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Abstract

In this article the peristaltic transport of viscoelastic fluid through irregular
microchannel under the effect of Hall current, varying viscosity and porous medium
is investigated. The mathematical expressions for the basic flow equations of motion
are formulated and transformed into a system of ordinary differential equations by
utilizing appropriate non dimensional quantities. The exact solution for the
temperature distribution is obtained, while perturbation series solution for the stream
function in terms of tiny viscosity parameter is used. Graphical illustrations are
presented to capture the physical impact of embedded parameters in the fluid flow
i.e. the fluid velocity field, temperature distribution, pressure rise, and trapped bolus.
The study shows the opposite effect for Hall current parameter with the magnetic
parameter on the flow characteristics.

Keywords: peristaltic flow, varying viscosity, Hall current, porous medium,
irregular microchannel.
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1. Introduction
The peristalsis mechanism becomes a great importance in many scientific researches
especially in mechanical, and physiological situations as well as in the human body flows in
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the esophagus, stomach, and intestines induced a progressive wave of contraction and
relaxation trains along the walls of the flexible muscles depending on peristaltic transport.
However, in the food process medical devices, and other industries this phenomenon plays a
great role in controlling the driven of fluids inside tracts, prevents blockages and keeps apart
the fluid contents from the tract boundaries [1,2]. The first progress in peristalsis principle
was done by Latham [3], who analyzed the flow of urine through ureter. Then after numerous
investigations addressed the peristaltic mechanism under various configurations are cited in
[4-6].

The peristaltic transport associates with some tubular organs like small blood vessels,
lymphatic vessel, intestine, digestive tract, and bloodstream in tiny conduits, where the
viscosity of the fluid shifts over the thickness of the fluid. Assuming the fluid viscosity is a
variable (function of space coordinate, and temperature) it helps to understand the complex
rheological behaviors of many classical and biological fluids. Therefore, it is extremely useful
to include the impact of variable viscosity instead of supposing the viscosity of the fluid to be
constant. Ali et al. [7] studied the effect of slip condition on the peristaltic transport of MHD
viscous fluid in a two-dimensional channel with variable viscosity. An investigation is based
on electro-magneto-hydrodynamic flow in micro-channels through slightly corrugated walls
impact which is recorded in the existence of variable viscosity by Rashid et al. [8]. However,
Khan et al. [4] employed the regular perturbation method to find the analytic solution for the
peristaltic flow of a Jeffrey fluid having variable viscosity through a porous medium in an
asymmetric channel. Prakash et al. [9] illustrated the effect of variable viscosity on peristaltic
transport of a viscoelastic fluid through a tapered microfluidic vessel. Nadeem and Akbar [10]
considered variable viscosity effect, and heat transfer on the peristaltic transport of MHD
Newtonian fluid.

Hall current have vast impacts for a high magnetic field as in MHD flows. This effect has
extensive applications in many aspects which encompasses the devices like power generators,
Hall accelerators, refrigeration coils, electric transformers, and spacecraft propulsion. The
peristaltic transport in the presence of Hall current has been discussed by various published
papers. Krishna et al. [11] illustrated the impact of Hall on MHD peristaltic flow of non-
Newtonian Jeffery fluid in porous medium in a vertical channel. In 2019 Nabil et al. [12]
investigated two effect of Hall Currents and lon Slip on a Peristaltic MHD Nanofluid with
Suspended Particles. Asha and Deepa [13] discussed the influence of Hall current, and heat
transfer on peristaltic blood flow of a MHD Jeffrey fluid in a vertical asymmetric porous
channel.

Keeping in observation the overhead medical, industrial and physiological practical
application for Hall current and variable viscosity, our aim in this study is to extend the work
of Prakash et al. [9] by investigating the effect of Hall current together with porous medium
on. The illustration is extended by involving the energy equation, and it is formulated under
the effect of magnetic field. As well as the concentration equations is studied. The exact
solution for the temperature and concentration fields are found by integration whereas.
Perturbation technique series is adopted to obtain the closed form solution for the stream
function. Finally, the physically impact of various pertinent parameters on the flow quantities
is analyzed graphically.

2. Problem Mathematical Formulation

Consider an incompressible a viscoelastic fluid has a variable viscosity generated by an
oscillatory wave travels along the X—axis at fixed speed ¢ through a porous media in a two-
dimensional asymmetric non-uniform irregular microchannel. Furthermore the fluid is
subjected into a strong magnetic field B = (0,0, By). The mathematical description for the
physical configuration of the problem in Figure 1 is written as [9]:
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Y =H,(X,t) = —d; —y'X — a;Sin? (2"();_“)) (1)

Y =Hy(X,t) =d, +y'X + a,Sin? 2n(X — ct) /1 + 0) (2)

which H;, and H, refer to the upper, and lower walls, respectively. a;, @, are the upper, and

lower wave amplitudes, tis the time, (d; + d,) is the thickness of the channel, (y' « 1)is

the non-uniform parameter , 2 wavelength, and (X, Y)are the Cartesian coordinates in fixed

frame. @ is the phase different and @ € [0, ] such that asymmetric channel with waves out of

phase which is expected when (@ = 0), while (@ = m) consider waves in phase. Moreover
aq, a,dq, d, and @ satisfy the condition.

a,% + a,? + aya,d,d, cos® < (dy + dy)? (3)

Figure 1-Geometry of the microchannel

The generalized Ohms law contains Hall effects are deduced as [14]:
F=]xB, (4)
J=0olV xB—— (JxB)] (5)
Hence, the magnetic force field is

= (—0By*(U-mV) oBo*(V+mU)
F= ( 1+m? 1+m? ! O) (6)

In which f IS current density, V= (U,v,0) is velocity field, o represents the electric
conductivity of the fluid, B, is strength of magnetic field, n is the number density of electron,
e refers to the electric charge, and (m = Z—T) is the Hall parameter.

The dimensional essentially flow governing equations are represented by continuity, motion
inX and Y direction, energy, and concentration, they are mathematically constructed
respectively as below

)

U . av
§+§—O @)
U U QUY _ 0P | o0 (.o U\, 0 (oo (OV  0U\\  oBo(U-mv)
p(ﬂ+Uﬁ+Vﬁ)_ a)?+za)?(”(y)ax)+a?</"(y)(ax+a?)) 1+m?2
EM)
p U, (8)
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v v VY o 0P L 50 (e OVY L O (i (OV 4 OUY)__oBo(+mb)
p (a UV aY) =~w Tl (“(Y) a?) tox (“(Y) (ax + a?)) T2
ﬂ}iy) V; (9)
0

(Z +vZ+vI) =k (S5 +20) + 22 (2L 4 20) 4 22l eV) (10)
AT ax av) — axz ' ayz2 cs \ax2 ' ayz 1+m2 :
oc oC L 1y 9C\ _ 9%C | 92C\ , DpKr (9T  o°T
(E tUGT Vﬁ) = Dp (a)?z + aYZ) + T (axz + a?z)’ (1)

Such that o is the electrical conductivity, K is thermal conductivity, x, is posity parameter, p
is density, cpis specific heat, T is the fluid temperature vector, P is the pressure, C is the
concentration vector, Dgis the Brownian diffusion coefficient, K is the thermal diffusion, T,
is the fluid mean temperature, and c, is the concentration susceptibility.

The associative dimensional slip boundary conditions are [15]

U+Bl*%=0, T=T1, CV=C1 on ?=H1(X,t), ( )
12
U-p"S=0 ,T=T,, C=Coon¥=H(X1),
The following dimensionless variables and quantities are given as
_X _r =Y . =M _H AP o W
=73 ’y_dl’ U=2 ,v=2 :h1—d1:h2—d1: T oAuce’T T2 'u_ay'v_
0y _ pcdy _ T-Tp _ Hocp _ g _ c? _ _
Sax,Re = 0= (Tl_To),Pr = JH = ﬁ0d1\/; JE. = T ,Br = E.Pr,y =
T opy =Pkttt @y L - €-Co Sy = Dekr@i=To).
dq cpcs(T1—Tp) dq dq dq dq (€C1-Co) UoTm(C1—Co)
Ho _ED) o B 0 0¥
DB’#(y)_ o ,'31— dl'u_ay'v_ ax’ (13)

Where 4 is the slip parameter.
Equations. (7) - (12) will be transformed into the following dimensionless forms

ou v
o) o + 65 =0, (14)
Jdu ou Jdu
RG(S(E-FU a-l-v a_y) =
_ 4 982 uy L 529 v
6x+26 (‘u(y) 6x2)+6 ay(‘“(y) 8x)+
2 ou H?(u-mvé) u(y)
5 (k0 5) = - P (15)
3(0v v vy _
Re 6 (6t+u ax TV 6y> N
_op 9 v 2 2 ﬂ 0%u _8H2(6v+mu) 6
ay +26 ay (M(}/) 6y) +9 (,u(y) (5 0x2 + 6y6x)> 1+m?2 K v (16)
a6 a6 00\ _ o20%6 | 9%96 5 %7 3%n  Br H%(8%v?+u?)
Re 6 Pr (at tu_—+ vay) =6+ 377 +6°PrDu—— +Pr Du 377 t——
17)
on L, 0n ., on) _ 1% 2070 0%
ReSc5(at +uax+vay) = Scay? + Sr (6 e + 6y2)’ (18)

Adopt the assumptions of long-wavelength approximation and small Reynold’s number i.e.
dropping terms of order 6 and higher equations. (15) -(18) are simplified to

278 () 2, ®
Z_Z =0, (20)
(;ZTS+P7” DuZZTZ + Bzf;gz = 0, (21)
L0y sril=0, (22)
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Associate with the corresponding non-dimensional slip boundary conditions [15].
u+[31(;—1;= 0,06=1, n=1on y=hkxt)=-1—yx—aSin®(2n(x—1t)),

u (23)
u—ﬁla—yzo ,0=0, n=0o0ny=hy(xt)=d+yx+bSin? 2n(x —t) +0),
By defining the non-dimensional varying viscosity which is given as below [4]:
) =1-py, (24)
where £ is the viscosity coefficient. The time-averaged flux is scripted as
h
Q= [, ulx,y t)dy, (25)

So that the dimensionless relationship between F the non-dimensional wave mean flow and Q
Is derived as

F=Q—-d—-1-2yx, (26)
while the pressure rise across unite wavelength is given by
Ap; = [, Edx, (27)

We differentiate the equation (19) with respect to y, and we use the equations (20) and (24),
then an equation in terms of stream function ¥ (x, y, t) is obtained as bellows:
2
(1 - .By)lpyyyy - Zﬁwyyy - (# + a Kﬁy)) 1.ljyy + %wy =0, (28)
Because of the nonlinearity of equation(28), the exact solution is difficult to be found.
Therefore, the perturbation technique will embrace to expand the stream function to small
value of viscosity coefficient as [16]

Y=o+ LY +0(B)?, (29)
We substitute equation (29) into equation (23) and equation (28). This leads to the following
systems
2.1 Zeroth order system
H2
PDoyyyy — (1+m2 )d’Oyy (30)
Yoy + B1oyy =0, on  y =h(x,t) = -1 —yx —a Sin® (2n(x — 1)), 31)
Yoy — B1thoyy =0 , on y = hy(x,t) =d +yx + bSin® 2u(x — t) + @),
2.2 First order system
H? y 1
Viyyyy — (1+m2 )‘plyy Yhoyyyy — 2¥oyyy + ;'vl’Oyy + ;‘/)Oy =0, (32)
Y1y + P11y =0, at y = hy(x,t) = —1 — yx — a Sin? (27T(x — t)), (33)

l)[)ly - .Bllplyy =0 , at y = hz(x, t) =d + Yx + bSlle (27‘[()6 - t) + @);
By solving the previous two systems with using of Mathematica 11.3 . The final expression
for stream function is given by

—€Y (,2€Y —ye 2ye 3
1/) = %201""02) + C3 + yCy + ﬁ (C7 + YCg + e (L1C1e SE:KC2L2+L346 ))’ (34)
Where

- (H(i:szgir; ))05' Ly = (=7 = 3€®k + 2y*€?*(—1 + €°k) + y(6€ — 2€3k)),

Ly, = (7 + 3€’k + y(6€ — 2€3k) + y?(2€* — 2€*k)), L3 = (c,e¥¢y? + 2K(e®ccs + c4)),
Furthermore, the exact solution for temperature and concentration field is achieved by making
benefit of the stream function as follows

0 =

1
3840(1+m2)el0x2¢&

Bre 2Y¢H?(15c2%(64€%k? — 32B€3kL, + B%Ls) +

4c2e| 240c4e¥¢Lg + € (clezyeyz(—96066ic2 —160yBe*k(1 + €%k) + B2(20y2e*k(1 —
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3€2k) + 4y*e*(—1 + €2k)? + 15(1 + 5€%k)?)) — 40Bek <3€6 (—463K + B(-3 — 2e%k +

ye(—=3 + €%k) + y?e?(—1 + EZKI))) + e¥¢e (—6c8 (—863K +B(—17 + 3€%k +

2y2e?(—1+ €%k) + 2ye(—5+ 3€2K))) — c5eY¢y%e(—24€3k + B)))) +rl+yr2,

Ly = (-3 — 2%k + ye(—3 + €%k) + y2e?(—1 + €%k)),
Ls = (71 + 10€?k + 27€*Kk? + 4y*e*(—1 + €%k)? — 8ye(—13 + 3€%k) + 8y3e3(3 —
4€’k + €*'k?) — 4y?€?(—17 + 12€%k + €*K?)),
L = (—8€°k? + Pe3k(—33 + 3€%k + 6ye(—3 + €%k) + 2y%€e?(—1 + €2k)) + B2(—62 +
26€%K + 2y3€3(—1 + €2k) + 2y2€?(—7 + 5€°k) + ye(—45 + 23€%k))),
and
n= 3840(“;2)61%26 Bre 2Y¢H?ScSr(15¢2? (6466K2 —32B€3k(-3 — 2%k +
ye(—=3 + €2K) + y2e2(—1+ €%k)) + B2(71 + 10€2k + 27€*k? + 4y*e*(—1 + €2k)? —
8ye(—13 + 3€2%k) + 8y3e3(3 — 4€?k + €*Kk?) — 4y?€?(—17 + 12€%k + 64K2))) +
4c2e (240c4ey6 (—866K2 + Be3k(—33 + 3%k + 6ye(—3 + €%k) + 2y2e?(—1 + €%k)) +
B?(—62 + 26€%k + 2y3€3(—1 + €%k) + 2y2€?(—7 + 5€%k) + ye(—45 + 23€2K))) +
15(1 + 562K')2) + c6y?e(—24€3k + B(3 + 15€%k — 2y(e + €3k) + y%(e® — €*k)))) +
r3+yr4.
The coefficients c1,c2,c3, c4,c5,c6,c7,¢8,r1,r2,r3,r4 will be obtained by satisfying the
given boundary conditions
3. Graphical results and discussions

This part of the paper focuses on the graphical results and analysis the physical effect to
emerge important parameters on the flow characteristics that conclude the velocity profile,
temperature distribution, heat transfer along the lower wall, and trapping phenomenon for the
Newtonian fluid.

Figures 2 and 3 illustrate the impact of Hartman number H, Hall number m ,porosity
parameter x, dimensionless viscosity coefficient 8 , slip parameter B, non-uniform
parameter y, flow rate parameter Q, and phase difference parameter @ on the velocity
distribution profile. The parameters, and variables area = 0.4,b = 0.03,d = 0.8,x =
0.1,t = 0.1, and y = 0.1. It is noticed from the Figures that the velocity profiles attain
concave down behavior. In addition the velocity is not symmetric i.e. the result in the central
part opposite the response near the walls. Figures 2(a), 2(b) and 2(c) exhibit the influence of
H, m and x on u(y) respectively. It is considered that enhancement of H diminishes the
motion of the fluid and henceforth the velocity profile decreases along the whole region,
while the velocity arises in the regions (—1.5 <y < —1.1) U (0.5 < y < 0.9). Whereas the
increment impact for m and x on velocity profile are scrutinized along the length of the
channel, however the decreasing effect are noticed at some regions near the central part of the
channel. The mixed influence of g on u(y) is prescribed through Figure 3(a). While the
velocity profile shows two opposite behavior for higher values of S;see Figure 3(b).
Furthermore, an increasing function of y on u(y) is portrayed and this is obvious since it
causes increase in channel’s diameter via Figure 3(c).

Elevation of temperature distribution 6(y)via variation of involved parameters is
captured in this subsection through Figures 4 and 5. The discussion is done for the fixed
magnitudes {a=0.1,b=09,d =09,Q =2,¢ = g,x =02,t=01y=18} It is
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deduced from these plots that the fluid’s temperature witnessed variation near the boundaries,
while it remains stable in the central part of the channel. The temperature distribution
development in response to ascending values of Hartman number H is illustrated in Figure
4(a). Larger values of H reversely effect on 6(y) due to the fact that the existence of the
magnetic field produces a resistance force which declines the fluid’s temperature. Similar
outcome of 6(y)is recorded upon enhance the porosity parameter x , Soret number , Dufour
number Du and Hall number m via Figures 4(b) ,4(c),5(a), and 5(b) respectively. While
Figure 5(c) reveals that the temperature distribution decelerates when the value of Brinkman
number Br enhances.

The variation of fluid concentration n(y) versus the axial coordinate y with ascending
values of Hartman number H, Hall number m ,porosity parameter x, dimensionless viscosity
coefficient g, Prandtl number Pr, Brinkman number Br, and for fixed quantities a =

0.1,b=09,d=09,Q=2¢=2,x=02p =03t=01y =185 =158r=

0.1. Thisis visualized in Figures 6 and 7. The patterns of concentration profile show that the
fluid particles are more concentrated near the boundaries of channel whereas it is settle down
in the central region. Figure 6(a) highlights the diminishing impact of H on (y) . However,
n(y) exhibits an increment behavior due to elevate of m, and « values via Figures 6(b), and
6(c) respectively. Two opposite influence for 8 on n(y) profile is interpreted in Figure 7(a)
i.e. the profile increases for—5 < y < —3.5, and decreases for 3.5 <y < 5. It is observed
from Figures 7(b) and 7(c) that the concentration profile reduces for higher magnitudes of
Pr, and Br.

This subsection focuses on the development in pressure rise Ap, which is integrated
numerically using Mathematica 11.3 against the flow rate Q effected through the following
interesting parameters Hartman number H, dimensionless viscosity coefficient g, Hall
number m , permeability parameter , slip parameter £, , and non-uniform parameter y. This
is done for fixed quantities a = 0.1,b = 0.3,d = 0.2,¢ = g,y = 0.1,t = 0.1 via Figures 8
and 9. It is demonstrated that the flow region split into three segments as follows: peristaltic
region for Ap; > 0,and Q > 0, the retrograde pumping region Ap, > 0,and Q < 0, and the
augmented pumping (Ap; < 0,Q > 0), while the free pumping is achieved when Ap, = 0.
Figure 8(a), and 8(b) record the decreasing impact for H and S on the all flow pumping
region. Whilst directly effect for m,8; and x on the previous three pumping region that
compared with H see Figures 8(c),9(a) and 9(b). It is noticed from Figure 9(c) that for
ascending value of y all the pumping regions increase up to a critical value Q = 0.7.
However, the pumping diminishes after this value.

The living body fluid flux characteristics like motion of thrombus in blood vessels, and
the chyme movement through the gastrointestinal tract are application of an interesting
phenomenon in the peristaltic flow which is called trapping. In this phenomenon, an internally
circulating fluid bolus formulates by closed streamlines and moves along with the wave. This
subsection is allocated to propose the development in the trapping phenomenon versus
different values of pertinent parameters. Figures 10, and 11 demonstrate the behavior of
Hartman number H and Hall number m on the trapped bolus, respectively. It is evident that H
shows a declining impact on trapped bolus meanwhile and this result is obvious since the
effect of magnetic forced is represented by Hartman number opposite the fluid flow , the
volume, and number of bolus enhances for larger values of m. The opposite effect of the Hall
parameter on the Hartmann parameter comes because the first is added to reduce the effect of
the magnetic field on the flow and thus increases the velocity of the flow. Qualitatively
increasing is response of trapped bolus in size and numbers especially in the upper part of
channel against enhancement of permeability parameter , and dimensionless viscosity
coefficient . These are recorded via Figures 12, and 13. However, from Figure 14 we have
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visualized that the bolus of fluid have gone down in size via enlarges of time flow rate
parameter Q. Figure 15 portrayed rises up in number and magnitude of the trapped bolus for
ascending values of slip parameter £3;.

o

Figure 2-The velocity profile elevation via ascénding value of (a) Hartman number H (b) Hall
number m (c) permeability parameter x

®

Figure 3-The velocity profile elevation via ascending value of (a) dimensionless viscosity
coefficient B(b) slip parameter £; (c) non-uniform parameter .

(b)

Figure 4-The témperature distribution profilé elevation via ascending value of (a) Hartman
number H (b) permeability parameter x (c) Soret number Sr.

Figure 5-The temperature distribution profile elevation via ascending value of (a) Dufour
number Du (b) Hall number m (c) Brinkman number Br
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Figure 6-The fluid concentration profile variation for ascending value of (a) Hartman number
H (b) Hall number m (c) permeability number
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Figure 7-The fluid concentration profile variation for ascending value of (b) dimensionless
viscosity parameter S (b) prandtl number Pr (c) Brinkman number Br.

(©)

Figure 8-The pressure riseAp, against elevation of (a) Hartman number H (b) dimensionless
viscosity parameter 8 (c) Hall number m.

Q
Figure 9-The pressure riseAp, against elevation of (a) permeability number x (b) slip
parameter $,(c) non-uniform parameter y.

(@ o (b)

Figure- 10 The streamlines contours for elevation of Hartman number H ={0.1,0.3}.
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@®

Figure 13-The streamlines contours for elevation of dimensionless viscosity parameter
= {0.4,0.6}.

Figure 14-The streamlines contours for elevation of time flow rate parameter Q =
{0.21,1.1}.
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Figure 15-The streamlines contours for elevation of slip parameter g; = {0.1, 0.3}.

Conclusions

This paper devotes to inspect the effect of Hall current and varying viscosity on the
peristaltic transport of viscoelastic fluid through porous medium in irregular microchannel.
By considering the assumption of low Reynolds number and long wavelength, a system of
nonlinear differential equations is obtained and solved for temperature field and stream
function using Mathematica 11.3. The study has been come out with essential observations
which are highlighted below:

The results for velocity profile of variable viscosity parameter £ in this study are consistent
with those in Ref. [9] for H = m = k = 0. However, opposite result is deduced for pressure
rise for 5. The velocity profiles attain concave down behavior. Moreover, it is observed that
the result in the center of the channel are opposite to those calculated near the boundaries. An
oscillatory effect for the parameters H, m , k, 8, and 3; on the velocity profiles is illustrated,
whereas an increment impact fory is recorded. It is evident from the plots that the
temperature distribution profiles witnessed variation near the boundaries, however its value
remains stable in the center of the channel. A decay in temperature distribution 6(y) is
deduced via enhancement of H, Br and elevation in 8(y) is found due to the increasing of « ,
Sr, Du, and m magnitudes. The patterns of concentration profile n(y) diminishes via rise
the values H, Pr, and Br, whereas, two opposite effect for § on n(y) profile is noticed.
Decreasing impact for H and £ on the pressure riseAp;, whilst directly effect for m, 8; and x
on Ap, values. The volume and number of trapped bolus enhances for larger values of
m,k, 3, and B while, it decreased with Q, and H.
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