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Abstract:   
      In this paper, we present a concept of nC- symmetric operator as  follows: Let A 

be a bounded linear operator on separable complex Hilbert space  , the operator A 

is said to be nC-symmetric if there exists a positive number n (n    such that CA
n
 

= A*
ⁿ
 C (A

n
 = C A*

ⁿ
 C). We provide an example and study the basic properties of 

this class of operators. Finally, we attempt to describe the relation between nC-

symmetric operator and some other operators such as Fredholm and self-adjoint 

operators. 
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 nC  لمؤثرات المتماثلة من النمط
 

 شيرين عودة دخيل ، بثينة عبد الحدن احمد
 العراق، كمية العمهم، جامعة بغداد، بغداد، رياضياتقدم عمهم ال

 
 الخلاصه

عمى أنهُ : الطؤثر الطُقيد الخطي الطُعرف  nCفي هذا البحث ، قدمظا مفههم الطؤثر الطتظاظر من الظطط       
.  CAn = A*ⁿC بحيث أن (     nأذا وجد عدد صحيح   عمى فضاء همبرت العقدي القابل لمفصل 

مثال عن هذا الظهع من الطؤثرات و قطظا بدراسة الخهاص الطهطة وكذلك حاولظا وصف العلاقة  كذلك تم اعطاء 
 و بعض الطؤثرات الأخرى.   nCبين الطؤثر الطتظاظر من الظطط 

 

1. Introduction and Preliminaries:  

      Let   be a separable complex Hilbert space and B( ) be an algebra of all bounded linear 

operators on   . A conjugation on   is an antilinear operator C:       which is both 

involution (C
2
= I) and isometric operator which  satisfies <Cx , Cy> = <y, x> for all x,y    . 

An operator A  B( ) is said to be C-symmetric operator if CA = A*
 
C (A = CA*C); it is 

complex symmetric if A is C-symmetric with respect to some C [1]. In particular, an n   

matrix A is symmetric if and only if A = CA*C where C denotes the standard conjugation 

C(z1,z2,…,zn)=     ̅    ̅      ̅     Thus, Complex symmetric operators generalize of concepts 

of symmetric matrices of linear algebra. In fact, if C is a conjugation on  , then there exists 

an orthonormal basis {en} of   such that Cen = en  for all n [1, lemma1] and since <Cx , Cy> 

= <y, x> for all x,y   H, then the matrix of a C-symmetric operator A with respect to {en} is 

symmetric:  
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[A]i,j = <A en, ej> = <CA*Cej, ei> = <Cei, A*Cej> = <Aei, ej> = [A]j,i.  

The converse of this fact is also true. That is, if there is an orthonormal basis such that A has a 

symmetric matrix representation, then A is complex symmetric [1]. The class of complex 

symmetric operators includes all normal operators, Toeplitz operators (including finite 

Toeplitz matrices and the compressed shift) and Volterra integration operator [1], [2], [3].  

The study of complex symmetric operators has an interaction between the fields of operator 

theory and complex analysis. Recently, many authors have been interested in non-Hermitian 

quantum mechanics and  the spectral analysis of certain complex symmetric operators [4], [5]. 

In particular, several authors have studied an antilinear operator which is the only type of a 

nonlinear operator that is important in quantum mechanics [6]. If C and J are conjugation on a 

Hilbert space  , then U = CJ is a unitary operator. Moreover, U is both C-symmetric and J-

symmetric [2]. 

In this paper, the concept of nC-symmetric operator is introduced. We also investigate the 

basic properties of this kind of operators like if A is nC-symmetric operator and A
-1

 exists 

then A
-1

 is also nC-symmetric. Moreover, If A is nC-symmetric and Fredholm operator ,then 

indA=0.  

2. Main Results:  

In this section, we present the concept of nC-symmetric operators. We also discuss the basic 

properties of this class of operators.  

Definition 2.1. An operator A   B( ) is said to be nC-symmetric operator if there exists a 

positive number n (n    such that CA
n
 = A*

ⁿ
 C (A

n
 = C A*

ⁿ
 C).  

     In some cases, an operator A is not C-symmetric, while the following example shows that  

A
n
  is  a C-symmetric for some n:  

Example 2.2. Let A:  3   3
 be an operator defined by the matrix 

[
   
   
   

]  

With xy   0 or |x|   |y|. It follows from [7, Ex.1] that A is not C-symmetric operator.  

However, A
2
 = [

    
   
   

] has rank one so that by [7, Corl. 5] A
2 

is C-symmetric operator. 

Hence, A is 2C-symmetric operator.   

Proposition 2.3. Let A   B( ), then A is nC-symmetric operator for a conjugation C if and 

only if there exists an orthonormal basis of   with respect to which A has a symmetric matrix 

representation.  

Proof: If A is nC-symmetric operator that is CA
n
 = A*

ⁿ 
C and {en} orthonormal basis of   

then: 

[A
n
]i,j = <A

n
 ej, ej> = <CA*

ⁿ
 Cej, ei> = <Cei, A*

ⁿ
 Cej> = <A

n
 ei, ej> = [A

n
]j,i 

Conversely, let {en} be an orthonormal basis of   such that A
n
 has a symmetric matrix 

representation such that <A
n 

ei , ej> = <A
n
 ej , ei>. 

Now, define a conjugation C by C (∑      ) =   ̅̅ ̅    for ai    and i=1,…,n.  

Then, < C A*
ⁿ
 C ei, ej> = <Cej, A*

ⁿ
 Cei> = < ej, A*

ⁿ
 ei> = <A

n 
ej, ei> = <A

n 
ei, ej>. 

Hence, we obtain that A
n
 = C A*

ⁿ
 C.  

Proposition 2.4. Let A be n   n matrix of complex entries. If A
n 

= CA*
ⁿ
C for some 

conjugation C on  n
, then A is unitarily equivalent to a complex symmetric matrix.  

Proof: Let A be n   n matrix of complex entries such that A
n 

= CA*
ⁿ
C for some conjugation 

C on  n
. Then there exists an orthonormal basis        

  such that Cei = ei, for all i=1,2,..,n.  

Let R= (e1|e2|…|en) be the unitary matrix where columns are these basis vectors. 

Because of  [W]i,j = <A
n 

ej, ei> = < CA*
ⁿ
C ej, ei> = < ei, A*

ⁿ
ej> = <A

n 
ei, ej> = [W]j,, we have 

the matrix W= R* A
n
R is complex matrix. 
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Proposition 2.5. If  A  is  nC-symmetric operator, then 

1. A
m

 is also nC-symmetric operator  for m   n.  

2. p(A
n
) is C-symmetric for any polynomial p(z).  

Proof: 1. Let A be nC-symmetric operator that is CA
n
 = A*

ⁿ
 C for n   Hence, 

C(A
m

)
n
 = C(A

n
)
m

 = (A*
ⁿ
)

m
 C = (A

m
)*

ⁿ 
C .  

 2. C p(A
n
) = C [ a0I + a1A

n
 + a2 (An)

2
 +…+ am (A

n
)
m

]  

               =    ̅̅ ̅ C +   ̅̅ ̅ A*
ⁿ
 C +   ̅̅ ̅ (A*)

2
 C + …+   ̅̅ ̅̅  (A*

ⁿ
)
m

 C 

               = [  ̅̅ ̅ +   ̅̅ ̅ A*
ⁿ
 +   ̅̅ ̅ (A*)

2
 + …+   ̅̅ ̅̅  (A*

ⁿ
)
m

] C 

               = p(A
n
)*C.  

Proposition 2.6.  If A is nC-symmetric operator, then   

1. If A
-1

 exists, then A
-1

 is also nC-symmetric operator. 

2. A
n
 is left invertible if and only if A

n
 is right invertible. 

Proof: 1. To verify that A
-1

 is also nC-symmetric operator, we need only to show that               

C (A
-1

)
n
 = (A

-1
)*

ⁿ 
C: 

C (A
-1

)
n
 = C (A

n
)
-1 

= C (C A*
ⁿ 
C)

-1
 = CC A

-n*
C = (A

-1
)*

ⁿ 
C . 

2. Let A
n
 be left invertible operator, to show that A

n
 is right invertible, thus 

(A
n
)
-1

 A
n
 = I = C

2
 

(A
n
)
-1 

A
n 
C = C 

C (A
n
)
-1 

C A*
ⁿ 
= CC 

C (A
n
)
-1 

CA*
ⁿ
= I , then by (1) we obtain (A*

ⁿ
)
-1

A*
ⁿ
= I .Therefore, (A

n
(A

n
)
-1

)* = I. Hence, 

A
n
(A

n
)
-1

=I.  

Conversely, suppose that A
n
 is right invertible. To show that A

n
 is left invertible, we have  

A
n
 (A

n
)
-1

 = I, it follows  (A
n
 (A

n
)
-1

 = I)
*
, thus (A*

ⁿ
)

-1
 A*

n
 = I = C

2
.  

Also, C(A*
ⁿ
 )

-1
 A*

ⁿ
  = C

3
 = C , then by (1) we obtain (A

n
)
-1

C A*
ⁿ
 = C and (A

n
)
-1

C A*
ⁿ
 C = C

2
 

= I. Then, we get (A
n
)
-1

A
n
 = I. 

Proposition 2.7.  If A is nC-symmetric operator, then A
n 

is one to one if and only if      Ran 

A
n
 is dense in  . 

Proof: Let A
n
 be one to one operator. Since C is isometric operator (hence one to one), then C 

A
n 

C is also one to one. But, A*
ⁿ
 = C A

n 
C thus we obtain A*

n
 is also one to one (Ker A*

ⁿ
 = 

0).  

Now,       ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (Ker A*
ⁿ
 )

┴ 
= {0}

┴
 = H. Hence, Ran A

n
 is dense in H.  

Conversely,       ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  (Ker A*
ⁿ
 )

┴ 
= H, then (Ker A*

ⁿ
 )

┴┴
= H

┴ 
= 0 . Since Ker A*

ⁿ
 is a closed 

linear subspace of H, so Ker A*
ⁿ
  = 0 and then we obtain A*

ⁿ
  is one to one and so is A*

ⁿ
 C . 

But, CA
n
 = A*

ⁿ
 C hence A

n
 is one to one.  

Proposition 2.8. Let A be nC-symmetric operator. If A is Fredholm operator, then ind A = 0. 

Proof: Since A is Fredholm operator, then A
n
 is Fredholm operator for nonnegative integer n , 

indA
n
 = n indA and ind(A*) = - indA ([8],[9]). 

Now, we have Ker C = Ker C* = 0 and Ran C is closed linear subspace of H, thus C is 

Fredholm operator and indC = 0. We conclude the proof by showing that indA = 0. 

Since CA
n
 = A*

ⁿ
 C, then it follows that: 

ind CA
n
 = ind A*

ⁿ
 C 

ind C + n ind A = -n ind A + ind C. 

Then, we obtain 2n indA = 0 and thus indA = 0.  

Proposition 2.9. Let A be nC-symmetric operator. If M is invariant subspace of   under C 

and A, then M reduces A
n
. 

Proof: Let M be an invariant subspace of   under C and A, so we have C(M   M and 

A(M   M so A
n
(M)   M for some n 1 and hence C A

n 
C   M . But, A*

ⁿ
 = CA

n 
C, it 

follows that   A*
ⁿ
 (M)   M which implies that M is  reduced to A

n
. 

Proposition 2.10. Let A be nC-symmetric operator. Then, M reduces A
n
 if and only if CM 

reduces A
n
.  
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Proof: Let M be reduces A
n
 such that A

n 
(M)   M and A*

ⁿ 
(M)   M. A short computation 

reveals that C A
n
 (M) = A*

ⁿ
 C (M)   CM and CA*

ⁿ
 (M) = A

n 
C (M)   CM, thus we obtain 

CM reduces A
n
. 

Conversely, if CM reduces A
n 

, then we have A
n 

(CM)   CM and A*
n
 (CM)   CM.                 

Then C A
n 

(CM) = C A
n 

C (M) = A*
n
 (M)   C (CM) = M. In a similar way, we can obtain   

A
n 

(M)  M.  

Proposition 2.11. Let A be nC-symmetric operator. If M is an invariant subspace of   under 

C and P orthogonal projection on to M, then the compression B
n
 = P A

n 
P of A to M which   

satisfies CB
n
 = B*

ⁿ
C. 

Proof: Let A be nC-symmetric operator.  

C B
n
 = C (P A 

n
P) = C P A 

n
P  = P C A 

n
P = P A*

ⁿ
 C P = P A*

ⁿ 
P C = B*

ⁿ 
C.  

Proposition 2.12. If A is nC-symmetric operator, then we have the folloing: 

1. C A
n
 commutes with A*

ⁿ
 A

n
. 

2. A
n 

C commutes with A
n
 A*

ⁿ
 .  

Proof: 1. Since (CA
n
)
2
 = CA

n 
CA

n
 = A*

ⁿ
 CC A

n
 = A*

ⁿ
A

n
, then this would implies that: 

CA
n
 A*

ⁿ
 A

n
 = C (C A*

ⁿ
 C) A*

ⁿ
 A

n
 

                 = A*
ⁿ
 C A*

ⁿ
 A

n
 

                 = A*
ⁿ
 A

n 
CA

n
.  

2.Similaraly, (A
n 

C)
2 

= A
n 

C A
n 

C = A
n 

A*
ⁿ
 CC = A

n 
A*

ⁿ
 . 

Now, A
n 

C A
n
 A*

ⁿ
 = A

n 
C (C A*

ⁿ
 C) A*

ⁿ
   

                             = A
n
 A*

ⁿ
 C A*

ⁿ
   

                                           
= A

n
 A*

ⁿ
 A

n 
C. 

Proposition 2.13. Let B be invertible  and nC- symmetric operator on   such that AB=BA, 

then A is nC-symmetric operator.  

Proof:  The proof is based on the equations CA
n
 = A*

ⁿ
 C, CB

n
= B*

ⁿ
 C and AB =BA. Hence,  

 C (A B)
n 

 = C A
n 

B
n 

                      
= A*

ⁿ
 C B

n 

 
              = A*

ⁿ
 B*

ⁿ
 C                          

               = (B
n 

A
n
)
* 
C               

               =  (A
n
 B

n
)
* 
C   

               = (A B)*
ⁿ 
C.     

Conversely, let  AB be nC-symmetric operator . To show that A is nC-symmetric operator, we 

set 

C A
n
 = C A

n 
I 

         = C A
n 

B
n 

(B
-1

)
n 

              
= C (AB)

n  
(B

-1
)
n
        (AB is nC-symmetric) 

         = (AB)*
ⁿ 
C (B

-1
)
n
        (B

-1 
is nC-symmetric by Prop. (2.6 (1)). 

         = (AB)*
ⁿ 
(B

-1
)*

ⁿ 
C  

         = (AB)*
ⁿ 
(B*

ⁿ
)
-1

 C 

         = A*
ⁿ 
B*

ⁿ 
(B*

ⁿ
)
-1

 C 

         = A*
ⁿ 
C. 

Proposition 2.14. Let A   B( ) and C be conjugation on  . If CA
n
 = A

n
C, then A is nC-

symmetric operator if and only if A
n 

is self-adjoint.  

Proof: Let A be nC-symmetric operator such that CA
n 

= A*
ⁿ 
C, then we have A

n 
C = A*

ⁿ 
C 

which yields that  A
n 

CC = A*
ⁿ 
CC and so we get A

n
 = (A

n
)
*
. 

Conversely, suppose that A
n
 is self- adjoint such that A

n
 = (A

n
)*, then it follows A

n
 C = A*

ⁿ 
C  

and CA
n
 = A*

ⁿ 
C which implies that A is nC-symmetric operator.  

Proposition 2. 15. If A is both nC-symmetric and nJ-symmetric, then A is both n(CJC)-

symmetric and n(JCJ)- symmetric operator.  

Proof: Since CA
n
 = A*

ⁿ 
C and J A

n
 = A*

ⁿ
 J, then  
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(CJC) A
n
 = CJ (CA

n
) = CJ A*

ⁿ
 C = CA

n
 JC = A*

ⁿ
 (CJC) , so that  A is n(CJC)-symmetric 

operator. Analogously, we can prove that A is n(JCJ)- symmetric . 

Proposition 2. 16. If A is both nC-symmetric and nJ-symmetric, then A
n
 U is C-symmetric 

where U = CJ is unitary operator.  

Proof: Since A is both nC-symmetric and nJ-symmetric then by the previous proposition, A 

is n(CJC)-symmetric, so we have  

(A
n
 U) C = A

n
 (CJC) = (CJC) A*

ⁿ
  = C U

* 
A*

ⁿ
  = C (A

n
 U)

*
.   
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