

ISSN: 0067-2904

nC- symmetric operators

Shireen O. Dakheel, Buthainah A. Ahmed
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 19/6/2021 Accepted: 18/9/2021 Published: 30/7/2022

Abstract

: In this paper, we present a concept of nC- symmetric operator as follows: Let A be a bounded linear operator on separable complex Hilbert space \mathcal{H}, the operator A is said to be nC -symmetric if there exists a positive number $\mathrm{n}(\mathrm{n}>1)$ such that CA^{n} $=\mathrm{A}{ }^{*} \mathrm{C}\left(\mathrm{A}^{\mathrm{n}}=\mathrm{C} \mathrm{A} *^{n} \mathrm{C}\right)$. We provide an example and study the basic properties of this class of operators. Finally, we attempt to describe the relation between nCsymmetric operator and some other operators such as Fredholm and self-adjoint operators.

Keywords: Separable Complete Hilbert Space, Conjugation operators, C-symmetric operators, nC-symmetric operators.

$$
\begin{aligned}
& \text { لمؤثرات المتماثلة من النمط nC } \\
& \text { شيرين عودة دخيل ، بثينة عبد الحسن احمد } \\
& \text { قسم علوم الرياضيات، كلية العلوم، جامعة بغغاد، بغغاد، العراق }
\end{aligned}
$$

> الخلاصه
> في هذا البحث ، قامنا مفهوم المؤثر المتاظر من النهط nC على أنهُ : المؤثر اليُقّيد الخطي المُعرف
كنلك تم اعطاء مثال عن هذا النوع من المؤثرات و و قنا بـراسة الخواص المهية وكنا
بين المؤثر المتاظر من النهط nC و بغض المؤثرات الأخرى.

1. Introduction and Preliminaries:

Let \mathcal{H} be a separable complex Hilbert space and $\mathrm{B}(\mathcal{H})$ be an algebra of all bounded linear operators on H . A conjugation on \mathcal{H} is an antilinear operator $\mathrm{C}: \mathcal{H} \rightarrow \mathcal{H}$ which is both involution $\left(\mathrm{C}^{2}=\mathrm{I}\right)$ and isometric operator which satisfies $\langle\mathrm{Cx}, \mathrm{Cy}\rangle=\langle\mathrm{y}, \mathrm{x}\rangle$ for all $\mathrm{x}, \mathrm{y} \in \mathcal{H}$. An operator $\mathrm{A} \in \mathrm{B}(\mathcal{H})$ is said to be C -symmetric operator if $\mathrm{CA}=\mathrm{A}^{*} \mathrm{C}(\mathrm{A}=\mathrm{CA} * \mathrm{C})$; it is complex symmetric if A is C -symmetric with respect to some C [1]. In particular, an $\mathrm{n} \times \mathrm{n}$ matrix A is symmetric if and only if $\mathrm{A}=\mathrm{CA} * \mathrm{C}$ where C denotes the standard conjugation $\mathrm{C}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{n}}\right)=\left(\bar{z}_{1}, \bar{z}_{2}, \ldots, \bar{z}_{n}\right)$. Thus, Complex symmetric operators generalize of concepts of symmetric matrices of linear algebra. In fact, if C is a conjugation on \mathcal{H}, then there exists an orthonormal basis $\left\{\mathrm{e}_{\mathrm{n}}\right\}$ of \mathcal{H} such that $\mathrm{Ce}_{\mathrm{n}}=\mathrm{e}_{\mathrm{n}}$ for all $\mathrm{n}[1$, lemma1] and since $\langle\mathrm{Cx}, \mathrm{Cy}\rangle$ $=\langle y, x\rangle$ for all $x, y \in H$, then the matrix of a C-symmetric operator A with respect to $\left\{e_{n}\right\}$ is symmetric:

[^0]$[A]_{i, j}=\left\langle A e_{n}, e_{j}\right\rangle=\left\langle C A * C e_{j}, e_{i}\right\rangle=\left\langle\mathrm{Ce}_{\mathrm{i}}, \mathrm{A} * \mathrm{Ce}_{\mathrm{j}}\right\rangle=\left\langle\mathrm{Ae}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right\rangle=[\mathrm{A}]_{\mathrm{j}, \mathrm{i}}$.
The converse of this fact is also true. That is, if there is an orthonormal basis such that A has a symmetric matrix representation, then A is complex symmetric [1]. The class of complex symmetric operators includes all normal operators, Toeplitz operators (including finite Toeplitz matrices and the compressed shift) and Volterra integration operator [1], [2], [3].
The study of complex symmetric operators has an interaction between the fields of operator theory and complex analysis. Recently, many authors have been interested in non-Hermitian quantum mechanics and the spectral analysis of certain complex symmetric operators [4], [5]. In particular, several authors have studied an antilinear operator which is the only type of a nonlinear operator that is important in quantum mechanics [6]. If C and J are conjugation on a Hilbert space \mathcal{H}, then $\mathrm{U}=\mathrm{CJ}$ is a unitary operator. Moreover, U is both C -symmetric and J symmetric [2].
In this paper, the concept of nC -symmetric operator is introduced. We also investigate the basic properties of this kind of operators like if A is nC -symmetric operator and A^{-1} exists then A^{-1} is also nC -symmetric. Moreover, If A is nC -symmetric and Fredholm operator ,then indA $=0$.

2. Main Results:

In this section, we present the concept of nC -symmetric operators. We also discuss the basic properties of this class of operators.
Definition 2.1. An operator $\mathrm{A} \in \mathrm{B}(\mathcal{H})$ is said to be nC -symmetric operator if there exists a positive number $n(n>1)$ such that $\mathrm{CA}^{\mathrm{n}}=\mathrm{A}^{* n} \mathrm{C}\left(\mathrm{A}^{\mathrm{n}}=\mathrm{CA} *^{*^{n}} \mathrm{C}\right)$.

In some cases, an operator A is not C -symmetric, while the following example shows that A^{n} is a C -symmetric for some n :
Example 2.2. Let A: $\mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be an operator defined by the matrix

$$
\left[\begin{array}{lll}
0 & x & 0 \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right] .
$$

With $\mathrm{xy} \neq 0$ or $|\mathrm{x}| \neq|\mathrm{y}|$. It follows from [7, Ex.1] that A is not C-symmetric operator.
However, $\mathrm{A}^{2}=\left[\begin{array}{llc}0 & 0 & x y \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ has rank one so that by $\left[7\right.$, Corl. 5] A^{2} is C -symmetric operator. Hence, A is 2C-symmetric operator.
Proposition 2.3. Let $\mathrm{A} \in \mathrm{B}(\mathcal{H})$, then A is nC -symmetric operator for a conjugation C if and only if there exists an orthonormal basis of \mathcal{H} with respect to which A has a symmetric matrix representation.
Proof: If A is nC -symmetric operator that is $\mathrm{CA}^{\mathrm{n}}=\mathrm{A} *^{\mathrm{n}} \mathrm{C}$ and $\left\{\mathrm{e}_{\mathrm{n}}\right\}$ orthonormal basis of \mathcal{H} then:
$\left[A^{n}\right]_{i, j}=\left\langle A^{n} e_{j}, e_{j}\right\rangle=\left\langle C A *^{n} C e_{j}, e_{i}\right\rangle=\left\langle\mathrm{Ce}_{\mathrm{i}}, \mathrm{A}^{*} \mathrm{Ce}_{\mathrm{j}}\right\rangle=\left\langle\mathrm{A}^{\mathrm{n}} \mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right\rangle=\left[\mathrm{A}^{\mathrm{n}}\right]_{\mathrm{j}, \mathrm{i}}$
Conversely, let $\left\{\mathrm{e}_{\mathrm{n}}\right\}$ be an orthonormal basis of \mathcal{H} such that A^{n} has a symmetric matrix representation such that $\left\langle A^{n} \mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right\rangle=\left\langle\mathrm{A}^{\mathrm{n}} \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{i}}\right\rangle$.
Now, define a conjugation C by $\mathrm{C}\left(\sum_{n} a_{n} e_{n}\right)=\overline{a_{n}} e_{n}$ for $\mathrm{a}_{\mathrm{i}} \in \mathbb{C}$ and $\mathrm{i}=1, \ldots, \mathrm{n}$.
Then, $\left\langle C A^{*} C e_{i}, e_{j}\right\rangle=\left\langle C e_{j}, A^{*} C e_{i}\right\rangle=\left\langle e_{j}, A^{*} e_{i}\right\rangle=\left\langle A^{n} e_{j}, e_{i}\right\rangle=\left\langle A^{n} e_{i}, e_{j}\right\rangle$.
Hence, we obtain that $\mathrm{A}^{\mathrm{n}}=\mathrm{CA} *^{\mathrm{n}} \mathrm{C}$.
Proposition 2.4. Let A be $n \times n$ matrix of complex entries. If $A^{n}=C A *{ }^{n} C$ for some conjugation C on \mathbb{C}^{n}, then A is unitarily equivalent to a complex symmetric matrix.
Proof: Let A be $\mathrm{n} \times \mathrm{n}$ matrix of complex entries such that $\mathrm{A}^{\mathrm{n}}=\mathrm{CA} *^{\mathrm{n}} \mathrm{C}$ for some conjugation C on \mathbb{C}^{n}. Then there exists an orthonormal basis $\{e i\}_{i=1}^{n}$ such that $\mathrm{Ce}_{\mathrm{i}}=\mathrm{e}_{\mathrm{i}}$, for all $\mathrm{i}=1,2, \ldots, n$.
Let $R=\left(e_{1}\left|e_{2}\right| \ldots \mid e_{n}\right)$ be the unitary matrix where columns are these basis vectors.
Because of $[W]_{i, j}=\left\langle A^{n} e_{j}, e_{i}\right\rangle=\left\langle C A *{ }^{n} C e_{j}, e_{i}\right\rangle=\left\langle e_{i}, A^{* n} e_{j}\right\rangle=\left\langle A^{n} e_{i}, e_{j}\right\rangle=[W]_{j}$, we have the matrix $W=R * A^{n} R$ is complex matrix.

Proposition 2.5. If A is nC -symmetric operator, then

1. A^{m} is also nC -symmetric operator for $\mathrm{m}>\mathrm{n}$.
2. $\mathrm{p}\left(\mathrm{A}^{\mathrm{n}}\right)$ is C -symmetric for any polynomial $\mathrm{p}(\mathrm{z})$.

Proof: 1. Let A be nC -symmetric operator that is $\mathrm{CA}^{\mathrm{n}}=\mathrm{A}^{\mathrm{n}} \mathrm{C}$ for $\mathrm{n}>1$.Hence, $C\left(A^{m}\right)^{n}=C\left(A^{n}\right)^{m}=\left(A^{*}\right)^{m} C=\left(A^{m}\right)^{n} C$.
2. $C p\left(A^{n}\right)=C\left[a_{0} I+a_{1} A^{n}+a_{2}\left(A_{n}\right)^{2}+\ldots+a_{m}\left(A^{n}\right)^{m}\right]$

$$
\begin{aligned}
& =\overline{a_{0}} \mathrm{C}+\overline{a_{1}} \mathrm{~A}^{*^{\mathrm{n}}} \mathrm{C}+\overline{a_{2}}\left(\mathrm{~A}^{*}\right)^{2} \mathrm{C}+\ldots+\overline{a_{m}}\left(\mathrm{~A}^{*}\right)^{\mathrm{m}} \mathrm{C} \\
& =\left[\overline{a_{0}}+\overline{a_{1}} \mathrm{~A} *^{\mathrm{n}}+\overline{a_{2}}\left(\mathrm{~A}^{*}\right)^{2}+\ldots+\overline{a_{m}}\left(\mathrm{~A}^{*}\right)^{\mathrm{m}}\right] \mathrm{C} \\
& =\mathrm{p}\left(\mathrm{~A}^{\mathrm{n}}\right)^{*} \mathrm{C} .
\end{aligned}
$$

Proposition 2.6. If A is nC -symmetric operator, then

1. If A^{-1} exists, then A^{-1} is also nC -symmetric operator.
2. A^{n} is left invertible if and only if A^{n} is right invertible.

Proof: 1. To verify that A^{-1} is also nC -symmetric operator, we need only to show that $\mathrm{C}\left(\mathrm{A}^{-1}\right)^{\mathrm{n}}=\left(\mathrm{A}^{-1}\right){ }^{* \mathrm{n}} \mathrm{C}$:
$\mathrm{C}\left(\mathrm{A}^{-1}\right)^{\mathrm{n}}=\mathrm{C}\left(\mathrm{A}^{\mathrm{n}}\right)^{-1}=\mathrm{C}\left(\mathrm{CA}^{*} *^{\mathrm{n}}\right)^{-1}=\mathrm{CC} \mathrm{A}^{-\mathrm{n}} \mathrm{C}^{*}=\left(\mathrm{A}^{-1}\right)^{\mathrm{n}} \mathrm{C}$.
2. Let A^{n} be left invertible operator, to show that A^{n} is right invertible, thus
$\left(A^{n}\right)^{-1} A^{n}=I=C^{2}$
$\left(\mathrm{A}^{\mathrm{n}}\right)^{-1} \mathrm{~A}^{\mathrm{n}} \mathrm{C}=\mathrm{C}$
$\mathrm{C}\left(\mathrm{A}^{\mathrm{n}}\right)^{-1} \mathrm{CA}^{*{ }^{\mathrm{n}}=\mathrm{CC}, ~}$
$\mathrm{C}\left(\mathrm{A}^{\mathrm{n}}\right)^{-1} \mathrm{CA} *^{n}=\mathrm{I}$, then by (1) we obtain $\left.\left(\mathrm{A}^{*}\right)^{\mathrm{n}}\right)^{-1} \mathrm{~A}^{*^{n}}=\mathrm{I}$.Therefore, $\left(\mathrm{A}^{\mathrm{n}}\left(\mathrm{A}^{\mathrm{n}}\right)^{-1}\right)^{*}=\mathrm{I}$. Hence, $A^{n}\left(A^{n}\right)^{-1}=I$.
Conversely, suppose that A^{n} is right invertible. To show that A^{n} is left invertible, we have
$A^{n}\left(A^{n}\right)^{-1}=I$, it follows $\left(A^{n}\left(A^{n}\right)^{-1}=I\right)^{*}$, thus $\left(A^{* n}\right)^{-1} A^{* n}=I=C^{2}$.
Also, $C\left(A^{* n}\right)^{-1} A *^{n}=C^{3}=C$, then by (1) we obtain $\left(A^{n}\right)^{-1} \mathrm{CA}^{*}=\mathrm{C}$ and $\left(\mathrm{A}^{\mathrm{n}}\right)^{-1} \mathrm{CA}^{*} *^{\mathrm{n}} \mathrm{C}=\mathrm{C}^{2}$ $=I$. Then, we get $\left(\mathrm{A}^{\mathrm{n}}\right)^{-1} \mathrm{~A}^{\mathrm{n}}=\mathrm{I}$.
Proposition 2.7. If A is $n C$-symmetric operator, then A^{n} is one to one if and only if Ran A^{n} is dense in \mathcal{H}.
Proof: Let A^{n} be one to one operator. Since C is isometric operator (hence one to one), then C $\mathrm{A}^{\mathrm{n}} \mathrm{C}$ is also one to one. But, $\mathrm{A}^{* n}=\mathrm{C} \mathrm{A}^{\mathrm{n}} \mathrm{C}$ thus we obtain $\mathrm{A}^{* \mathrm{n}}$ is also one to one ($\operatorname{Ker} \mathrm{A}^{* n}=$ $0)$.
Now, $\overline{\operatorname{Ran} A^{n}}=\left(\operatorname{Ker~A} *^{n}\right)^{\perp}=\{0\}^{\perp}=H$. Hence, Ran A^{n} is dense in H.
Conversely, $\overline{\operatorname{Ran} A^{n}}=\left(\operatorname{Ker} A^{*}\right)^{\perp}=H$, then $\left(\operatorname{Ker} A^{*}\right)^{-\perp}=H^{\perp}=0$. Since Ker $A^{* n}$ is a closed linear subspace of H, so Ker $A *^{n}=0$ and then we obtain $A *^{n}$ is one to one and so is $A *^{n} C$. But, $C A^{n}=A *^{n} C$ hence A^{n} is one to one.
Proposition 2.8. Let A be nC -symmetric operator. If A is Fredholm operator, then ind $\mathrm{A}=0$.
Proof: Since A is Fredholm operator, then A^{n} is Fredholm operator for nonnegative integer n, $\operatorname{indA}^{\mathrm{n}}=\mathrm{n}$ indA and ind $\left(\mathrm{A}^{*}\right)=-\operatorname{indA}([8],[9])$.
Now, we have Ker $\mathrm{C}=$ Ker $\mathrm{C}^{*}=0$ and Ran C is closed linear subspace of H , thus C is Fredholm operator and indC $=0$. We conclude the proof by showing that indA $=0$.
Since $C A^{n}=A *^{n} C$, then it follows that:
ind $\mathrm{CA}^{\mathrm{n}}=$ ind $\mathrm{A}^{* n} \mathrm{C}$
ind $\mathrm{C}+\mathrm{n}$ ind $\mathrm{A}=-\mathrm{n}$ ind $\mathrm{A}+\operatorname{ind} \mathrm{C}$.
Then, we obtain 2 n ind $\mathrm{A}=0$ and thus ind $\mathrm{A}=0$.
Proposition 2.9. Let A be nC -symmetric operator. If M is invariant subspace of \mathcal{H} under C and A , then M reduces A^{n}.
Proof: Let M be an invariant subspace of \mathcal{H} under C and A, so we have $C(M) \subset M$ and $A(M) \subset M$ so $A^{n}(M) \subset M$ for some $n>1$ and hence $C A^{n} C \subset M . B u t, A *^{n}=C A^{n} C$, it follows that $A *^{n}(M) \subset M$ which implies that M is reduced to A^{n}.
Proposition 2.10. Let A be $n C$-symmetric operator. Then, M reduces A^{n} if and only if $C M$ reduces A^{n}.

Proof: Let M be reduces A^{n} such that $A^{n}(M) \subset M$ and $A *^{n}(M) \subset M$. A short computation reveals that $C A^{n}(M)=A *^{n} C(M) \subset C M$ and $C A *^{n}(M)=A^{n} C(M) \subset C M$, thus we obtain CM reduces A^{n}.
Conversely, if $C M$ reduces A^{n}, then we have $A^{n}(C M) \subset C M$ and $A^{* n}(C M) \subset C M$. Then $C A^{n}(C M)=C A^{n} C(M)=A *^{* n}(M) \subset C(C M)=M$. In a similar way, we can obtain $A^{n}(M) \subset M$.
Proposition 2.11. Let A be nC -symmetric operator. If M is an invariant subspace of \mathcal{H} under C and P orthogonal projection on to M , then the compression $\mathrm{B}^{\mathrm{n}}=\mathrm{P} \mathrm{A}^{\mathrm{n}} \mathrm{P}$ of A to M which satisfies $\mathrm{CB}^{\mathrm{n}}=\mathrm{B}^{*} \mathrm{C}$.
Proof: Let A be nC-symmetric operator.
$C B^{n}=C\left(P^{n} P\right)=C P A{ }^{n} P=P C A{ }^{n} P=P A *^{n} C P=P A *^{n} P C=B *^{n} C$.
Proposition 2.12. If A is nC -symmetric operator, then we have the folloing:

1. $C A^{n}$ commutes with $A *^{n} A^{n}$.
2. $A^{n} C$ commutes with $A^{n} A *^{n}$.

Proof: 1. Since $\left(C A^{n}\right)^{2}=C A^{n} C A^{n}=A *^{n} C C A^{n}=A *^{n} A^{n}$, then this would implies that:
$C A^{n} A *^{n} A^{n}=C\left(C A *^{n} C\right) A *^{n} A^{n}$

$$
\begin{aligned}
& =A *^{n} C A^{n} A^{n} \\
& =A^{*} A^{n} C A^{n} .
\end{aligned}
$$

2.Similaraly, $\left(A^{n} C\right)^{2}=A^{n} C A^{n} C=A^{n} A^{*} C C=A^{n} A *^{n}$.

Now, $A^{n} C A^{n} A^{* n}=A^{n} C\left(C A *^{n} C\right) A *^{n}$

$$
\begin{aligned}
& =\mathrm{A}^{\mathrm{n}} \mathrm{~A}^{\mathrm{n}} \mathrm{CA} \mathrm{~A}^{\mathrm{n}} \\
& =\mathrm{A}^{\mathrm{A}} \mathrm{*}^{\mathrm{n}} \mathrm{~A}^{\mathrm{n}} \mathrm{C} .
\end{aligned}
$$

Proposition 2.13. Let B be invertible and nC - symmetric operator on \mathcal{H} such that $\mathrm{AB}=\mathrm{BA}$, then A is nC -symmetric operator.
Proof: The proof is based on the equations $\mathrm{CA}^{\mathrm{n}}=\mathrm{A} *^{\mathrm{n}} \mathrm{C}, \mathrm{CB}^{\mathrm{n}}=\mathrm{B} *^{\mathrm{n}} \mathrm{C}$ and $\mathrm{AB}=\mathrm{BA}$. Hence,

$$
\mathrm{C}(\mathrm{AB})^{\mathrm{n}}=\mathrm{C} \mathrm{~A}^{\mathrm{n}} \mathrm{~B}^{\mathrm{n}}
$$

$$
=\mathrm{A} * \mathrm{CB}^{\mathrm{n}}
$$

$$
=\mathrm{A}^{* n} \mathrm{~B} *^{\mathrm{n}} \mathrm{C}
$$

$$
=\left(\mathrm{B}^{\mathrm{n}} \mathrm{~A}^{\mathrm{n}}\right)^{*} \mathrm{C}
$$

$$
=\left(\mathrm{A}^{\mathrm{n}} \mathrm{~B}^{\mathrm{n}}\right)^{*} \mathrm{C}
$$

$$
=(\mathrm{AB})^{*^{\prime}} \mathrm{C}
$$

Conversely, let AB be nC -symmetric operator. To show that A is nC -symmetric operator, we set
$C A^{n}=C A^{n} I$

$$
\begin{aligned}
& =C A^{n} B^{n}\left(B^{-1}\right)^{n} \\
& =C(A B)^{n}\left(B^{-1}\right)^{n} \quad(A B \text { is } n C \text {-symmetric }) \\
& =(A B)^{* n} C\left(B^{-1}\right)^{n} \quad\left(B^{-1} \text { is } n C\right. \text {-symmetric by Prop. (2.6 (1)). } \\
& =(A B)^{* n}\left(B^{-1}\right)^{* n} C \\
& =(A B) *^{n}\left(B^{* n}\right)^{-1} C \\
& =A *^{n} B^{* *^{n}}\left(B^{*{ }^{-1}}\right)^{-1} C \\
& =A^{* n} C .
\end{aligned}
$$

Proposition 2.14. Let $\mathrm{A} \in \mathrm{B}(\mathcal{H})$ and C be conjugation on \mathcal{H}. If $\mathrm{CA}^{\mathrm{n}}=\mathrm{A}^{\mathrm{n}} \mathrm{C}$, then A is nC symmetric operator if and only if A^{n} is self-adjoint.
Proof: Let A be $n C$-symmetric operator such that $C A^{n}=A *^{n} C$, then we have $A^{n} C=A *^{n} C$ which yields that $A^{n} C C=A *^{n} C C$ and so we get $A^{n}=\left(A^{n}\right)^{*}$.
Conversely, suppose that A^{n} is self- adjoint such that $A^{n}=\left(A^{n}\right)^{*}$, then it follows $A^{n} C=A *^{n} C$ and $\mathrm{CA}^{\mathrm{n}}=\mathrm{A} *^{\mathrm{n}} \mathrm{C}$ which implies that A is nC -symmetric operator.
Proposition 2. 15. If A is both $n C$-symmetric and $n J$-symmetric, then A is both $n(C J C)$ symmetric and $\mathrm{n}(\mathrm{JCJ})$ - symmetric operator.
Proof: Since $\mathrm{CA}^{\mathrm{n}}=\mathrm{A} *^{\mathrm{n}} \mathrm{C}$ and $\mathrm{J} \mathrm{A}^{\mathrm{n}}=\mathrm{A} *^{\mathrm{n}} \mathrm{J}$, then
(CJC) $\mathrm{A}^{\mathrm{n}}=\mathrm{CJ}\left(\mathrm{CA}^{\mathrm{n}}\right)=\mathrm{CJ} \mathrm{A}^{* \mathrm{n}} \mathrm{C}=\mathrm{CA}^{\mathrm{n}} \mathrm{JC}=\mathrm{A}^{* n}(\mathrm{CJC})$, so that A is $\mathrm{n}(\mathrm{CJC})$-symmetric operator. Analogously, we can prove that A is $\mathrm{n}(\mathrm{JCJ})$ - symmetric .
Proposition 2. 16. If A is both $n C$-symmetric and nJ-symmetric, then $A^{n} U$ is C-symmetric where $\mathrm{U}=\mathrm{CJ}$ is unitary operator.
Proof: Since A is both nC-symmetric and nJ-symmetric then by the previous proposition, A is $\mathrm{n}(\mathrm{CJC})$-symmetric, so we have
$\left(A^{n} U\right) C=A^{n}(C J C)=(C J C) A^{* n}=C U^{*} A^{* n}=C\left(A^{n} U\right)^{*}$.

References

[1] S. R. Garcia, M. Putinar, "Complex Symmetric Operators and Applications", Trans Amer Math Soc, vol. 358, pp. 1285-1315, 2005.
[2] S. R. Garcia, M. Putinar, "Complex Symmetric Operators and Applications II", Trans Amer Math Soc, vol. 359, pp. 3913-3931, 2007.
[3] S. R. Garcia, "Conjugation and Clark Operators", Contemp Math., vol. 393, pp. 67-112, 2006.
[4] C. Bender, A. Fring, U. Günther U, "Quantum physics with non- Hermitian operators", J Phys A Math Theor,vol.45, pp. 301-440, 2012.
[5] S. R. Garcia, E . Prodan, M. Putinar, "Mathematical and physical aspects of complex symmetric operators", J Phys A Math Theor. , vol. 47, pp. 1-51, 2014.
[6] A. Messiah, Quantum mechanics II, New York (NY), Dover Publication, 1965.
[7] S. R. Garcia,W.R Wogen, , "Some New Class of Complex symmetric operators", Trans Amer Math Soc, vol. 362, no.11, pp. 6065-6077, 2010.
[8] J.K. Hunter, B. Nachtergaele, Applied Analysis, World Scientific Publishing Co. Pte. Ltd., Singapore, 2001.
[9] C.S. Kubrusly, "Fredholm Theory in Hilbert Space-A Concise Introductory Exposition", Bull. Belg. Math. Soc. Simon Stevin, vol. 15, pp. 153-177, 2008.

[^0]: *Email: shireeno_math@csw.uobaghdad.edu.iq

