model consisting of phytoplankton–zooplankton-Fish with the usage of Holling type IV 

(simplified Monod–Haldane-type) functional response to model the feeding process. It is 

assumed that the food chain system lived in a contaminated environment in which the toxic 
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substance affects directly the Phytoplankton, while it affects indirectly the other species. 

Moreover, a modified Leslie–Gower model is used to describe the growth of Fish. 

The outline of the paper is: Section 2 gives the description of the model and how to reduce its 

parameters. Section 3 determines the equilibrium points and gives conditions for their local 

stability. Section 4 treats the persistence of the model. However, the investigation of global 

behavior is given in section 5. Section 6 investigates the possibility of the occurrence of local 

bifurcation. Section 7 interests in the numerical simulation of the model. Finally, section 8 

gives the conclusion of this study. 

2. Mathematical model formulation  
In an aquatic food chain system, some species are affected by external toxic substances, for 

example, industrial wastage, which inhibits the growth of that species. Recently, Chakraborty 

and Das [13] studied the effect of an external toxic substance on the population dynamics of a 

system consisting of two zooplanktons and phytoplankton with constant harvesting. In this 

section, a food chain model for the interaction of phytoplankton, zooplankton, and fishing in 

contaminated aquatic areas is formulated.  Let     ,     , and      be the density at time   

for phytoplankton, zooplankton, and fish, respectively. Now in order to formulate the above 

mathematical model of an aquatic food chain, the following assumptions have been adopted: 

1. Assume that phytoplankton, zooplankton, and fish participate in an aquatic food chain 

system, wherein in the absence of zooplankton, the phytoplankton grows logistically with 

constant intrinsic growth rate and carrying capacity. The existence of toxic substances causes 

depletion in the density of phytoplankton. Because the phytoplankton directly depends on 

environmental resources a cubic term    
     is used to describe the intensity of 

effectiveness at time . 

2. It is assumed that, both the species phytoplankton and zooplankton have the capability of 

group defense against any attack by a predator, therefore Holling type IV functional responses 

are used to describe the consumption process in the first and second level of food chain.    

3. It is assumed that zooplankton is hurt due to natural death and indirect infection of 

external toxicity.  

4. Because the fish at the upper-level consumes the preferred food, represented by the 

zooplankton, as well as additional food from the environment, the logistic growth rate is used 

to describe the fish growth in which the carrying capacity depends on the zooplankton. 

Moreover, the fish decreases due to indirect infection of external toxicity. Finally, because the 

fish grows by sexual reproduction and loses due to intra-species competition. The term    
  

signifies the fact that fish is sexually reproducing species. It shows that the mating frequency 

is directly proportional to the number of males as well as that of females present at any instant 

of time  . 

5. It is assumed to use the quadratic term for describing the indirect infection of external 

toxicity in both the zooplankton and fish.  

According to the above hypotheses, the dynamics of described aquatic food chain can be 

written in the following set of equations: 
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where              , and       . All the parameters are assumed to be positive and 

described in the Table (1). 

 

 

Table 1- Brief description of the system (1) parameters 



Talib et al.                                   Iraqi Journal of Science, 2022, Vol. 63, No. 5, pp: 2173-2193              

4112 

Parameters Description 

  The intrinsic growth rate of phytoplankton. 

  Environment carrying capacity of phytoplankton. 

   The coefficient of toxicity efficiency of the phytoplankton population. 

   The coefficient of toxicity efficiency of the zooplankton population. 

   The coefficient of toxicity efficiency of the fish population. 

   The maximum consumption rate of the phytoplankton population. 

   The maximum per capita growth rate of the zooplankton population. 

   The maximum consumption rate of the zooplankton population. 

  The natural death rate of the zooplankton population. 

   The defense efficiency of phytoplankton against zooplankton. 

   The defense efficiency of zooplankton against fish. 

   The growth rate of fish by sexual reproduction. 

   The protection rate of fish provided by the environment. 

   The fish's preference rate of zooplankton. 

 

Now, in order to study the above system of equations more generally, we drop all the units 

from it by using the following dimensionless variables and constant. 
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Accordingly, the dimensionless system corresponding to the system (1) can be written as: 
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where                and         Note that the number of parameters has been 

reduced from fourteen in the system (1) to twelve in the system (3). Moreover, the functions 

          , in the right-hand side are continuous and have continuous partial derivatives on 

the following space: 

  
                                   . 

Therefore, the solution of the system (3) exists and is unique. 

Theorem (1): All solutions of the system (3) initiating in   
  are uniformly bounded. 

Proof: From the first equation of the system (3), we have 
  

  
           .                       

Then, it is obtained that             . Consider             
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Therefore, for all    , it is observed that      (   
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Now, consider the function             
  

  
           , then the derivative of      can 

be written as: 
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Therefore, by using the maximum values of the logistic terms and that for the variable  , it is 

obtained that 

 
  

  
      

 

 
    

  

  
. 

Hence, for all    , it is observed that      
(
 

 
    

  
  

)

  
   , thus the proof is done.          

3. Existence of equilibrium points and local stability 

    In this section, the existence of equilibrium points of the system (3) is carried out. Then the 

linearization technique is used to investigate the local stability for each of them. Notes that, 

there are at most six non-negative equilibrium points of the system (3), these points are 

described as follows: 

● The trivial equilibrium point            always exits.  

● The first single-species equilibrium point             always exits, where 

     
    √       

    
 .                 (4) 

● The second single-species equilibrium point            , where     , exists provided 

that the following condition holds.  

   
            

   
.               (5) 

● The fish-free equilibrium point that denoted by      ̅  ̅   , where  

 ̅   
 

  
* 

   ̅

      ̅     +,                              (6) 

while,  ̅ is a positive root of the following six-order polynomial equation: 

   
      ̅

    
    ̅

     
             ̅

        ̅
                                  

                       ̅
             ̅               

             (7) 

Clearly the fish-free equilibrium point exists uniquely in the positive quadrant of    plane 

provided that the following conditions hold:  

   
   ̅

      ̅ ,                          (8a) 

     
      

  
     .                      (8b) 

● The zooplankton-free equilibrium point that denoted by             , where    is given 

by equation (4) and     , exists uniquely in the positive quadrant of    plane under 

condition (5). 

● The coexistence equilibrium point              , where 
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) *

   
 

        
     

      +, 

while    is a positive root to the following fourth order polynomial equation: 

 
               

               
                      

  

           
                                    

               (10) 

Obviously, the coexistence equilibrium point exists uniquely in the interior of   
 , provided 

that the following conditions hold. 

                                  ( 
 

  
     ),               (11a) 

     ,                          (11b) 

    
       

   
 

        
.                (11c) 

 Now, to investigate the local stability at each of the above equilibrium points the Jacobian 

matrix is determined and then their eigenvalues are found. The equilibrium is said to be local 

asymptotically stable if and only if all the eigenvalues have negative real parts. However, it is 

unstable if there is a positive real part eigenvalue. Finally, it said to be non-hyperbolic 

equilibrium point if there exists zero real part eigenvalue and then the linearization does not 

applicable in this case. 
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For the trivial equilibrium point           , the Jacobian matrix can be written as:   

      [
   
     
   

].                    (12a) 

Thus the eigenvalues of       are given by: 

                     , and      .                (12b) 

Clearly, the existence of positive eigenvalue ensures that the trivial equilibrium    is unstable 

point.     

The Jacobian matrix at the first single-species equilibrium point             can be written 

as: 

      [

               
    

       
  

 
    

       
     

   

].                 (13a) 

Thus the eigenvalues of       are written as: 

                           
    

       
      , and       .            (13b) 

The existence of zero eigenvalue of       leads to that, the first single-species equilibrium 

point    is a non-hyperbolic point. Therefore, the stability of the equilibrium point    can be 

studied using the Lyapunov method provided that the second eigenvalue is negative too.  

The Jacobian matrix at the second single-species equilibrium point             can be 

written as: 

      [

   
            

 
        

 

   
  

].                    (14a) 

Thus the eigenvalues of       are determined by: 

                            , and      .               (14b) 

Clearly, the existence of positive eigenvalue ensures that the second single-species 

equilibrium     is unstable point.     

For the fish-free equilibrium point      ̅  ̅   , the Jacobian matrix can be written in the 

form: 
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Clearly, the characteristic equation of       can be written as 

                 ,                    (15b) 

where  

     ̅ *         ̅   
      ̅ ̅

       ̅   
+     ̅. 

       ̅ ̅ *         ̅   
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       ̅   
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) (

   ̅(      ̅
 )

       ̅   
). 

Clearly, there exists a zero eigenvalue given by      , which ensures that the fish-free 

equilibrium    is a non-hyperbolic point. While the other eigenvalues are the roots of the 

second order polynomial equation that given in equation (15b), and can be written as   

       
    √  

     

 
,     

    √  
     

 
.                 (15c) 

Obviously, the eigenvalues    , and     have negative real parts provided that the following 

sufficient conditions hold. 
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      ̅ ̅

       ̅   
          ̅  .                    (15d) 
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   .                    (15e) 

Note that, since the equilibrium point    is a non-hyperbolic point with simple zero 

eigenvalue and two negative real parts eigenvalues under the conditions (15d)-(15e), then the 

stability of    can be studied using other methods e.g. Lyapunov method. 

Now the Jacobian matrix of the system (3) at the zooplankton-free equilibrium point that 

denoted by              can be written by: 
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.                     (16a)       

Direct computation gives that the eigenvalues of       are given by  

                 ,     
    

       
 
           ,      .                  (16b) 

Here, the eigenvalue     is negative provided that the following condition holds. 

 
    

       
            .                  (16c) 

However, the existence of zero eigenvalue makes the zooplankton-free equilibrium point non-

hyperbolic point. Similarly, point   can be studied using the Lyapunov method. 

Finally, the local stability conditions of the coexistence equilibrium point are established in 

the following theorem. 

Theorem 2: The coexistence equilibrium point               of the system (3) is locally 

asymptotically stable provided that the following conditions hold: 
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(        )
     ,                            (17b)
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Proof. The Jacobian matrix at the coexistence equilibrium point can be written as:  
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The characteristic equation of the      , is given by:  

       
            ,                     (18b) 

where 

               , 

                          , 

               , 

while,                       [               ]. 
It is easy to verify that, the conditions (17a)-(17c) guarantee that     ,     , and     . 

Hence, according to the Routh-Hurtwitz criterion all the eigenvalues of        have negative 

real parts. Therefore, the coexistence equilibrium point is locally asymptotically stable.        

4. Persistence 



Talib et al.                                   Iraqi Journal of Science, 2022, Vol. 63, No. 5, pp: 2173-2193              

4122 

In this section, the persistence of the system (3), which means the survival of all the species 

for all the time, is investigated. Before that the dynamics in the interior of boundary plane are 

studied using Bendixson - Dulac criterion [17].  

Obviously, the system (3) has two subsystems belong to    plane and    plane 

respectively. These subsystems can be written respectively as following. 
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          +                      

                     (19a)                      
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Now, in order to investigate the existence of periodic dynamics in the       
  of the 

   plane, define the Dulac function as          
 

  
 that satisfies          and     

function. Moreover, straightforward computation gives that:  
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Accordingly,        does not identically zero and does not change sign in the       
  of the 

   plane under the following condition: 

 
       

          
 

       

 
 

  

 
.                       (20) 

Therefore, by using Bendixson - Dulac criterion, there is no closed curve lying in the       
  

of the    plane for all the trajectories satisfying condition (20). Hence, according to the 

Poincare Bendixon theorem [17], the unique equilibrium point in the       
  of the 

   plane that given by   ̅  ̅  will be a globally asymptotically stable whenever it is locally 

asymptotically stable. 

Similar argument can be obtained regarding to the nonexistence of closed curve in the 

      
  of the    plane for the second subsystem (19b) using the Dulac function as 

follows          
 

  
. It is observed that, there is no periodic dynamics in the       

  of the 

   plane provided that 

     
            

   
.                        (21) 

Indeed, the zooplankton-free equilibrium point will be globally asymptotically stable when 

the equality occurs in the condition (21). 

Theorem 3: Assume that there are no periodic dynamics in the boundary planes. Then the 

system (3) is uniformly persistent provided that the following conditions hold 

    
    

       
 ,                    (22a) 

          ̅   
      ̅ ̅

       ̅   
,                    (22b)

      ̅
 ,                    (22c) 

        
    

       
 
,                     (22d) 

Proof. Consider the point   in the       
  and      is the orbit through  . Let the omega 

limit set of the      is given by     . Clearly,      is bounded, due to the boundedness of 

the solution of the system (3). The proof will follow if we can prove that all the boundary 

equilibrium points do not belong to the     . 
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Now, assume that        , then since    is a saddle point, then by Butler-McGhee lemma 

[18],   cannot be the only point in     , and hence there are at least one other point, say    , 

such that               , where        is the stable manifold of   . Since        is 

the    plane (or at least    axis) and the entire orbit through   , say      , is contained in 

    . Then, if    is on either boundary axes of    plane, it is obtained that the positive 

specific axis that containing    is contained in      which is contradicting to its 

boundedness. Otherwise,    belongs to the interior of    plane and since there is no 

equilibrium point in the interior of    plane, the orbit through    that contained in      

must be unbounded which leads to contradiction too. Thus we obtain that        .  

Now, since the conditions (22a) guarantees that    is a saddle point, whiles    is already 

saddle point, and the conditions (22b) and (22c) guarantee that    is a saddle point, however 

condition (22d) guarantees that    be a saddle point. Hence using similar arguments as that 

used for the point   , it is observed that all the boundary equilibrium points do not belong to 

the     . Therefore, the proof is done. 

5. Globally stability 

In this section, the dynamics of the system (3) is further investigated with the help of 

Lyapunov function. The objective is to specify the basin of attraction for the locally 

asymptotically stable equilibrium points and the non-hyperbolic point.     

Theorem 4: The first single-species equilibrium point             of system (3) is a 

global asymptotically stable if the following condition hold: 

        ,                      (23a) 

       .                    (23b) 

Proof. Consider the following scalar function               
 

  
      .  

It is clear that      
   , so that          and             for all {        

  
                          }. Hence,    is a positive definite function. Now, by 

differential    with respect to time and simplify the result it is obtained that 
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Hence,  

 
   

  
  [             ]       

                         
 . 

Therefore, using the conditions (23a)-(23b) leads to 
   

  
 is a negative definite. Accordingly, 

the function    is strong Lyapunov function, hence the first single-species equilibrium point 

   is globally asymptotically stable.          

Theorem 5: The fish-free equilibrium point      ̅  ̅    is an asymptotically stable in the 

interior of sub-region of   
 , that satisfies the following conditions: 

 
     ̅      ̅ 

                ̅  
            ̅ ,                 (24a) 

         
     

      
,                    (24b) 

      
        ,                    (24c) 

      
        ,                      (24d) 

where all the symbols               are given in the proof. 

Proof. Consider the scalar function    (    ̅   ̅   
 

 ̅
 )  (    ̅   ̅   

 

  ̅
)   .  
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It is clear that      
   , so that         , and             for all {        

  
                          }. Hence, the function    is positive definite 

function.  

Now by differentiate    with respect to time, and then simplify the result, it is obtained that 

 

   

  
          ̅           ̅      ̅  
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     ̅             ̅      

  
 

where                ̅  
     ̅      ̅ 

                ̅  
,     

          ̅    (      ̅
 )

                ̅  
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, and              
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Hence, using the above conditions (24a)-(24d) gives   

   

  
  [√         ̅  √

  

 
      ̅ ]

 

 [√
  

 
      ̅  √     ]

 

.  

Clearly, 
   

  
 is negative definite and hence    is a strong Lyapunov function. Therefore, the 

fish-free equilibrium point if an asymptotically stable in the region that satisfies the above set 

of conditions.              

Theorem 6: The zooplankton-free equilibrium point              is an asymptotically 

stable in the interior of the sub-region of   
 , that satisfies the following conditions: 

       ,                      (25a) 
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  )
 ,                  (25b) 

         
           

 .                  (25c) 

where all the symbols     and     are given in the proof. 

Proof. Consider the function               
 

  
                

 

  
   .  

It is clear that      
   , so that         , and             for all {        

  
                          }. Hence, the function    is positive definite 

function. Now by differentiate    with respect to time, and then simplify the result, it is 

obtained that. 

 

    

  
  [             ]      
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+       

 

 *
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Obviously, the last term is negative under the condition (25b), hence it is obtained that: 

 
    

  
           

                       
 , 

where     [             ]   , and        
     

        
     . Clearly,       under 

the existence condition (5). Therefore, the derivative 
    

  
 is negative definite under the 

conditions (25a) and (25c). Hence    is a strong Lyapunov function. Therefore, the 

zooplankton-free equilibrium point if an asymptotically stable in the sub-region that satisfies 

the above set of conditions.           

asymptotically stable then it has a basin of attraction in the interior of   
  that satisfies the 

conditions: 

 
     

 

           ,                     (26a) 

 
     

        

        
   ,                    (26b) 



Talib et al.                                   Iraqi Journal of Science, 2022, Vol. 63, No. 5, pp: 2173-2193              

4122 

        
      

 

                 
,                  (26c) 

      
         ,                    (26d) 

      
         ,                      (26e) 

where all the symbols               are given in the proof. 

Proof. Consider the following scalar function  

   (          
 

  
 )  (          

 

   
 )  (          

 

   
 ). 

It is clear that      
   , so that         , and             for all {        

  
                          }. Hence, the function    is positive definite 

function. Now by differentiate    with respect to time, and then simplify the result, it is 

obtained that: 

 

   

  
                                     

         

 

    
         

 
                                

 

where         (   
     

 

        
)        ,        

     
        

        
,  

    
   

 

        
    

      ,        
     

        

        , 

            
      

 

                 
,     

  

         
     

  

          
      

                 
. 

Hence, using the above conditions (26a)-(26e) , it gives   

 
   

  
  [√            √

   

 
        ]

 

 [√
   

 
         √           ]

 

. 

Clearly, 
   

  
 is negative definite and hence    is a strong Lyapunov function in the sub-region 

of   
  that satisfy the conditions (26a)-(26e). Therefore, the coexistence equilibrium point is 

an asymptotically stable for any trajectory starting from a point in the region satisfies the 

above set of conditions.              

6. Local bifurcation analysis 

In this section, the sensitivity of the dynamical behavior near the locally asymptotically stable 

equilibrium points of the system (3), in which a specific parameter is varying, is investigated 

using the Sotomayor’s theorem for the local bifurcation [17]. The necessary but not sufficient 

condition for the local bifurcation to occur is the existence of a non-hyperbolic equilibrium 

point. Therefore, the candidate bifurcation parameter is selected so that the equilibrium point 

will be non-hyperbolic at a specific value of that parameter. 

Now,  we rewrite the system (3) in the matrix form as follows : 

 
  

  
     ,           , and                

 .                   (27) 

Then the second derivative of   with respect to   can be written as: 

               [   ]   ,                      (28) 

where             
  any vector and   is any parameter, with 

     *   
     

            

          
        +   

   *
        

 

          
+     , 

    *
   

    
          

          
+   

   *
        

 

          
+                                  

 * 
     

            

          
     +   

   *
        

 

         
+      

, 

    * 
       

 

        
+   

  *  
      

        
+      *      

     

      
     +   

 . 
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Theorem 8. Assume that the conditions (17b) and (17c) hold, Then the system (3) undergoes 

a saddle node bifurcation near the coexistence equilibrium point as the parameter     passes 

through the value    
   

     
 

(        )
   

 

   , provided that 

     
      

(        )
   .                         (29) 

Proof. According to the form of the determinant of the Jacobian matrix of the system (3) at 

   that is given by             , in equation (15b). It is easy to verify that     , when 

     
 . Therefore, the characteristic equation of the       that is given in (15b) has a zero 

eigenvalue, and hence the coexistence equilibrium point becomes a non-hyperbolic point and 

the Jacobian matrix at       
    can be written as:  

   [   ]   
, 

where  all elements of    are the same that are given in equation (15a) except       
    . 

Let the vector                 
  be the eigenvector corresponding to the eigenvalue 

  
    of the matrix   . Then, direct computation gives that    (      ( 

   

   
)    )

 

, 

where     be any non-zero real number. 

Let the vector                 
  be the eigenvector corresponding to the eigenvalue 

  
    of the matrix    . Then, direct computation gives that    (      ( 

   

   
)    )

 

, 

where     be any non-zero real number. 

Now since 
  

   
    

           . Then it is obtained that: 

   
    

      
            . 

Moreover, substituting the value of       
   and    in the equation (28) gives that: 

          
          [   

 ]    

where      
  [   

     
             

   

(        )
        

   ]    
  [   

     
      

(        )
 ]    

 , 

   
  [

   
    

           
   

(        )
 ]    

 , 

   
  *      

     

            + (( 
   

   
)    )

 

  . 

Therefore, it is obtained that: 

   
          

          [   
     

      

(        )
 ]    

    . 

Clearly,   
          

            under the condition (29), and hence the system (3) 

undergoes a saddle node bifurcation in the sense of Sotomayor. 

7. Numerical simulation 

In this section, the global dynamics of the system (3) is studied numerically. The system (3) is 

numerically solved using four step Predictor-Corrector methods for different sets of 

parameters and different sets of initial conditions. The objective is to complete the vision of 

the dynamic behavior of the system (3) especially when the parameter values are varying. It is 

observed that, for the following set of hypothetical parameter values, the trajectory of the 

system (3) approaches asymptotically to the coexistence equilibrium point, starting from 

different initial conditions. This  is shown in figure (1). 
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Figure 1-The trajectory of the system (3) approaches asymptotically to a global stable 

coexistence equilibrium point                    for the data given by (30) starting from 

different points. (a) 3D attractor. (b) Trajectories of Phytoplankton versus time. (c) 

Trajectories of Zooplankton versus time. (d) Trajectories of Fish versus time. 

 
                                                      

                                                
     

.                (30) 

However, for the following hypothetical set of parameters in which the toxicity efficiency is 

decreasing throughout the food chain levels, the system (3) undergoes a chaotic attractor. This 

is shown in figure (2). 

   

                                                      
                                                 

     

                 (31) 

 
Figure 2-(a) The trajectory of the system (3) approaches a chaotic attractor for the data given 

by (31) with         . (b) Trajectories of Populations versus time.  
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According to the chaotic attractor in figure (2), the system (3) is sensitive to varying in the 

parameters therefore in the following the bifurcation diagrams as a function of some 

parameters are drawn in order to specify those parameters how have vital effects on the 

dynamical behavior of the system (3).  

It is observed that, the system (3) is sensitive to varying in the    so that the system 

approaches to different attractors as varying including periodic, chaotic, and then return to 

asymptotic stable point, see the bifurcation diagram given in figure (3). However, figure (4) 

shows clearly the rout to chaos through periodic and then periodic doubling after that the 

system (3) approaches to chaotic. Finally, figure (5) shows that the as the parameter    

increases the system approaches to the coexistence equilibrium point and then the extinction 

in the Fish population occurs and the system approaches to the fish-free equilibrium point.     

 
Figure 3- Bifurcation diagram of the system (3) using data (31) in which the maximum value 

of   is drawn as a function of   .  

 

 
Figure 4-Transition of the trajectory from periodic to chaotic using data (31). (a) Periodic 

attractor when        . (b) Trajectories of Populations versus time for Fig. (4a). (c) 

Chaotic attractor when       . (d) Trajectories of Populations versus time for Fig. (4c). 
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Figure 5-(a) The system (3) approaches to asymptotically stable coexistence point when 

        with rest of data as in (31). (b) Trajectories of Populations versus time for Fig. 

(5a).  

 

Now, the bifurcation diagram of the system (3) as a function of varying the parameter    is 

drawn in figure (6). However, figure (7) shows for the typical values of    within the range of 

bifurcation diagram given in figure (6) the existence of exchange between the chaotic and 

periodic dynamics as the parameter varying. While increasing the parameter        leads 

first to approach the system to coexistence equilibrium point and then extinction of Fish 

population. 

 
Figure 6- Bifurcation diagram of the system (3) using data (31) in which the maximum value 

of   is drawn as a function of   .  
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Figure 7- Transition of the trajectory from chaotic to periodic using data (31). (a) Chaotic 

attractor when        . (b) Trajectories of Populations versus time for Fig. (7a). (c) 

Periodic attractor when     . (d) Trajectories of Populations versus time for Fig. (7c). 

 

Further investigation for the effect of system’s parameters on the dynamical behavior of the 

system (3) is done using bifurcation diagrams as shown in the figures (8), figure (9), figure 

(10), and figure (11) for the varying the parameters         , and     , respectively.  

 

 
Figure 8- Bifurcation diagram of the system (3) using data (31) in which the maximum value 

of   is drawn as a function of   .  
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Figure 9-Bifurcation diagram of the system (3) using data (31) in which the maximum value 

of   is drawn as a function of   . 

 
Figure 10- Bifurcation diagram of the system (3) using data (31) in which the maximum 

value of   is drawn as a function of   .  

 
Figure 11-Bifurcation diagram of the system (3) using data (31) in which the maximum value 

of   is drawn as a function of    .  
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According to the bifurcation diagrams (8-11), it is observed that increasing the parameters 

     , and    , those stand for the toxicity efficiency of the Phytoplankton, Zooplankton, and 

Fish population respectively, reduces the chaotic and then leads to stabilizing the system (3) 

at the coexistence equilibrium point for the small range, after that the system faces extinction. 

On the other hand, from the bifurcation diagram given in figure (9), increasing the parameter 

   that stands for defense efficiency of Zooplankton against Fish, makes the system more 

chaotic and the system still persistent. In the following, the varying of the other parameters of 

the system (3) is investigated by solving the system (3) numerically for the set of parameters 

given by equation (31) and then drawing the obtained trajectory at a typical value of these 

parameters to understand their effects on the dynamical behavior of the system (3), see figures 

(12), (13), (14), and (15) for the parameters    ,   ,   , and     respectively. 

 
Figure 12-The trajectory of the system (3) for the data (31) with different values of   . (a) 

The system (3) approaches to fish-free equilibrium point when       . (b) Trajectories of 

the Populations versus time for Fig. (12a). (c) The system (3) approaches to chaotic attractor 

when       . (d) Trajectories of the Populations versus time for Fig. (12c).  

 
Figure 13- The trajectory of the system (3) for the data (31) with different values of   . (a) 

The system (3) approaches to coexistence equilibrium point when        . (b) Trajectories 
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of the Populations versus time for Fig. (13a). (c) The system (3) approaches to fish-free 

equilibrium point when       . (d) Trajectories of the Populations versus time for Fig. 

(13c).  

 
Figure 14-The trajectory of the system (3) for the data (31) with different values of   . (a) 

The system (3) approaches to chaotic attractor when       . (b) Trajectories of the 

Populations versus time for Fig. (14a). (c) The system (3) approaches to coexistence 

equilibrium point when        . (d) Trajectories of the Populations versus time for Fig. 

(14c).  

 
Figure 15- The trajectory of the system (3) for the data (31) with different values of    . (a) 

The system (3) approaches to periodic attractor when        . (b) Trajectories of the 

Populations versus time for Fig. (15a). (c) The system (3) approaches to coexistence 

equilibrium point when      . (d) Trajectories of the Populations versus time for Fig. 

(15c). (e) The system (3) approaches to fish-free equilibrium point when        . (f) 

Trajectories of the Populations versus time for Fig. (15e).  
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According to the figures (12)-(15), it is observed that the dynamics of the system (3) are 

highly affected by varying  parameters and different types of attractors can be obtained. 

Finally the parameters    and     have a quantitative effect on the dynamics of the system 

(3), but the behavior is still chaotic. 

 

8. Conclusions 

      In this paper, an aquatic food chain model within a contaminated environment is 

suggested. Since the species at the first and second levels have a capability of group defense, 

the consumption of food through the predation process is considered as the Holling type-IV 

functional response. The pollution affects directly the phytoplankton individuals, while it 

affects indirectly the zooplankton and fish individuals. Finally, it is assumed that the fish at 

the upper level grow logistically and reproduce sexually using a modified Leslie–Gower type. 

It is observed that system (3) has at most six equilibrium points, some of them are the non-

hyperbolic point. The conditions of local stability for hyperbolic equilibrium points are 

determined. The basin of attractions for each equilibrium point is specified using a suitable 

Lyapunov function. The persistence of the system (3) is also investigated. It is observed that 

the system (3) undergoes a saddle-node bifurcation near the coexistence equilibrium point 

too. Finally, with the help of numerical simulation, it is observed that there are rich dynamics 

in the proposed food chain model including periodic and chaos.  Now, the obtained numerical 

simulation results are summarized as follows. 

Although the system (3) has a globally asymptotically coexistence equilibrium point for 

different sets of parameters, it has rich dynamics as those parameter values vary including 

periodic and chaos, especially for low values of the toxicity efficiency. According to the 

bifurcation diagrams, system (3) approaches chaotic attractors through the cascade of periodic 

doubling. It is observed that decreasing the maximum consumption rate of the phytoplankton 

population leads to periodic dynamics in the interior of positive octant while increasing this 

parameter leads first to chaotic attractor for a specific range and then the system (3) stilled at 

coexistence equilibrium point before losing the persistence through extinction in the fish 

population. The varying of the defense efficiency of phytoplankton against zooplankton has a 

clear effect on the dynamics so that the system alternates their dynamics between periodic and 

chaotic for a large range while increasing it leads to persistent at a periodic dynamics in the 

positive octant. Moreover, the bifurcation diagrams as a function of the coefficients of 

toxicity efficiency show clearly that increasing the values of these parameters above specific 

values leads first to stabilizing the system (3) and then extinction in the fish population. 

However, increasing the defense efficiency of zooplankton against fish leads to destabilizing 

of the system (3) and the solution approaches chaotic dynamics.  

On the other hand, it is observed that decreasing the maximum per capita growth rate of the 

zooplankton population below a specific value makes the system (3) face extinction in the 

Fish population and the solution approaches the Fish-free equilibrium point. However, system 

(3) is still chaotic otherwise. Also, increasing the natural death rate of the zooplankton 

population gradually makes the system (3) approaches asymptotically to a stable coexistence 

equilibrium point, then it faces extinction in the Fish population and the solution approaches 

the Fish-free equilibrium point. However, system (3) is still chaotic otherwise. On the other 

hand, it is observed that the behavior of the system (3) is transferred from chaotic to 

asymptotically stable at the coexistence equilibrium point as the growth rate of Fish by sexual 

reproduction decreases. Finally, increasing the parameter    , which stands for the inverse of 

the fish's preference rate of zooplankton, makes the solution of the system (3) transfer from 

chaotic to the periodic, asymptotically stable at the coexistence point and then extinction in 

the fish population and the solution approaches Fish-free equilibrium point. 
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