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Abstract 

      This paper presents an alternative method for developing effective embedded 

optimized Runge-Kutta (RK) algorithms to solve oscillatory problems numerically.   

The embedded scheme approach has algebraic orders of 5 and 4. By transforming 

second-order ordinary differential equations (ODEs) into their first-order 

counterpart, the suggested approach solves first-order ODEs. The amplification 

error, phase-lag, and first derivative of the phase-lag are all nil in the embedded pair. 

The alternative method’s absolute stability is demonstrated. The numerical tests are 

conducted to demonstrate the effectiveness of the developed approach in comparison 

to other RK approaches. The alternative approach outperforms the current RK 

methods. 

 

Keywords: Runge-Kutta Methods, Amplification error, Phase-lag, Ordinary 

Differential Equations, Oscillatory problems, Initial Value Problems (IVPs). 

 

ولية الدوريةكوتا المحدّنة لمحل العددي لمذاكل القيمة ال  -( من طريقة رنك4) 5زوج مضمّن   
 

 فراس عادل فوزي 
 قدم الخياضيات ، كمية عمهم الحاسهب والخياضيات ، جامعة تكخيت ، العخاق.

 

 الخلاصه
كهتا الفعالة والمضمنة لحل المذكلات التحبحبية -يقجم هحا البحث طخيقة بجيمة لتطهيخ خهارزميات رنك      

. من خلال تحهيل المعادلات التفاضمية 4و  5 عجديًا. يحتهي نهج المخطط المضمن عمى أوامخ جبخية من
( إلى نظيخ من الجرجة الأولى ، يحل النهج المقتخح معادلات تفاضمية من ODEالعادية من الجرجة الثانية )

الجرجة الأولى. خطأ التضخيم وتأخخ الطهر والمذتق الأول لتأخخ الطهر ؛ كمها لا شيء في الدوج المضمّن. 
لمطمق لمطخيقة البجيمة. يتم إجخاء الاختبارات العجدية لإثبات فعالية النهج المطهر بالمقارنة تم إثبات الاستقخار ا

 الحالية. RKالأخخى. يتفهق النهج البجيل عمى طخق  RKمع مناهج 
 

1.  Introduction 

Consider the initial value problem of first-order ordinary differential equation as follows: 

     (   )      (  )                                                          (1) 

 

whose solutions show a periodical behavior. This type of issue can be seen in a variety of 
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applied scientific domains, such as orbital mechanics, mechanics and electronics [1,2].  Most 

periodic behavior disorders are second-order or higher-order in nature. To solve the ODEs, It 

is critical to reducing higher-order issues to the first-order problem (1). Several numerical 

methods for the approximate solution of the general ordinary differential equations with 

oscillating solutions have been developed in recent decades, the most common methods are 

trigonometrically, exponentially-fitted, and phase-fitted, amplification-fitted for RK,  Runge-

Kutta–Nystrom  (RKN)  ,see  [1-4].    For the numerical solution of the Schrödinger equation 

with an infinite phase-lag, Simos and Aguiar [5] suggested a modified RK procedure then an 

exponentially-fitted RK method was constructed, see [6]. Furthermore,  Fawzi et al. [7] 

developed a four-stage phase-fitted and amplification-fitted RK device by combining the 

concept of infinite phase lag and zero amplification error. Then, Fang et al. [8] proposed a 

new embedded pair (RK) approach for numerical integration of the oscillatory problems with 

FSAL properties. Meanwhile, for solving oscillatory problems, Senu et al. [9] developed a 

new pair of embedded explicit RKN methods. In [10, 11], the authors established a new 

embedded 4(3) and 6(4) pairs of explicit RK methods, and they established a new phase 

suited to modified RK pair for the numerical solution of the Schrödinger equation, which was 

specially designed to the numerical solution of an oscillatory problem. After that, Fawzi et al. 

[12, 13] evolved a new efficient embedded 6(5) pair trigonometrically-fitted explicit RK 

method and created a new efficient embedded phase-fitted modified RK method. Recently, a 

new optimized RK method for solving oscillatory problems was developed, see [14, 15]. 

Finally, we construct a new form of phase-fitting RK embedded pair in this study by 

nullifying the phase-lag, the first derivative of the phase-lag of the fifth-order technique, and 

the phase-lag of the fourth-order technique. 

     The following is the structure of this paper: The phase-lag properties of the explicit RK 

method are presented in section 2.  Section 3 explains how to derive the optimized RK 

process. Meanwhile, the description of the stability property is discussed in section 4. In 

section 5, numerical results are provided to demonstrate the efficiency and competency of the 

new method compared to the well-known RK method. Finally, the discussion and conclusion 

are dealt with in Section 6. 

2. Basic Concepts 

2.1.  Phase -Lag Analysis of Runge-Kutta Method 

We look at the  -stage explicit RK technique, which is given as follows: 

         ∑                                                                  ( )

 

   

 

 

     (            ∑        )

   

   

                                               ( ) 

When         for    , the method is considered to be explicit; otherwise, it is said to be 

implicit. The methods in (2) and (3) can be condensed into a Butcher tableau, see Table 1. 

Table 1-   -stage explicit RK method 
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To construct the new technique based on phase-lag analysis, we use the following test 

equation from [16]. 

  =                                                                    (4) 

where   is real. Then we examine the theoretical and numerical solutions for this equation. By 

requiring that the solutions are to be in phase with maximal order in the step-size  , the so-

called dispersion relation [7] is constructed. When we apply the methods (2) and (3) above to 

the test equation (4), we get 

     
    

 

With 

 

     (  )      (  )                                            ( ) 
 

    =    (H) is the amplification factor, and   n is the approximation to  (  )  The dispersion 

or phase error or phase-lag and the amplification error, are defined by comparing (5) with the 

solution to (4). 

Definition 2.1. [7] The dispersion or phase error or phase lag and the amplification error are 

the quantities in an explicit m-stage RK, as it is shown in Table 1: 

 ( )       [  ( )]   ( )    |  ( )|                         (6) 

Thus, the method is described as phase-lag order   with dissipative order  . If   ( )   
  (    )         ( )    (    ) 
 

,then from (6), it follows that 

 

 ( )    √[  
 ( )      

 (  ]
 

                                            (7) 

 

Meanwhile, the direct computation of the phase-lag order   and the phase-lag constant   for 

the Runge-Kutta method indicated in Table 1 is done using the following formula. 

   ( )   *
  (  )

  (  )
+         (    )                                    (8) 

 

The dispersion and dissipation variables that stated above are used to examine phase-fitted 

(order infinity dispersion) and amplification-fitted (order infinity dissipation). The RK system 

is phase-fitted and amplification-fitted if the following conditions are met. 

 ( )      and  ( )     .                                   (9) 

2.2.  Derivation of Embedded Optimized RK Method 

In (2), an explicit  -stage RK process formula is presented. The order q RK method (     ) 

and another RK method (      ) of the order       are used to create the embedded pair 

 ( )  Butcher tableau is a feature of an embedded pair. 

 

 

 

 

 

A variable step size algorithm uses an embedded pair of explicit Runge-Kutta methods since 

they provide a low-cost error estimate. We get an approximate error from the embedded 

method. 

 

       ||         
 ||                                             (10) 

c A 

bT 

b
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We used the step-size control method described in [17] to integrate the equation (1) 

numerically: 

 if            
   

   
              , 

 if  
   

   
                    

       •     if                      
  

 
     and repeat the step. 

    stands for the required local error. It is worth noting that the (   ) th-step's initial 

value is the     -order approximation   , this implies that the embedded pair is employed in 

local extrapolation mode or higher-order mode. 

3. Construction of the New Embedded Pair 
In this section, we will develop an embedded pair optimized RK method based on [18] fifth-

order RK method with seven stages, as it is illustrated in the tableau (see Table 2), where the 

method (     ) is of order five and (      ) is of order four. We set free coefficients 

           
    

        
  , while keeping all other coefficients as the same as in Table 2. First, 

we compute the polynomials    
        

  in terms of RK coefficients in Table 2. The 

numbers  ( ) and  ( ) are then obtained by nullifying the phase-lag, amplification error, 

and phase-derivative lag from these polynomials. 

As a result, when we solve the fifth-order as follows, we get a system of three equations: 

Table 2-  RK method of order five 

 

 

 ( )  (
 

   
                

     

      
*

 

   (  
 

   
   

 

  
      *

 

                                              (  ) 
 

 ( )     ( )  
 (

 
                   

     
      )

(  
 

      
 
        )

                         (  ) 



Fawzi                                                      Iraqi Journal of Science, 2022, Vol. 63, No. 9, pp: 3889-3901 

 

3893  

   ( )    (   ( ))  
(

 
   

                
     
      

)

(  
 

      
 
        )

 
 (

 
                   

     
      ) ( 

 
      

 
       )

(  
 

      
 
        )

 

 
 (

 
        )

(  
 

      
 
        )

                                                                        (  ) 

 

Where 

   
   

    
 

 

   
                        

 

  
   

 

 
   

   

   
 

The same case for the fourth-order method 
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When the system of equations (3)- (16) is solved simultaneously, the coefficients 

           
    

        
  are obtained, which are completely contingent on   when   is the 

product of step-size   and frequency   because the expressions for            
    

        
  are  

too  complex,  we  replaced  them  with  their  Taylor series expansion, yielding the following 

expressions: 
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4.  Stability of the New Method 

The linear stability of the developed method is examined in this section. Consider the 

following test equation (4) where      . The exact solution of this equation with the initial 

value  (  ) =    satisfies 

 (    )   ( )                                                         (  ) 
when applying (2), (3) to (4) , we get  

 

      ( )                                                           (  ) 
 

 ( )       (    )                                              (  ) 
 

Where   (       )         [   ]          [                ]    ( )  is referred to  the  

stability function of the method (3). 

 

Definition 4.1.  If an RK method is absolutely stable, then for all      (    ) |  ( ) |  
    
The stability function of the high order of the new method is 

 ( )      
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Figure 1-Stability region for the higher-order of EORK5(4) method 

 

We repeat the procedure for the low order of the new method, and then the stability function 

is computed. 
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Figure 2- Stability region for the lower-order of EORK5(4) method 

 

The stability region of the EORK5(4) method up to H
i
, where i = 10. The stability interval of 

the fifth-order and fourth-order methods with the coefficients     is (-2,0) . Our proposed 

technique is absolutely stable because       (    ) |  ( )  |      as is shown in the 

stability areas that are displayed in Figures 1 and 2. We used the Maple program to collect 

this information. 

5.  Tested Problems and Numerical Results 

The output of the proposed method EORK5(4) is compared to that of existing RK methods in 

this section, which takes into account the following issues. All of the problems below are 

evaluated using the     program for solving differential equations with periodic solutions. 

 TOL: Tolerance. 

 FCN: Number of function evaluations. 

 FSTEP: Failure steps. 

 MAXE: Maximum error of the computed solution. 

 EORK5(4): the new embedded RK5(4) pair given in this paper. 
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 MODRK54: Modified RK method derived in [19]. 

 MODPHARK5(4): A phase-fitted modified RK pair is given in [10]. 

 • MODDPHARK5(4): The higher order Optimized Runge-Kutta Pair 

         proposed in [20]. 

Problem 1: ( Inhomogeneous Equation) [12] 

                    ( )  (  )      (  )       

Estimated frequency:   = 10 

Theoretical solution : 

  ( )       (  )       (  )       ( ) 

Problem 2: (Inhomogeneous linear system) [21] 

 

   ( )  (
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 ( )  (
 
 
)    ( )  (
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The frequency is   = 10, and the exact solution is 

Exact solutions: 

 ( )  (
     (   )     (   )     (  )

   (   )     (   )     (   )
* 

Problem 3: (Inhomogeneous system)[13] 

  
   

   

(√  
    

 )
     ( )       

 ( )    

 

  
   

   

(√  
    

 )
     ( )       

 ( )    

Exact solutions: 

  ( )      ( )   ( )       ( ) 

Problem 4: (The oscillatory system) [21] 

                 ( )  (
     

     
)   ( )  (

    (  )       (  )

      (  )      (  )
*    

               ( )  (
 
 
)    ( )  (

  
 

) 

The frequency is w = 5, and the exact solution is 

Exact solutions: 

 ( )  (
   ( )     (  )     (  )

   ( )     (  )     (  )
* 

 

 

Table 3-Comparison of Numerical Results When Solving Problem 1 
TOL Method STEP FCN FSTEP MAXE 

10
 -2 

EORK5(4) 132 1038 19 1.713206 (-1) 

MODRK54 153 1113 7 3.500838 (-1) 

MODPHRK5(4) 161 1193 11 2.302073(+0) 

MODDPHARK5(4) 130 1006 16 3.044401 (+0) 

10
 -4 

EORK5(4) 216 1584 12 6.583249 ( -3 ) 

MODRK54 375 2691 11 5.747570 ( -3 ) 

MODPHRK5(4) 348 2502 11 4.925946 ( -2 ) 
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MODDPHARK5(4) 276 2016 14 6.201161 ( -2 ) 

10
 -6 

EORK5(4) 463 3307 11 1.279610 (-4) 

MODRK54 860 6086 11 1.641716 (-4) 

MODPHRK5(4) 929 6617 19 8.764604 (-4) 

MODDPHARK5(4) 731 5231 19 8.019094 (-4) 

10
 -8 

EORK5(4) 1337 9437 13 5.955038 (-7) 

MODRK54 1855 13051 11 7.467781 (-6) 

MODPHRK5(4) 2303 16193 12 1.678084 (-5) 

MODDPHARK5(4) 1647 11799 45 2.932196 (-5) 

10
 -10 

EORK5(4) 3090 21708 13 8.822617 (-9) 

MODRK54 4873 34183 12 1.524622 (-7) 

MODPHRK5(4) 6136 48030 13 3.262276 (-7) 

MODDPHARK5(4) 4293 30195 24 5.339648 (-7) 

 

 

 

 
Figure 3-Curves of efficiency for Problem 1 with      = 10 

 

Table 4-Comparison of Numerical Results When Solving Problem 2 
TOL Method STEP FCN FSTEP MAXE 

10
 -2 

EORK5(4) 86 758 13 7.186829 (-2) 

MODRK54 66 504 7 4.357822 (-1) 

MODPHRK5(4) 77 593 9 1.673909(+0) 

MODDPHARK5(4) 80 716 26 2.053640 (+0) 

10
 -4 

EORK5(4) 114 870 12 3.304906 ( -3 ) 

MODRK54 170 1250 10 4.962147 ( -3 ) 

MODPHRK5(4) 206 1508 11 1.292478 ( -2 ) 

MODDPHARK5(4) 125 929 9 2.352949 ( -2 ) 

10
 -6 

EORK5(4) 287 2081 12 2.538927 (-4) 

MODRK54 393 2811 10 1.379548 (-4) 

MODPHRK5(4) 405 2913 13 6.903514 (-4) 

MODDPHARK5(4) 317 2285 11 5.322822 (-4) 

10
 -8 

EORK5(4) 680 4838 13 2.971641 (-7) 

MODRK54 1019 7199 11 2.415040 (-6) 

MODPHRK5(4) 1257 8871 12 5.859345 (-6) 

MODDPHARK5(4) 856 6082 15 8.841962 (-6) 

10
 -10 

EORK5(4) 1573 11089 13 4.286264 (-9) 

MODRK54 2232 15690 11 1.147541 (-7) 

MODPHRK5(4) 2695 18937 12 2.692288 (-7) 

MODDPHARK5(4) 2085 14673 13 2.418082 (-7) 



Fawzi                                                      Iraqi Journal of Science, 2022, Vol. 63, No. 9, pp: 3889-3901 

 

3898  

 

 

 
 

Figure 4-Curves of efficiency for Problem 2 with      = 5 

 

Table 5- Comparison of Numerical Results When Solving Problem 3 
TOL Method STEP FCN FSTEP MAXE 

10
 -2 

EORK5(4) 38 286 20 3.347872 (-2) 

MODRK54 80 304 24 2.558935 (-1) 

MODPHRK5(4) 23 209 8 1.747194(+0) 

MODDPHARK5(4) 31 295 13 2.667791 (+0) 

10
 -4 

EORK5(4) 45 369 9 1.905495 ( -4 ) 

MODRK54 46 364 7 3.525330 ( -3 ) 

MODPHRK5(4) 75 573 8 2.615758 ( -3 ) 

MODDPHARK5(4) 41 305 3 5.061177 ( -2 ) 

10
 -6 

EORK5(4) 86 638 6 2.058852 (-6) 

MODRK54 91 685 2 1.446604 (-4) 

MODPHRK5(4) 201 1461 9 8.938727 (-5) 

MODDPHARK5(4) 90 672 7 5.260596 (-4) 

10
 -8 

EORK5(4) 200 1448 8 1.050143 (-8) 

MODRK54 337 2407 8 6.845161 (-7) 

MODPHRK5(4) 495 3525 10 8.071008 (-7) 

MODDPHARK5(4) 221 1595 8 5.327865 (-5) 

10
 -10 

EORK5(4) 513 3645 9 1.269249 (-10) 

MODRK54 833 5885 9 2.601497 (-8) 

MODPHRK5(4) 1001 7067 10 4.201522 (-8) 

MODDPHARK5(4) 537 3813 9 1.409929 (-7) 
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Figure 5- Curves of efficiency for Problem 3 with      = 3 

 

Table 6-Comparison of Numerical Results When Solving Problem 4 
TOL Method STEP FCN FSTEP MAXE 

10
 -2 

EORK5(4) 100 880 30 6.713246 (-1) 

MODRK54 81 591 4 6.220633 (-1) 

MODPHRK5(4) 153 1113 7 2.200541(+0) 

MODDPHARK5(4) 102 798 14 7.639792 (+0) 

10
 -4 

EORK5(4) 153 1137 11 4.877671 ( -3 ) 

MODRK54 190 1378 8 1.665266 ( -2 ) 

MODPHRK5(4) 293 2135 14 2.287176 ( -2 ) 

MODDPHARK5(4) 189 1371 8 1.552959 ( -2 ) 

10
 -6 

EORK5(4) 490 3478 11 9.735823 (-6) 

MODRK54 432 3015 9 5.014858 (-4) 

MODPHRK5(4) 646 4588 11 5.284874 (-4) 

MODDPHARK5(4) 498 3540 9 4.076553 (-4) 

10
 -8 

EORK5(4) 1299 9153 10 3.595542 (-8) 

MODRK54 1014 7193 10 1.355002 (-5) 

MODPHRK5(4) 1560 10992 12 1.444372 (-5) 

MODDPHARK5(4) 1028 7250 9 2.054626 (-5) 

10
 -10 

EORK5(4) 2863 20101 10 6.284218 (-10) 

MODRK54 2552 17930 11 3.355827 (-7) 

MODPHRK5(4) 5230 36676 11 1.072769 (-7) 

MODDPHARK5(4) 2622 18414 10 4.688277 (-7) 
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Figure 6-Curves of efficiency for Problem 4 with      = 10 

 

6.  Discussion and Conclusion 

      We have developed a new embedded RK method for solving first-order (ODEs) called 

EORK5(4) by converting second-order ODEs to equivalent first-order ODEs with phase-lag 

and amplification error, as well as the first derivative of phase-lag of order infinity. The 

comparison is made with other well-known existing explicit RK methods with the same 

algebraic order found in [10] and [19, 20]. We apply criteria based on determining the largest 

error in the solution (               (|  (         ) |) in numerical comparisons, 

which is equivalent to the maximum difference between absolute errors of true and computed 

solutions. The numerical obtained as it is shown in Table 3 to 6 and graphically as it is shown 

in Figures 3-6 which displays the efficiency curves of Log10 (max error) against the 

computational effort calculated by Log10 (function evaluations) required by each method, and 

we observed that the new EORK5(4) method is more effective than other existing RK 

methods for integration first-order ODEs with an oscillatory solution. 
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