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Abstract

This paper presents an alternative method for developing effective embedded
optimized Runge-Kutta (RK) algorithms to solve oscillatory problems numerically.
The embedded scheme approach has algebraic orders of 5 and 4. By transforming
second-order ordinary differential equations (ODEs) into their first-order
counterpart, the suggested approach solves first-order ODEs. The amplification
error, phase-lag, and first derivative of the phase-lag are all nil in the embedded pair.
The alternative method’s absolute stability is demonstrated. The numerical tests are
conducted to demonstrate the effectiveness of the developed approach in comparison
to other RK approaches. The alternative approach outperforms the current RK
methods.

Keywords: Runge-Kutta Methods, Amplification error, Phase-lag, Ordinary
Differential Equations, Oscillatory problems, Initial VValue Problems (IVPs).
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1. Introduction
Consider the initial value problem of first-order ordinary differential equation as follows:

y' =f&y), y(o) = yo 1)

whose solutions show a periodical behavior. This type of issue can be seen in a variety of
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applied scientific domains, such as orbital mechanics, mechanics and electronics [1,2]. Most
periodic behavior disorders are second-order or higher-order in nature. To solve the ODEs, It
is critical to reducing higher-order issues to the first-order problem (1). Several numerical
methods for the approximate solution of the general ordinary differential equations with
oscillating solutions have been developed in recent decades, the most common methods are
trigonometrically, exponentially-fitted, and phase-fitted, amplification-fitted for RK, Runge-
Kutta—Nystrom (RKN) ,see [1-4]. For the numerical solution of the Schrédinger equation
with an infinite phase-lag, Simos and Aguiar [5] suggested a modified RK procedure then an
exponentially-fitted RK method was constructed, see [6]. Furthermore, Fawzi et al. [7]
developed a four-stage phase-fitted and amplification-fitted RK device by combining the
concept of infinite phase lag and zero amplification error. Then, Fang et al. [8] proposed a
new embedded pair (RK) approach for numerical integration of the oscillatory problems with
FSAL properties. Meanwhile, for solving oscillatory problems, Senu et al. [9] developed a
new pair of embedded explicit RKN methods. In [10, 11], the authors established a new
embedded 4(3) and 6(4) pairs of explicit RK methods, and they established a new phase
suited to modified RK pair for the numerical solution of the Schrédinger equation, which was
specially designed to the numerical solution of an oscillatory problem. After that, Fawzi et al.
[12, 13] evolved a new efficient embedded 6(5) pair trigonometrically-fitted explicit RK
method and created a new efficient embedded phase-fitted modified RK method. Recently, a
new optimized RK method for solving oscillatory problems was developed, see [14, 15].
Finally, we construct a new form of phase-fitting RK embedded pair in this study by
nullifying the phase-lag, the first derivative of the phase-lag of the fifth-order technique, and
the phase-lag of the fourth-order technique.

The following is the structure of this paper: The phase-lag properties of the explicit RK
method are presented in section 2. Section 3 explains how to derive the optimized RK
process. Meanwhile, the description of the stability property is discussed in section 4. In
section 5, numerical results are provided to demonstrate the efficiency and competency of the
new method compared to the well-known RK method. Finally, the discussion and conclusion
are dealt with in Section 6.

2. Basic Concepts
2.1. Phase -Lag Analysis of Runge-Kutta Method
We look at the m-stage explicit RK technique, which is given as follows:

m
Yuer =n+h ) biki @)
i=1
i—-1
Ki=f(xn+Cih,yn+hZainj ) - i=1,...,m 3)
=1

When aij = 0 for ij, the method is considered to be explicit; otherwise, it is said to be
implicit. The methods in (2) and (3) can be condensed into a Butcher tableau, see Table 1.
Table 1- m -stage explicit RK method

0
C | 021
Cm | Om1 - .. Omm-1
b, b,
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To construct the new technique based on phase-lag analysis, we use the following test
equation from [16].

y'= vy 4
where v is real. Then we examine the theoretical and numerical solutions for this equation. By
requiring that the solutions are to be in phase with maximal order in the step-size h, the so-
called dispersion relation [7] is constructed. When we apply the methods (2) and (3) above to
the test equation (4), we get

Yn = ai'y0
With
a, = Ap(H?) + iHB,,(H?), H=vh (5)

a, = a, (H) is the amplification factor, and y n is the approximation to y(x,,). The dispersion
or phase error or phase-lag and the amplification error, are defined by comparing (5) with the
solution to (4).
Definition 2.1. [7] The dispersion or phase error or phase lag and the amplification error are
the quantities in an explicit m-stage RK, as it is shown in Table 1:

t(H) = H —argla.(H)], a(H) =1 —|a.(H)| (6)
Thus, the method is described as phase-lag order r with dissipative order s. If t(H) =
O(H™1), anda(H) — O(HS*™Y)

,then from (6), it follows that

a(H) =1 — \/[A%,(H) + H*BZ(H?] ©)

Meanwhile, the direct computation of the phase-lag order r and the phase-lag constant g for
the Runge-Kutta method indicated in Table 1 is done using the following formula.

tan(H) — H [j::i — gH™1 4 O(HS+3), ®)

The dispersion and dissipation variables that stated above are used to examine phase-fitted
(order infinity dispersion) and amplification-fitted (order infinity dissipation). The RK system
is phase-fitted and amplification-fitted if the following conditions are met.

t(H) =0 and a(H) = 0. 9)
2.2. Derivation of Embedded Optimized RK Method
In (2), an explicit m-stage RK process formula is presented. The order ¢ RK method (c, 4, b)
and another RK method (c, 4, b") of the order p < q are used to create the embedded pair
q(p). Butcher tableau is a feature of an embedded pair.

c| A
bT
blT
A variable step size algorithm uses an embedded pair of explicit Runge-Kutta methods since

they provide a low-cost error estimate. We get an approximate error from the embedded
method.

ESTh4q = HYn+1"YZ+1” (10)
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We used the step-size control method described in [17] to integrate the equation (1)
numerically:
Tol

L If ESTn+1 < m ) hn+1 = Zhn,

. if T—"l < EST,; < Tol,hy, 1 = h,

 ifEST,,; = Tol, hy,; = hz—" and repeat the step.

TOL stands for the required local error. It is worth noting that the (n + 1) th-step's initial
value is the g th-order approximation y,, this implies that the embedded pair is employed in
local extrapolation mode or higher-order mode.

3. Construction of the New Embedded Pair
In this section, we will develop an embedded pair optimized RK method based on [18] fifth-

order RK method with seven stages, as it is illustrated in the tableau (see Table 2), where the
method (c, A4, b) is of order five and (c, A4, b*) is of order four. We set free coefficients
by, by, b3, by, by and b , while keeping all other coefficients as the same as in Table 2. First,
we compute the polynomials A2, and B2 in terms of RK coefficients in Table 2. The
numbers t(H) and a(H) are then obtained by nullifying the phase-lag, amplification error,
and phase-derivative lag from these polynomials.

As a result, when we solve the fifth-order as follows, we get a system of three equations:
Table 2- RK method of order five

0 0

1 1

5 5

3 3 9

10 40 40

4 44 -1 32

5 45 15 9

8 19372 25360 64448 212

9 6561 T 2187 6561 T 729

1 9017 _ 355 46732 49 _ 5103
3168 33 5247 176 18656

1 35 0 500 125 _ 2187 11 0
384 1113 192 6784 84
35 0 500 125 _ 2187 11 0
384 1113 192 6784 84
5179 0 7571 393 _ 92097 187 1
57600 16695 64 339200 2100 40

2

1 65479 1 1
a(H)—(—H2+PH2+b1+b2+b3 ) H2+(1—ﬁH6+ﬁH4+QH2)

120 142464
—1=0 (11)
1 65479
H(—OH + PH? + by + b, + by + 142464)
t(H) =tan(H) — 1 1 — =0 (12)
6 a4 2
( +togH*+QH )
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(% H*+ PH? + by + b, + b; + —16452447694)
t'(H) =1+ (tan(H))? — I I
6 4 2
1 (1 6mﬁ{+24H6;£g) 1 1
4 2 _ 5 , 1.3
+11Q20H +PH +b1+b2+b3+]42M%)( 1OOH +ZH +2QH)
1 6 1 4 2
(1 goo 1 +24H'+QH)
H(g%H3+2PH)
— . : (13)
. ___Hyeo 4 2
(1 gooll®+ 24H'+QH)
Where
__13 9, ; __ 3,1
=113 20072 @ Q=-—qgbs—gh—oom
The same case for the fourth-order method
(H) = ( ! H® + 1097 H* + PH?* + by + by + b3 + 3252437)2 2
AHI=\"24000 120000 1T 2T P T 5193200
4—(1 161 ey Lpay H2>2 1=0 (14)
120000 207 ° ) 3252437
6 A & ] 2 / 1 / D4L047%3/
_ H (— 22000 H® + 120000 H* + PH? + bi + b5 + b} + 5733550)
t(H) = tan(H) — 161 — 1, )
(1_12mm0H +24H+QH)
=0 (15)
1 1097 3252437
1 H® + H* + Ph? + b} + b, + b} + ==525nn
£ (H) = 1 + (tan(H))? — (24000 120001061 = 2 7123200)
- 4
1 1097 (1 120000 ;;%3:27+(2Hi%1 1
6 1 4 2 / / / _ 5, 13
+H( 24000 t 1200001 tPH" +b1+by+Db3+ 7123200)( 2000 H° + g H® + 2QH)
161 .. 1., 3
) 1097 (1"120000f’ togH *‘Qf’)
_ 5 3
_”( 7000"° *+ 30000 #° + 2PH) (16)
161 . 1., 3
(1_12mm0H +EZH'+QH)
Where
b__ 9, 162787 _ 10127 3, 1,
= 72007 " T113000 ™ Q= ~37835 10 "5

When the system of equations (3)- (16) is solved simultaneously, the coefficients

by, by, b3, b1, b, and b; are obtained, which are completely contingent on H when H is the
product of step-size h and frequency v because the expressions for by, b,, bs, b1, b; and b3 are
too complex, we replaced them with their Taylor series expansion, yielding the following
expressions:

35 643 . 62677 5933 . 50184187

= H
by 384 * 45360 * 16329600 * 4435200 * 93405312000
2560520257

* 11769069312000

12
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p - 601 ., 181 ., 26041 . 328333 ,, 83804419
27 15120 217728 7983360 249080832 156920924160
o500 29 ., 451 . 2171 ., 410413 ., = 20951107 .,
71113 T 1134 81648 997920 467026560 58845346560
11547559819
+ H*
80029671321600
4o (17)
p o579 97 ., 53839 ., 284749 ., 52583
1757600 © 5400 11340000 408240000 332640000
L 142060099 ., 7219693849H'? .
2335132800000 294226732800000
poo_ 97 o 18583 6463 . 74449 ., 4634969
271800 1512000 5443200 199584000 31135104000
236229451 .
3923023104000
, 7571 97 . 947 = 1447 = 6227 165523
b; = + + + + o
16695 2700 113400 2041200 24948000 1667952000
59057419

+ 1471133664000
32545002643

+ 2000741783040000

H* .. (18)

4. Stability of the New Method

The linear stability of the developed method is examined in this section. Consider the
following test equation (4) where v > 0. The exact solution of this equation with the initial
value y(x,) = y, satisfies

y(xo + h) = R(H)y, , (19)

when applying (2), (3) to (4) , we get
Yn+1 = R(H)Yo (20)
R(H) =1+ HbT(1—HA) te (21)

Where e = (1,...,1)T,A = [ay] and bT = [by, by, bs,..., by, ]. R(H) s referred to the
stability function of the method (3).

Definition 4.1. If an RK method is absolutely stable, then for all H € (—h,0),| R(A) | <
1.
The stability function of the high order of the new method is

1 1 1 1 1 53 1
R(H)=14+H+-H?+-H*+—-H*+—H>+—H°+—H" ———H®%+
907 1 2 6 3907%4 120 1 720 25%1-(1(())413 40320
——H%+ H'O + ————H" — H'? + H'3 (22)
181440 3628800 199584000 479001600 10378368000
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Cofficient of Ordex10' ||

Figure 1-Stability region for the higher-order of EORK5(4) method

We repeat the procedure for the low order of the new method, and then the stability function
is computed.

57671 13505 1675 311 565457 97
R(H) =1+ 2 3 4 5 HS

H
57600 ' 27136 | 10176 ' 7632 ' 22680000 ' 64800
1826773 ., 1 1060667 1
HO + ————H1°

* 408240000 oo 40320 H= 4 5677056000655233628800

%6l o, L e, 1 13 23
4989600000 479001600 37065600000 (23)

| ["Cofficent of Ozder10" ||

Figure 2- Stability region for the lower-order of EORK5(4) method

The stability region of the EORK5(4) method up to H', where i = 10. The stability interval of
the fifth-order and fourth-order methods with the coefficients H1° is (-2,0) . Our proposed
technique is absolutely stable because VH € (—2,0),|R(H) | < 1 as is shown in the

stability areas that are displayed in Figures 1 and 2. We used the Maple program to collect
this information.

5. Tested Problems and Numerical Results

The output of the proposed method EORK5(4) is compared to that of existing RK methods in
this section, which takes into account the following issues. All of the problems below are
evaluated using the C** program for solving differential equations with periodic solutions.

e TOL.: Tolerance.

FCN: Number of function evaluations.

FSTEP: Failure steps.

MAXE: Maximum error of the computed solution.

EORK5(4): the new embedded RK5(4) pair given in this paper.
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e MODRKS54: Modified RK method derived in [19].
e MODPHARKS5(4): A phase-fitted modified RK pair is given in [10].
* MODDPHARKH5(4): The higher order Optimized Runge-Kutta Pair
proposed in [20].
Problem 1: ( Inhomogeneous Equation) [12]
y" = =100y + 99 sin(x), y(X9) =1, y'(x) = 11
Estimated frequency: v = 10
Theoretical solution :
y1(x) = cos(vx) + sin(vx) + sin(x)
Problem 2: (Inhomogeneous linear system) [21]

101 99 93 99
. - ~3 —cos(2x) —7sm(2x)
- 13 751n(2x) —7cos(2x)

y© = (1) ' =(7;)

The frequency is w = 10, and the exact solution is
Exact solutions:
(x) = ( —cos(10x) — sin(10x) + cos(Zx))
YR =\ cos(10x) + sin(10x) + sin(2xt)
Problem 3: (Inhomogeneous system)[13]

" -y r
i = L 3.(0)=1,y}(0) =0
(V¥ +3%)
144 _y !
vy = ——— 3,(0) = 0,y5(0) = 1

(V7 +¥)

y1(6) = cos(t),  y2(v) = sin(t)
Problem 4: (The oscillatory system) [21]

" 13 —12 _( 9cos(2x)  —12sin(2x)
O (—12 13 ) y(®) = (—12 cos(2x) +9sin(2x) )

_ 0 I _ _4
y = (7). y©@=(%)
The frequency is w = 5, and the exact solution is
Exact solutions:

Exact solutions:

_ (sin(x) — sin(5x) + cos(2x)
Y = (sin(x) + sin(5x) + sin(Zx))

Table 3-Comparison of Numerical Results When Solving Problem 1

TOL Method STEP FCN FSTEP MAXE
EORKS5(4) 132 1038 19 1.713206 (-1)

10° MODRKS54 153 1113 7 3.500838 (-1)
MODPHRKS5(4) 161 1193 11 2.302073(+0)
MODDPHARKS5(4) 130 1006 16 3.044401 (+0)

EORKS5(4) 216 1584 12 6.583249 (-3 )

10 MODRKS54 375 2691 11 5.747570 (-3 )
MODPHRKS5(4) 348 2502 11 4.925946 (-2)
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MODDPHARKS5(4) 276 2016 14 6.201161 (-2)
EORK5(4) 463 3307 11 1.279610 (-4)
106 MODRK54 860 6086 11 1.641716 (-4)
MODPHRKS5(4) 929 6617 19 8.764604 (-4)
MODDPHARKS5(4) 731 5231 19 8.019094 (-4)
EORK5(4) 1337 9437 13 5.955038 (-7)
108 MODRK54 1855 13051 11 7.467781 (-6)
MODPHRKS5(4) 2303 16193 12 1.678084 (-5)
MODDPHARKS5(4) 1647 11799 45 2.932196 (-5)
EORKS5(4) 3090 21708 13 8.822617 (-9)
1010 MODRK54 4873 34183 12 1.524622 (-7)
MODPHRKS5(4) 6136 48030 13 3.262276 (-7)
MODDPHARKS5(4) 4293 30195 24 5.339648 (-7)

o *"E\a, o EORKS(4)

( N MODRKSG4

. R, ——— MODPHARKS(4)
L Ny —#— MODDPHARKS(4)

Log (Max Global Errors)

3 3.2 34

" 2 i . .
3.6 1.8 4 4.2 4.4 4.6 4.8

Log (Number of Functions Evaluations)

Figure 3-Curves of efficiency for Problem 1 with X,,,; = 10

Table 4-Comparison of Numerical Results When Solving Problem 2

TOL Method STEP FCN FSTEP MAXE
EORK5(4) 86 758 13 7.186829 (-2)
10° MODRK54 66 504 7 4.357822 (-1)
MODPHRKS5(4) 77 593 9 1.673909(+0)
MODDPHARK5(4) 80 716 26 2.053640 (+0)
EORK5(4) 114 870 12 3.304906 (-3)
104 MODRK54 170 1250 10 4.962147 (-3)
MODPHRKS5(4) 206 1508 11 1.292478 (-2)
MODDPHARK5(4) 125 929 9 2.352949 (-2)
EORK5(4) 287 2081 12 2.538927 (-4)
10 MODRK54 393 2811 10 1.379548 (-4)
MODPHRKS5(4) 405 2913 13 6.903514 (-4)
MODDPHARK5(4) 317 2285 11 5.322822 (-4)
EORK5(4) 680 4838 13 2.971641 (-7)
10° MODRK54 1019 7199 11 2.415040 (-6)
MODPHRKS5(4) 1257 8871 12 5.859345 (-6)
MODDPHARK5(4) 856 6082 15 8.841962 (-6)
EORK5(4) 1573 11089 13 4.286264 (-9)
1019 MODRK54 2232 15690 11 1.147541 (-7)
MODPHRKS5(4) 2695 18937 12 2.692288 (-7)
MODDPHARK5(4) 2085 14673 13 2.418082 (-7)
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MW T T v T T T T

> EORKS5(4)

o MODRKS54

A MODPHARKS(4)
—#— MODDPHARKGS(4)

Log (Max Global Emors)
/

i " N " " N .
2.6 28 3 3.2 3.4 3.6 3.8 a 4.2 4.4
Log (Number of Functions Evaluations)

Figure 4-Curves of efficiency for Problem 2 with X,,,; =5

Table 5- Comparison of Numerical Results When Solving Problem 3

TOL Method STEP FCN FSTEP MAXE

EORK5(4) 38 286 20 3.347872 (-2)

10° MODRK54 80 304 24 2558935 (-1)
MODPHRKS5(4) 23 209 8 1.747194(+0)
MODDPHARK5(4) 31 295 13 2.667791 (+0)

EORK5(4) 45 369 9 1.905495 (-4 )

10+ MODRK54 46 364 7 3.525330 (-3)
MODPHRKS5(4) 75 573 8 2.615758 (-3)
MODDPHARK5(4) 41 305 3 5.061177 (-2)

EORK5(4) 86 638 6 2.058852 (-6)

10° MODRK54 91 685 2 1.446604 (-4)
MODPHRKS5(4) 201 1461 9 8.938727 (-5)
MODDPHARK5(4) 90 672 7 5.260596 (-4)

EORK5(4) 200 1448 8 1.050143 (-8)

10° MODRK54 337 2407 8 6.845161 (-7)
MODPHRKS5(4) 495 3525 10 8.071008 (-7)
MODDPHARK5(4) 221 1595 8 5.327865 (-5)
EORK5(4) 513 3645 9 1.269249 (-10)

1019 MODRK54 833 5885 9 2.601497 (-8)
MODPHRKS5(4) 1001 7067 10 4.201522 (-8)
MODDPHARK5(4) 537 3813 9 1.409929 (-7)
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- A

28 3

3.2

= EORKS(4)
MODRKS4
— MODPMHARKS(4)
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A
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A
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3.8

4
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Figure 5- Curves of efficiency for Problem 3 with X,,,; =3

Table 6-Comparison of Numerical Results When Solving Problem 4

TOL Method STEP FCN FSTEP MAXE
EORK5(4) 100 880 30 6.713246 (-1)
10° MODRK54 81 501 4 6.220633 (-1)
MODPHRKS5(4) 153 1113 7 2.200541(+0)
MODDPHARKS5(4) 102 798 14 7.639792 (+0)
EORK5(4) 153 1137 11 4877671 (-3)
10+ MODRK54 190 1378 8 1.665266 (-2)
MODPHRKS5(4) 293 2135 14 2.287176 (-2)
MODDPHARKS5(4) 189 1371 8 1552959 (-2)
EORK5(4) 490 3478 11 9.735823 (-6)
10° MODRK54 432 3015 9 5.014858 (-4)
MODPHRKS5(4) 646 4588 11 5.284874 (-4)
MODDPHARKS5(4) 498 3540 9 4.076553 (-4)
EORK5(4) 1299 9153 10 3.595542 (-8)
10° MODRKS54 1014 7193 10 1.355002 (-5)
MODPHRKS5(4) 1560 10992 12 1.444372 (-5)
MODDPHARKS5(4) 1028 7250 9 2.054626 (-5)
EORK5(4) 2863 20101 10 6.284218 (-10)
10710 MODRK54 2552 17930 11 3.355827 (-7)
MODPHRKS5(4) 5230 36676 11 1.072769 (-7)
MODDPHARKS5(4) 2622 18414 10 4.688277 (-7)
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! v ! . ' ' '
- = EORKS(4)
O o Yy O MODRKS4
| oo - MODPHARKS(4)
L | [ S~ ——e— MODDPHARKS(4)

Log (Max Globa Errors)

A i A A A A
26 2.8 3 3.2 3.4 3.6 3.8 a 4.2 4.4
Log (Number of Functions Evaluations)

Figure 6-Curves of efficiency for Problem 4 with X,,; = 10

6. Discussion and Conclusion

We have developed a new embedded RK method for solving first-order (ODES) called
EORK5(4) by converting second-order ODEs to equivalent first-order ODEs with phase-lag
and amplification error, as well as the first derivative of phase-lag of order infinity. The
comparison is made with other well-known existing explicit RK methods with the same
algebraic order found in [10] and [19, 20]. We apply criteria based on determining the largest
error in the solution (maxerror = max(|y(tn — yn)|) in numerical comparisons,
which is equivalent to the maximum difference between absolute errors of true and computed
solutions. The numerical obtained as it is shown in Table 3 to 6 and graphically as it is shown
in Figures 3-6 which displays the efficiency curves of Logl0 (max error) against the
computational effort calculated by Log10 (function evaluations) required by each method, and
we observed that the new EORKS5(4) method is more effective than other existing RK
methods for integration first-order ODEs with an oscillatory solution.
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