Dakheel and Ahmed

Iraqi Journal of Science, 2022, Vol. 63, No. 7, pp: 3098-3102 DOI: 10.24996/ijs.2022.63.7.30

ISSN: 0067-2904

nC- symmetric operators

Shireen O. Dakheel, Buthainah A. Ahmed

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 19/6/2021 Accepted: 18/9/2021 Published: 30/7/2022

Abstract:

In this paper, we present a concept of nC- symmetric operator as follows: Let A be a bounded linear operator on separable complex Hilbert space \mathcal{H} , the operator A is said to be nC-symmetric if there exists a positive number n (n> 1) such that CAⁿ = A*^a C (Aⁿ = C A*^a C). We provide an example and study the basic properties of this class of operators. Finally, we attempt to describe the relation between nC-symmetric operator and some other operators such as Fredholm and self-adjoint operators.

Keywords: Separable Complete Hilbert Space, Conjugation operators, C-symmetric operators, nC-symmetric operators.

لمؤثرات المتماثلة من النمط nC

شيرين عودة دخيل ، بثينة عبد الحسن احمد

قسم علوم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصه

في هذا البحث ، قدمنا مفهوم المؤثر المتناظر من النمط nc على أنه : المؤثر المُقيد الخطي المُعرف على فنه : المؤثر المُقيد الخطي المُعرف على فضاء هلبرت العقدي القابل للفصل \mathcal{H} أذا وجد عدد صحيح n (1 > 1) بحيث أن Caⁿ = A^{*}ⁿ . كذلك تم اعطاء مثال عن هذا النوع من المؤثرات و قمنا بدراسة الخواص المهمة وكذلك حاولنا وصف العلاقة بين المؤثر المتناظر من النمط nc و بعض المؤثرات الأخرى.

1. Introduction and Preliminaries:

Let \mathcal{H} be a separable complex Hilbert space and $B(\mathcal{H})$ be an algebra of all bounded linear operators on H. A conjugation on \mathcal{H} is an antilinear operator $C: \mathcal{H} \to \mathcal{H}$ which is both involution ($C^2=I$) and isometric operator which satisfies $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$. An operator $A \in B(\mathcal{H})$ is said to be C-symmetric operator if $CA = A^* C$ ($A = CA^*C$); it is complex symmetric if A is C-symmetric with respect to some C [1]. In particular, an $n \times n$ matrix A is symmetric if and only if $A = CA^*C$ where C denotes the standard conjugation $C(z_1, z_2, ..., z_n) = (\bar{z_1}, \bar{z_2}, ..., \bar{z_n})$. Thus, Complex symmetric operators generalize of concepts of symmetric matrices of linear algebra. In fact, if C is a conjugation on \mathcal{H} , then there exists an orthonormal basis $\{e_n\}$ of \mathcal{H} such that $Ce_n = e_n$ for all n [1, lemma1] and since $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in H$, then the matrix of a C-symmetric operator A with respect to $\{e_n\}$ is symmetric:

^{*}Email: shireeno_math@csw.uobaghdad.edu.iq

 $[A]_{i,j} = <\!\!A \ e_n, \ e_j\!\!> = <\!\!CA^*Ce_j, \ e_i\!\!> = <\!\!Ce_i, \ A^*Ce_j\!\!> = <\!\!Ae_i, \ e_j\!\!> = [A]_{j,i}.$

The converse of this fact is also true. That is, if there is an orthonormal basis such that A has a symmetric matrix representation, then A is complex symmetric [1]. The class of complex symmetric operators includes all normal operators, Toeplitz operators (including finite Toeplitz matrices and the compressed shift) and Volterra integration operator [1], [2], [3].

The study of complex symmetric operators has an interaction between the fields of operator theory and complex analysis. Recently, many authors have been interested in non-Hermitian quantum mechanics and the spectral analysis of certain complex symmetric operators [4], [5]. In particular, several authors have studied an antilinear operator which is the only type of a nonlinear operator that is important in quantum mechanics [6]. If C and J are conjugation on a Hilbert space \mathcal{H} , then U = CJ is a unitary operator. Moreover, U is both C-symmetric and J-symmetric [2].

In this paper, the concept of nC-symmetric operator is introduced. We also investigate the basic properties of this kind of operators like if A is nC-symmetric operator and A^{-1} exists then A^{-1} is also nC-symmetric. Moreover, If A is nC-symmetric and Fredholm operator ,then indA=0.

2. Main Results:

In this section, we present the concept of nC-symmetric operators. We also discuss the basic properties of this class of operators.

Definition 2.1. An operator $A \in B(\mathcal{H})$ is said to be nC-symmetric operator if there exists a positive number n (n> 1) such that $CA^n = A^{*^n} C$ ($A^n = C A^{*^n} C$).

In some cases, an operator A is not C-symmetric, while the following example shows that A^n is a C-symmetric for some n:

Example 2.2. Let A: $\mathbb{C}^3 \to \mathbb{C}^3$ be an operator defined by the matrix

$$\begin{bmatrix} 0 & x & 0 \\ 0 & 0 & y \\ 0 & 0 & 0 \end{bmatrix}.$$

With $xy \neq 0$ or $|x| \neq |y|$. It follows from [7, Ex.1] that A is not C-symmetric operator.

However, $A^2 = \begin{bmatrix} 0 & 0 & xy \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ has rank one so that by [7, Corl. 5] A^2 is C-symmetric operator.

Hence, A is 2C-symmetric operator.

Proposition 2.3. Let $A \in B(\mathcal{H})$, then A is nC-symmetric operator for a conjugation C if and only if there exists an orthonormal basis of \mathcal{H} with respect to which A has a symmetric matrix representation.

Proof: If A is nC-symmetric operator that is $CA^n = A^{*^n}C$ and $\{e_n\}$ orthonormal basis of \mathcal{H} then:

 $[A^{n}]_{i,j} = \langle A^{n} e_{j}, e_{j} \rangle = \langle CA^{*^{n}} Ce_{j}, e_{i} \rangle = \langle Ce_{i}, A^{*^{n}} Ce_{j} \rangle = \langle A^{n} e_{i}, e_{j} \rangle = [A^{n}]_{j,i}$

Conversely, let $\{e_n\}$ be an orthonormal basis of \mathcal{H} such that A^n has a symmetric matrix representation such that $\langle A^n e_i, e_i \rangle = \langle A^n e_i, e_i \rangle$.

Now, define a conjugation C by C $(\sum_n a_n e_n) = \overline{a_n} e_n$ for $a_i \in \mathbb{C}$ and i=1,...,n. Then, $\langle C A^{*^n} C e_i, e_j \rangle = \langle Ce_j, A^{*^n} Ce_i \rangle = \langle e_j, A^{*^n} e_i \rangle = \langle A^n e_j, e_i \rangle = \langle A^n e_i, e_j \rangle$. Hence, we obtain that $A^n = C A^{*^n} C$.

Proposition 2.4. Let A be $n \times n$ matrix of complex entries. If $A^n = CA^*C$ for some conjugation C on \mathbb{C}^n , then A is unitarily equivalent to a complex symmetric matrix.

Proof: Let A be $n \times n$ matrix of complex entries such that $A^n = CA^* C$ for some conjugation C on \mathbb{C}^n . Then there exists an orthonormal basis $\{ei\}_{i=1}^n$ such that $Ce_i = e_i$, for all i=1,2,..,n.

Let $R = (e_1|e_2|...|e_n)$ be the unitary matrix where columns are these basis vectors.

Because of $[W]_{i,j} = \langle A^n e_j, e_i \rangle = \langle CA^* C e_j, e_i \rangle = \langle e_i, A^* e_j \rangle = \langle A^n e_i, e_j \rangle = [W]_{j,j}$, we have the matrix $W = R^* A^n R$ is complex matrix.

Proposition 2.5. If A is nC-symmetric operator, then

1. A^{m} is also nC-symmetric operator for m > n. 2. $p(A^n)$ is C-symmetric for any polynomial p(z). **Proof:** 1. Let A be nC-symmetric operator that is $CA^n = A^{*^n} C$ for n > 1. Hence, $C(A^{m})^{n} = C(A^{n})^{m} = (A^{*^{n}})^{m} C = (A^{m})^{*^{n}} C.$ **2.** C p(Aⁿ) = C [$a_0I + a_1A^n + a_2(A_n)^2 + ... + a_m(A^n)^m$] $= \overline{a_0} C + \overline{a_1} A^{*^n} C + \overline{a_2} (A^{*)^2} C + \dots + \overline{a_m} (A^{*^n})^m C$ $= [\overline{a_0} + \overline{a_1} A^{*^n} + \overline{a_2} (A^{*)^2} + \dots + \overline{a_m} (A^{*^n})^m] C$ $= p(A^n) * C.$ Proposition 2.6. If A is nC-symmetric operator, then

1. If A^{-1} exists, then A^{-1} is also nC-symmetric operator.

2. A^n is left invertible if and only if A^n is right invertible.

Proof: 1. To verify that A⁻¹ is also nC-symmetric operator, we need only to show that $C (A^{-1})^n = (A^{-1})^{*^n}C$:

 $C(A^{-1})^n = C(A^n)^{-1} = C(CA^{*^n}C)^{-1} = CCA^{-n^*}C = (A^{-1})^{*^n}C$.

2. Let A^n be left invertible operator, to show that A^n is right invertible, thus

 $(A^{n})^{-1} A^{n} = I = C^{2}$

 $(A^{n})^{-1}A^{n}C = C$

 $C (A^{n})^{-1} C A^{*^{n}} = CC$

 $C(A^{n})^{-1}CA^{*^{n}} = I$, then by (1) we obtain $(A^{*^{n}})^{-1}A^{*^{n}} = I$. Therefore, $(A^{n}(A^{n})^{-1})^{*} = I$. Hence, $A^{n}(A^{n})^{-1} = I.$

Conversely, suppose that A^n is right invertible. To show that A^n is left invertible, we have $A^{n}(A^{n})^{-1} = I$, it follows $(A^{n}(A^{n})^{-1} = I)^{*}$, thus $(A^{*^{n}})^{-1}A^{*^{n}} = I = C^{2}$.

Also, $C(A^{*^n})^{-1}A^{*^n} = C^3 = C$, then by (1) we obtain $(A^n)^{-1}CA^{*^n} = C$ and $(A^n)^{-1}CA^{*^n}C = C^2$ = I. Then, we get $(A^n)^{-1}A^n = I$.

Proposition 2.7. If A is nC-symmetric operator, then Aⁿ is one to one if and only if Ran A^n is dense in \mathcal{H} .

Proof: Let Aⁿ be one to one operator. Since C is isometric operator (hence one to one), then C $A^{n}C$ is also one to one. But, $A^{*^{n}} = C A^{n}C$ thus we obtain $A^{*^{n}}$ is also one to one (Ker $A^{*^{n}} =$ 0).

Now, $\overline{\operatorname{Ran} A^{n}} = (\operatorname{Ker} A^{*^{n}})^{\perp} = \{0\}^{\perp} = H$. Hence, $\operatorname{Ran} A^{n}$ is dense in H. Conversely, $\overline{\operatorname{Ran} A^{n}} = (\operatorname{Ker} A^{*^{n}})^{\perp} = H$, then $(\operatorname{Ker} A^{*^{n}})^{\perp} = H^{\perp} = 0$. Since $\operatorname{Ker} A^{*^{n}}$ is a closed linear subspace of H, so $\operatorname{Ker} A^{*^{n}} = 0$ and then we obtain $A^{*^{n}}$ is one to one and so is $A^{*^{n}} C$. But, $CA^n = A^{*^n}C$ hence A^n is one to one.

Proposition 2.8. Let A be nC-symmetric operator. If A is Fredholm operator, then ind A = 0. **Proof:** Since A is Fredholm operator, then Aⁿ is Fredholm operator for nonnegative integer n, $indA^n = n indA$ and $ind(A^*) = -indA$ ([8],[9]).

Now, we have Ker C = Ker C^{*} = 0 and Ran C is closed linear subspace of H, thus C is Fredholm operator and indC = 0. We conclude the proof by showing that indA = 0.

Since $CA^n = A^{*^n}C$, then it follows that:

ind $CA^n = ind A^{*^n}C$

ind C + n ind A = -n ind A + ind C.

Then, we obtain 2n indA = 0 and thus indA = 0.

Proposition 2.9. Let A be nC-symmetric operator. If M is invariant subspace of \mathcal{H} under C and A, then M reduces A^n .

Proof: Let M be an invariant subspace of \mathcal{H} under C and A, so we have $C(M) \subset M$ and $A(M) \subset M$ so $A^n(M) \subset M$ for some n > 1 and hence $C A^n C \subset M$. But, $A^{*^n} = CA^n C$, it follows that $A^{*^n}(M) \subset M$ which implies that M is reduced to A^n .

Proposition 2.10. Let A be nC-symmetric operator. Then, M reduces Aⁿ if and only if CM reduces Aⁿ.

Proof: Let M be reduces A^n such that $A^n(M) \subset M$ and $A^{*^n}(M) \subset M$. A short computation reveals that $C A^n(M) = A^{*^n} C(M) \subset CM$ and $CA^{*^n}(M) = A^n C(M) \subset CM$, thus we obtain CM reduces A^n .

Conversely, if CM reduces A^n , then we have A^n (CM) \subset CM and A^{*n} (CM) \subset CM. Then C A^n (CM) = C A^n C (M) = A^{*n} (M) \subset C (CM) = M. In a similar way, we can obtain A^n (M) \subset M.

Proposition 2.11. Let A be nC-symmetric operator. If M is an invariant subspace of \mathcal{H} under C and P orthogonal projection on to M, then the compression $B^n = P A^n P$ of A to M which satisfies $CB^n = B^*C$.

Proof: Let A be nC-symmetric operator.

 $C B^{n} = C (P A^{n}P) = C P A^{n}P = P C A^{n}P = P A^{*^{n}} C P = P A^{*^{n}} P C = B^{*^{n}} C.$

Proposition 2.12. If A is nC-symmetric operator, then we have the folloing:

1. C A^n commutes with $A^{*^n} A^n$.

2. $A^n C$ commutes with $A^n A^{*^n}$.

Proof: 1. Since $(CA^n)^2 = CA^n CA^n = A^{*^n} CC A^n = A^{*^n}A^n$, then this would implies that: $CA^n A^{*^n} A^n = C (C A^{*^n} C) A^{*^n} A^n$ $= A^{*^n} C A^{*^n} A^n$ $= A^{*^n} A^n CA^n$. **2.**Similaraly, $(A^n C)^2 = A^n C A^n C = A^n A^{*^n} CC = A^n A^{*^n}$.

Now, $A^{n}CA^{n}A^{*^{n}} = A^{n}C(CA^{*^{n}}C)A^{*^{n}}$

$$= A^{n} A^{*} C A^{*}$$
$$= A^{n} A^{*^{n}} A^{n} C.$$

Proposition 2.13. Let B be invertible and nC- symmetric operator on \mathcal{H} such that AB=BA, then A is nC-symmetric operator.

Proof: The proof is based on the equations $CA^n = A^{*^n}C$, $CB^n = B^{*^n}C$ and AB = BA. Hence, $C(A B)^n = C A^n B^n$

$$= A^{*^{n}} C B^{n}$$

= A^{*^{n}} B^{*^{n}} C
= (B^{n} A^{n})^{*} C
= (A^{n} B^{n})^{*} C
= (A B)^{*^{n}} C

Conversely, let AB be nC-symmetric operator . To show that A is nC-symmetric operator, we set

 $C A^{n} = C A^{n} I$ = C Aⁿ Bⁿ (B⁻¹)ⁿ = C (AB)ⁿ (B⁻¹)ⁿ (AB is nC-symmetric) = (AB)^{*n} C (B⁻¹)ⁿ (B⁻¹ is nC-symmetric by Prop. (2.6 (1)). = (AB)^{*n} (B⁺¹)^{*n} C = (AB)^{*n} (B^{*n})⁻¹ C = A^{*n} B^{*n} (B^{*n})⁻¹ C = A^{*n} C.

Proposition 2.14. Let $A \in B(\mathcal{H})$ and C be conjugation on \mathcal{H} . If $CA^n = A^nC$, then A is nC-symmetric operator if and only if A^n is self-adjoint.

Proof: Let \hat{A} be nC-symmetric operator such that $CA^n = A^{*^n}C$, then we have $A^n C = A^{*^n}C$ which yields that $A^n CC = A^{*^n}CC$ and so we get $A^n = (A^n)^*$.

Conversely, suppose that A^n is self- adjoint such that $A^n = (A^n)^*$, then it follows $A^n C = A^{*^n}C$ and $CA^n = A^{*^n}C$ which implies that A is nC-symmetric operator.

Proposition 2. 15. If A is both nC-symmetric and nJ-symmetric, then A is both n(CJC)-symmetric and n(JCJ)- symmetric operator.

Proof: Since $CA^n = A^{*^n}C$ and $JA^n = A^{*^n}J$, then

(CJC) $A^n = CJ$ (CAⁿ) = CJ $A^{*^n}C = CA^n JC = A^{*^n}$ (CJC), so that A is n(CJC)-symmetric operator. Analogously, we can prove that A is n(JCJ)- symmetric.

Proposition 2. 16. If A is both nC-symmetric and nJ-symmetric, then $A^n U$ is C-symmetric where U = CJ is unitary operator.

Proof: Since A is both nC-symmetric and nJ-symmetric then by the previous proposition, A is n(CJC)-symmetric, so we have

 $(A^{n} U) C = A^{n} (CJC) = (CJC) A^{*^{n}} = C U^{*} A^{*^{n}} = C (A^{n} U)^{*}.$

References

- [1] S. R. Garcia, M. Putinar, "Complex Symmetric Operators and Applications", *Trans Amer Math Soc*, vol. 358, pp. 1285-1315, 2005.
- [2] S. R. Garcia, M. Putinar, "Complex Symmetric Operators and Applications II", *Trans Amer Math Soc*, vol. 359, pp. 3913-3931, 2007.
- [3] S. R. Garcia, "Conjugation and Clark Operators", Contemp Math., vol. 393, pp. 67-112, 2006.
- [4] C. Bender, A. Fring, U. Günther U, "Quantum physics with non- Hermitian operators", *J Phys A Math Theor,vol.*45, pp. 301-440, 2012.
- [5] S. R. Garcia, E. Prodan, M. Putinar, "Mathematical and physical aspects of complex symmetric operators", *J Phys A Math Theor.*, vol. 47, pp. 1-51, 2014.
- [6] A. Messiah, Quantum mechanics II, New York (NY), Dover Publication, 1965.
- [7] S. R. Garcia, W.R Wogen, , "Some New Class of Complex symmetric operators", *Trans Amer Math Soc*, vol. 362, no.11, pp. 6065-6077, 2010.
- [8] J.K. Hunter, B. Nachtergaele, *Applied Analysis*, *World Scientific Publishing Co.* Pte. Ltd., Singapore, 2001.
- [9] C.S. Kubrusly, "Fredholm Theory in Hilbert Space-A Concise Introductory Exposition", *Bull. Belg. Math. Soc. Simon Stevin*, vol. 15, pp. 153-177, 2008.