nC- symmetric operators

Shireen O. Dakheel, Buthainah A. Ahmed
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 19/6/2021 Accepted: 18/9/2021 Published: 30/7/2022

Abstract:
In this paper, we present a concept of nC- symmetric operator as follows: Let A be a bounded linear operator on separable complex Hilbert space \mathcal{H}, the operator A is said to be nC-symmetric if there exists a positive number n such that $CA^n = A^* C (A^n = C A^* C)$. We provide an example and study the basic properties of this class of operators. Finally, we attempt to describe the relation between nC-symmetric operator and some other operators such as Fredholm and self-adjoint operators.

Keywords: Separable Complete Hilbert Space, Conjugation operators, C-symmetric operators, nC-symmetric operators.

1. Introduction and Preliminaries:
Let \mathcal{H} be a separable complex Hilbert space and $B(\mathcal{H})$ be an algebra of all bounded linear operators on \mathcal{H}. A conjugation on \mathcal{H} is an antilinear operator $C: \mathcal{H} \to \mathcal{H}$ which is both involution ($C^2 = I$) and isometric operator which satisfies $<Cx , Cy> = <y , x>$ for all $x,y \in \mathcal{H}$. An operator $A \in B(\mathcal{H})$ is said to be C-symmetric operator if $CA = A^* C (A = CA^* C)$; it is complex symmetric if A is C-symmetric with respect to some C [1]. In particular, an $n \times n$ matrix A is symmetric if and only if $A = CA^* C$ where C denotes the standard conjugation $C(z_1,z_2,\ldots,z_n) = (\bar{z}_1,\bar{z}_2,\ldots,\bar{z}_n)$. Thus, Complex symmetric operators generalize of concepts of symmetric matrices of linear algebra. In fact, if C is a conjugation on \mathcal{H}, then there exists an orthonormal basis $\{e_n\}$ of \mathcal{H} such that $Ce_n = e_n$ for all n [1, lemma1] and since $<Cx , Cy> = <y , x>$ for all $x,y \in \mathcal{H}$, then the matrix of a C-symmetric operator A with respect to $\{e_n\}$ is symmetric.

*Email: shireeno_math@csw.uobaghdad.edu.iq
The converse of this fact is also true. That is, if there is an orthonormal basis such that A has a symmetric matrix representation, then A is complex symmetric [1]. The class of complex symmetric operators includes all normal operators, Toeplitz operators (including finite Toeplitz matrices and the compressed shift) and Volterra integration operator [1], [2], [3].

The study of complex symmetric operators has an interaction between the fields of operator theory and complex analysis. Recently, many authors have been interested in non-Hermitian quantum mechanics and the spectral analysis of certain complex symmetric operators [4], [5]. In particular, several authors have studied an antilinear operator which is the only type of a nonlinear operator that is important in quantum mechanics [6]. If C and J are conjugation on a Hilbert space \mathcal{H}, then $U = CJ$ is a unitary operator. Moreover, U is both C-symmetric and J-symmetric [2].

In this paper, the concept of nC-symmetric operator is introduced. We also investigate the basic properties of this kind of operators like if A is nC-symmetric operator and A^{-1} exists then A^{-1} is also nC-symmetric. Moreover, if A is nC-symmetric and Fredholm operator, then $\text{ind}A = 0$.

2. Main Results:

In this section, we present the concept of nC-symmetric operators. We also discuss the basic properties of this class of operators.

Definition 2.1. An operator $A \in B(\mathcal{H})$ is said to be nC-symmetric operator if there exists a positive number n (n > 1) such that $CA^a = A^*C(A^a = CA^*)$.

In some cases, an operator A is not C-symmetric, while the following example shows that A^n is a C-symmetric for some n:

Example 2.2. Let $A: \mathbb{C}^3 \rightarrow \mathbb{C}^3$ be an operator defined by the matrix

$$
\begin{bmatrix}
0 & x & 0 \\
0 & 0 & y \\
0 & 0 & 0
\end{bmatrix}
$$

With $xy \neq 0$ or $|x| \neq |y|$. It follows from [7, Ex.1] that A is not C-symmetric operator.

However, $A^2 = \begin{bmatrix} 0 & 0 & xy \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ has rank one so that by [7, Corl. 5] A^2 is C-symmetric operator.

Hence, A is 2C-symmetric operator.

Proposition 2.3. Let $A \in B(\mathcal{H})$, then A is nC-symmetric operator for a conjugation C if and only if there exists an orthonormal basis of \mathcal{H} with respect to which A has a symmetric matrix representation.

Proof: If A is nC-symmetric operator that is $CA^n = A^{*n}C$ and $\{e_n\}$ orthonormal basis of \mathcal{H} then:

$[A^n]_{ij} = <a^n e_i, e_j> = <CA^{*n}Ce_i, e_j> = <Ce_i, A^{*n}Ce_j> = <A^n e_i, e_j> = [A^n]_{ji}$

Conversely, let $\{e_n\}$ be an orthonormal basis of \mathcal{H} such that A^n has a symmetric matrix representation such that $[A^n]_{ij} = [A^n]_{ji}$.

Now, define a conjugation C by $C(\sum_{n}a_ne_n) = \overline{a_n}e_n$ for $a_n \in \mathbb{C}$ and $i = 1,\ldots,n$.

Then, $<CA^{*n}Ce_j, e_i> = <Ce_j, A^{*n}Ce_i> = <e_j, A^{*n}e_i> = <A^n e_i, e_j> = <A^n e_i, e_j>$.

Hence, we obtain that $A^n = CA^{*n}C$.

Proposition 2.4. Let A be $n \times n$ matrix of complex entries. If $A^n = CA^{*n}C$ for some conjugation C on \mathbb{C}^n, then A is unitarily equivalent to a complex symmetric matrix.

Proof: Let A be $n \times n$ matrix of complex entries such that $A^n = CA^{*n}C$ for some conjugation C on \mathbb{C}^n. Then there exists an orthonormal basis $\{ei\}_{i=1}^n$ such that $Ce_i = e_i$, for all $i=1,2,\ldots,n$.

Let $R = (e_1 | e_2 | \ldots | e_n)$ be the unitary matrix where columns are these basis vectors.

Because of $[W]_{ij} = <A^n e_j, e_i> = <CA^{*n}Ce_j, e_i> = <e_i, A^{*n}e_j> = <A^n e_i, e_j> = [W]_{ji}$, we have the matrix $W = R^*A^nR$ is complex matrix.
Proposition 2.5. If A is nC-symmetric operator, then
1. A^m is also nC-symmetric operator for $m > n$.
2. $p(A^n)$ is C-symmetric for any polynomial $p(z)$.

Proof: 1. Let A be nC-symmetric operator that is $CA^n = A^{n^*}C$ for $n > 1$. Hence, $C(A^n)^m = C(A)^{nm} = (A^{n^*})^m C = (A^m)^* C$.
2. $C p(A^n) = C \left[a_0 I + a_1 A^n + a_2 (A^n)^2 + \ldots + a_m (A^n)^m \right]$
 $= \bar{a}_0 C + \bar{a}_1 A^{n^*} C + \bar{a}_2 (A^{n^*})^2 C + \ldots + \bar{a}_m (A^{n^*})^m C$
 $= [\bar{a}_0 + \bar{a}_1 A^{n^*} + \bar{a}_2 (A^{n^*})^2 + \ldots + \bar{a}_m (A^{n^*})^m] C
 = p(A^n)^* C$.

Proposition 2.6. If A is nC-symmetric operator, then
1. If A^{-1} exists, then A^{-1} is also nC-symmetric operator.
2. A^n is left invertible if and only if A^{-1} is right invertible.

Proof: 1. To verify that A^{-1} is also nC-symmetric operator, we need only to show that $A(A^{-1})^n = (A^{-1})^{n^*} C$.
2. Let A^n be left invertible operator, to show that A^n is right invertible, thus
 $(A^{-1})^n A^n = I = C^2$
 $(A^{-1})^n A^{n^*} C = C$
 $(A^{-1})^n A^{n^*} = C C^{-1} = I$
 Conversely, suppose that A^{-1} is right invertible. To show that A^{-1} is left invertible, we have
 $A^n (A^{-1})^n = I$, it follows $(A^n (A^{-1})^n = I)$, thus $(A^n)^{-1} A^{-1} n = I = C^2$.
 Also, $C(A^{n^*})^{-1} A^{n^*} C = C I = C$, then by (1) we obtain $(A^{n^*})^{-1} C A^{n^*} = C$ and $(A^{n^*})^{-1} C A^{n^*} C = C^2 = I$. Then, we get $(A^{-1})^{-1} A^{-1} = I$.

Proposition 2.7. If A is nC-symmetric operator, then A^n is one to one if and only if $\text{Ran} A^n$ is dense in H.

Proof: Let A^n be one to one operator. Since C is isometric operator (hence one to one), then $C A^n C$ is also one to one. But, $A A^n C A^n C$ thus we obtain $A A^n$ is also one to one ($\text{Ker} A A^n = 0$).

Now, $\text{Ran} A^n = (\text{Ker} A A^n)^\perp = \{0\}^\perp = H$. Hence, $A A^n$ is dense in H.

Conversely, $\text{Ran} A^n = (\text{Ker} A A^n)^\perp = H$, then $(\text{Ker} A A^n)^\perp H^\perp = H^\perp = 0$.

Since $A A^n$ is a closed linear subspace of H, $\text{Ker} A A^n = 0$ and then we obtain $A A^n$ is one to one and so is $A A^n C$.

But, $C A^n = A A^n C$ hence A^n is one to one.

Proposition 2.8. Let A be nC-symmetric operator. If A is Fredholm operator, then $\text{ind} A = 0$.

Proof: Since A is Fredholm operator, then A^n is Fredholm operator for nonnegative integer n, $\text{ind} A^n = n \text{ind} A$ and $\text{ind} (A^n) = - \text{ind} A$ ([8],[9]).

Now, we have $\text{Ker} C = \text{Ker} A A^n = 0$ and $\text{Ran} C$ is closed linear subspace of H, $\text{Ker} A A^n$ is closed linear subspace of H, $\text{Ker} A A^n = 0$ and then we obtain $\text{ind} A = 0$.

Since $C A^n A^n C$, then it follows that:

\begin{align*}
\text{ind} C A^n &= \text{ind} A A^n C \\
\text{ind} C + n \text{ind} A &= -n \text{ind} A + \text{ind} C.
\end{align*}

Then, we obtain $2n \text{ind} A = 0$ and thus $\text{ind} A = 0$.

Proposition 2.9. Let A be nC-symmetric operator. If M is invariant subspace of H under C and A, then M reduces A^n.

Proof: Let M be an invariant subspace of H under C and A, so we have $C(M) \subset M$ and $A(M) \subset M$ for some $n > 1$ and hence $C A^n C \subset M$. But, $A A^n C = C A^n$, it follows that $A A^n (M) \subset M$ which implies that M is reduced to A^n.

Proposition 2.10. Let A be nC-symmetric operator. Then, M reduces A^n if and only if CM reduces A^n.
Proof: Let M be reduces A^n such that $A^n(M) \subset M$ and $A^{*n}(M) \subset M$. A short computation reveals that $C A^n(M) = A^{*n} C(M) \subset CM$ and $CA^{*n}(M) = A^n C(M) \subset CM$, thus we obtain CM reduces A^n.

Conversely, if CM reduces A^n, then we have $A^n(CM) \subset CM$ and $A^{*n}(CM) \subset CM$. Then $C A^n(CM) = C A^n C(M) = A^{*n}(M) \subset C(CM) = M$. In a similar way, we can obtain $A^n(M) \subset M$.

Proposition 2.11. Let A be nC-symmetric operator. If M is an invariant subspace of \mathcal{H} under C and P orthogonal projection on to M, then the compression $B^n = P A^n P$ of A to M which satisfies $CB^n = B^{*C}$.

Proof: Let A be nC-symmetric operator.

Proposition 2.12. If A is nC-symmetric operator, then we have the following:

1. $C A^n$ commutes with A^{*n}.
2. $A^n C$ commutes with A^{*n}.

Proof: 1. Since $(CA^n)^2 = CA^n CA^n = A^{*n} C A^n A^n = A^{*n} A^n$, then this would implies that:

$C A^n A^{*n} A^n = C (C A^{*n}) A^{*n} A^n$

$= A^{*n} C A^{*n} A^n$

$= A^{*n} A^n C A^n$.

2. Similarly, $(A^n C)^2 = A^n C A^n C = A^n A^{*n} C C = A^n A^{*n}$.

Now, $A^n C A^n A^{*n} = A^n C (C A^{*n} C) A^{*n}$

$= A^n A^{*n} C A^{*n}$

$= A^n A^{*n} A^n C$.

Proposition 2.13. Let B be invertible and nC- symmetric operator on \mathcal{H} such that $AB = BA$, then A is nC-symmetric operator.

Proof: The proof is based on the equations $C A^n = A^{*n} C$, $C B^n = B^{*n} C$ and $AB = BA$. Hence, $C (A B)^n = C A^n B^n$

$= A^{*n} C B^n$

$= A^{*n} B^{*n} C$

$= (B^n A^n)^{*n} C$

$= (A^n B^n)^{*n} C$

$= (A B)^{*n} C$.

Conversely, let AB be nC-symmetric operator. To show that A is nC-symmetric operator, we set

$C A^n = C A^n I$

$= C A^n B^n (B^{-1})^n$

$= C (AB)^n (B^{-1})^n$ (AB is nC-symmetric)

$= (AB)^{*n} C (B^{-1})^n$ (B^{-1} is nC-symmetric by Prop. (2.6 (1)).

$= (AB)^{*n} (B^{-1})^{*n} C$

$= (AB)^{*n} (B^{*n})^{-1} C$

$= A^{*n} B^{*n} (B^{*n})^{-1} C$

$= A^{*n} C$.

Proposition 2.14. Let $A \in B(\mathcal{H})$ and C be conjugation on \mathcal{H}. If $C A^n = A^{*n} C$, then A is nC-symmetric operator if and only if A^n is self-adjoint.

Proof: Let A be nC-symmetric operator such that $C A^n = A^{*n} C$, then we have $A^n C = A^{*n} C$ which yields that $A^n C = A^{*n} C$ and so we get $A^n = (A^n)^*$. Conversely, suppose that A^n is self-adjoint such that $A^n = (A^n)^*$, then it follows $A^n C = A^{*n} C$ and $CA^n = A^{*n} C$ which implies that A is nC-symmetric operator.

Proposition 2.15. If A is both nC-symmetric and nJ-symmetric, then A is both n(CJC)-symmetric and n(JJC)-symmetric operator.

Proof: Since $C A^n = A^{*n}$ and $J A^n = A^{*n}$, then
(CJC) $A^n = CJ (CA^n) = CJ A^* C = CA^n JC = A^* (CJC)$, so that A is n(CJC)-symmetric operator. Analogously, we can prove that A is n(JCJ)-symmetric.

Proposition 2.16. If A is both nC-symmetric and nJ-symmetric, then $A^n U$ is C-symmetric where $U = CJ$ is unitary operator.

Proof: Since A is both nC-symmetric and nJ-symmetric, then by the previous proposition, A is n(CJC)-symmetric, so we have

References

