Turki and Khalid

HERE COORCE-University of Here

Iraqi Journal of Science, 2022, Vol. 63, No. 5, pp: 2164-2172 DOI: 10.24996/ijs.2022.63.5.30

ISSN: 0067-2904

F-J-semi Regular Modules

Lewaa R. Turki^{*}, Wasan Khalid Department of mathematics, college of science, University of Baghdad

Received: 13/6/2021 Accepted: 20/7/2021 Published: 30/5/2022

Abstract

Let *R* be a ring with identity and let *A* be a left R-module. If *F* is a proper submodule of *A* and $x \in A$, *x* is called *F*-*J*-semi regular element in *A*, If there exists a decoposition $A = B \bigoplus C$ such that *B* is projective submodule of *Rx* and $Rx \cap C \ll_J F$. The aim of this paper is to introduce properties of F-J-semi regular module. In particular, its characterizations are given. Furthermore, we introduce the concepts of *F*-Jacobson hollow semi regular module and *CF*-*J*-semiregular module. Finally, many results of *F*-Jacobson hollow semi regular module and *CF*-*J*-semiregular module are presented.

Keywords: F-J- semi regular modules, R-F-J- semi regular modules , F-Jacobson hollow semi regular modules , CF-J-semi regular modules

المقاسات شبه المنتظمة من النمط F-J

لواء رحمان تركي* ، وسن خالد حسن قسم الرياضيات ، كلية العلوم ، جامعة بغداد، بغداد، العراق

الخلاصة

الهدف من هذا البحث هو تقديم خصائص للموديول الجزئي شبه المنتظم من النمط ل وبشكل خاص للموديول الجزئي من النمط F . كذلك تم تقديم تعريف للمقاس شبه المنتظم المجوف من النمط F-J و تعريف المقاس شبه المنتظم من النمط CF-J . اخيرا تم تقديم الكثير من النتائج حول للمقاس شبه المنتظم المجوف من النمط F-J و المقاس شبه المنتظم من النمط CF-J.

1- Introduction

Let *R* be a ring with identity and let *A* be a unitary left *R*-module. A submodule *B* of *A* is called small submodule if whenever B + C = A, then C = A for some submodule of *A*. The small submodule is denoted by $B \ll A$ [1]. The sum of all small submodules is called the jacobson radical of *A* which is denoted by J(A)[2].

In [3], authors introduced *J*-small submodule. A submodule *B* of *A* is called *J*-small if whenever B + C = A with $J\left(\frac{A}{C}\right) = \frac{A}{C}$ implies that A = C. It is denoted by $B \ll_J A$, It is clear that every small submodule of *A* is *J*-small,however, the converse is not to be true see [2].

An element x in a module A is called regular if $\alpha(x)x = x$ for some $\in A^*$. A module is called regular if each of its elements is regular[4]. Zelmanowitz [4] proved that a module is

regular if and only if every cyclic submodule is a projective summan. He also introduced a semi-regular module. A module A is called semi-regular if for every non-zero cyclic submodule Rx of A there exists a projective submodule $B \le Rx$ such that $A = B \bigoplus C$, and $C \cap Rx \ll A$ [4]. A submodule D of an R-module A is called J-lie over a projective summand of A if there exists a decomposition A = B + C, where B is projective submodule of D and $C \cap D \ll_I A$ [5].

In [5], authors introduced a J-semi regular module. An R-module is called J-semi regular module if every cyclic submodule of A is J-lying over a projective summand of A.

Let *F* be a submodule of , an element $x \in A$ is called *F*-semi regular element in *A* if there exists a decomposition $A = B \bigoplus C$ such that *B* is a projective submodule of Rx and $\cap C \leq F$. A module *A* is called an *F*-semi regular module if *m* is *F*-semi regular element for each $m \in A$ [6].

This paper is devoted to introduce F-J-semi regular module, R-F-J-semi regular, F-Jacobson hollow semi regular, and CF-J- semi regular modules by using the concept of J-small submodule.

2- F-Jacobson semi regular modules:-

In order to introduce F - J -semi regular module , we use the concept of *J*-small submodule that is appeared in [3].

Definition 2.1 [3]: Let *A* be any *R*-module a submodule *B* of *A* is called Jacobson small (for short *J*-small , denoted by $B \ll_J A$) if whenever A = B + C, $C \leq A$, and $J(\frac{A}{C}) = \frac{A}{C}$, then A = C.

Lemma 2.2 [3]: Let , c be two submodules of an R-module A , if $B \le C \le A$ and $J(\frac{A}{B}) = \frac{A}{B}$, then $J(\frac{A}{C}) = \frac{A}{C}$.

Proof:

Let $f: \frac{A}{B} \to \frac{A}{C}$ be an epimorphism function which is defined by f(a + B) = a + C. From [2] we have $f(J(\frac{A}{B})) \leq J(\frac{A}{C})$. Hence $(\frac{A}{B}) = J(\frac{A}{C}) \leq J(\frac{A}{C})$. Therefore $(\frac{A}{C}) = \frac{A}{C}$.

Corollary 2.3 [3]: Let A be any R-module and let , C be two submodules of A. If $\left(\frac{A}{B}\right) = \frac{A}{B}$, then $J\left(\frac{A}{B+C}\right) = \frac{A}{B+C}$.

Definition 2.4 [5]: A submodule *B* of an *R*-module *A* is called *J*-lie over a projective summand of *A* if there exists a decomposition $A = C \oplus C$, where *C* is projective submodule of *B* and $C \cap B \ll_I A$.

An R-module A is called J-semi regular module if every cyclic submodule of A is J-lying over a projective summand of A [5].

Definition 2.5: Let A be an R-module , let F be a proper submodule of A, an element $x \in A$ is called F-J-semi regular element in A, If there exists a decoposition $A = B \oplus C$ such that B is projective submodule of Rx and $Rx \cap C \ll_I F$.

Example 2.6: Consider Q as Z-module, F = 2Z and N = Z, since Q is indecomposable, then $\{0\}$ is only projective summand of Z and $Q \cap Z = Z$ is not containd in 2Z.

Proposition 2.7: Let A be a regular module, then A is F-J-semi regular for any $\leq A$.

Proof : For any $a \in A$, Ra is projective and direct summand of A, then there exists B submodule of A such that $A = Ra \oplus B$ and $Ra \cap B = 0 \ll_J F$ for any F submodule in A, therefore A is F-J-semi regular module.

Proposition 2.8: Let A be F-J-semi regular module and K be a submodule of A such that $F \leq K$, then K is F-J-semi regular.

Proof : Let $Rx \le K$, so $Rx \le A$. Since A is F-J-semi regular, then there exists a decomposition $A = B \oplus C$ such that B is projective in Rx and $Rx \cap C \ll_J F \cdot A \cap K = (B \oplus C) \cap K = B \oplus (C \cap K)$ by modular law, we have $B \le Rx$ and $Rx \cap (C \cap K) = (Rx \cap C) \cap K \ll_J F \cap K = F$, therefore K is F-J-semi regular module.

Proposition 2.9 : Every semisimple projective R-module A is F-J-semi regular module for every proper submodule F of A.

Proof: Let $Rx \le A$, then $A = Rx \oplus B$, where $B \le A$. Rx is projective and $Rx \cap B = \{0\} \ll_I F$, therefore A is an *F*-J-semi regular module.

Proposition 2.10:- Let A be an R-module and let K be a submodule of A. If A is F-J-semi regular, then K is $(K \cap F)$ -J-semi regular where F proper submodule of A.

Proof: Let $Rx \le K$, then $Rx \le A$. Since A is F-J-semi regular, then there exists a decomposition $A = B \bigoplus C \ll_J F$. From the modular law, we have $A \cap K = (B \bigoplus C) \cap K = B \bigoplus (C \cap K)$ and $K = B \bigoplus (C \cap K) (C \cap K) \cap Rx = (C \cap Rx) \cap K \ll_J F \cap K$, therefore K is $(K \cap F)$ -J-semi regular.

Before we give next proposition we have to recall that a sub-module B of an R-module A is called fully invariant if $g(B) \le B$ for every $g \in End(A)$, where End(A) is the ring of endemorphisms of A. A module A is called duo module if every submodule of A is fully invariant [7].

Proposition 2.11:

Let A be R-module and F is fully invariant submodule of A , then for every $x \in A$ the following statements are equivalent:

1- There exists a decomposition $A = B \oplus C$ such that B is projective submodule of D and $\cap C \ll_I F$.

2- There exists a homomorphism $\alpha: A \to D$ such that $\alpha^2 = \alpha$, $\alpha(A)$ is projective and $(I - \alpha)(D) \ll_I F$.

3- *D* can be written as $D = B \oplus S$, where *B* is projective summand and $S \ll_I F$.

Proof : $1 \to 2$ Let *D* be a submodule of *A* by assumption $A = B \bigoplus C$ where *B* is a projective submodule of *D* and $D \cap C \ll_J F$. From the modular law, we have $D = B \bigoplus (C \cap D)$, let $\alpha: A \to B$ be the projective map, it is clear that $\alpha^2 = \alpha$ and $\alpha(A)$ is a projective. Now consider the map $(I - \alpha): A \to C$ such that $(I - \alpha)(D) \le C$, let $x \in (I - \alpha)(D)$, then $x = d - \alpha(d)$ for some $d \in D$, however $\alpha(x) \in B \le D$, therefore $x \in D$ and $x \in D \cap C \ll_I F$, this implies that $(I - \alpha)(D) \le D \cap C \ll_I F$.

 $2 \to 1$) Assume that there exists a homomorphism $\alpha: A \to D$ such that $\alpha^2 = \alpha$, $\alpha(A)$ is projective and $(I - \alpha)(D) \ll_J F$. We claim that $A = \alpha(A) \oplus (I - \alpha)(A)$, let $a \in A$, then $a = a + \alpha(a) - \alpha(a) = \alpha(a) + a - \alpha(a)$ and $A = \alpha(A) + (I - \alpha)(A)$. Now, let $x \in \alpha(A) \cap (I - \alpha)(A)$, then $x = \alpha(a_1)$ and $x = (I - \alpha)(a_2)$ for some $a_1, a_2 \in A$, so that $\alpha(x) = \alpha(a_1) = \alpha(a_2) - \alpha(a_2) = 0$, hence $\alpha(a_1) = 0$. This implies that x = 0, and $\alpha(A)$ is projective, let $t \in D \cap (I - \alpha)(A)$ then $t \in D$ and $t \in (I - \alpha)(A)$ since $t \in (I - \alpha)(A)$ then $t = (I - \alpha)(a)$, where $a \in A$, now $t = a - \alpha(a)$, hence $a \in D$ so that $t \in (I - \alpha)(D)$, therefore $D \cap (I - \alpha)(A) \leq (I - \alpha)(D) \ll_I F$.

 $3 \rightarrow 1$) Let D be submodule of A, then by our assumption $D = B \oplus S$ where B is projective summand of A and $S \ll_J F$ and $A = B \oplus C$, for some submodule C of A. From the modular law, we have $D = B \oplus (D \cap C)$. Let $P: A \rightarrow C$ be a projection map, we claim that $P(S) = P(D \cap C)$, and $P(D) = P(B) \oplus P(S) = P(S)$. On other hand $P(D) = P(B) \oplus$ $P(D) \oplus P(D \cap C) = P(D \cap C)$, thus $D \cap C = P(S) \leq P(F)$. Since F is fully invariant submodule of A, therefore $P(F) \leq F$ implies that $D \cap C \ll_J F$. **Proposition 2.12:** Let A_1 and A_2 be R-modules such that $A = A_1 \bigoplus A_2$ is duo module, if A_1 and A_2 are F_1 -J-semi regular and F_2 -J-semi regular, respectively. Then A is $(F_1 \bigoplus F_2)$ -J-semi regular module.

Proof: Let *D* be a cyclic submodule of *A*, so that $(D \cap A_i)$ for i = 1, 2 are cyclic submodule of *A*. Since *A* is duo module, then $D = (D \cap A_1) \oplus (D \cap A_2)$. Now, since A_i are F_i -*J*-semi regular, then there exists projective direct summand submodules of $D_i = (A_i \cap D)$ such that $A_i = B_i \oplus C_i$ and $D_i \cap C_i \ll_J F_i$ for i = 1, 2, and $A = A_1 \oplus A_2 = (B_1 \oplus C_1) \oplus (B_2 \oplus C_2)$. Since B_1 and B_2 are projective then we have $B_1 \oplus B_2$ is also projective.

Now, from [3] we get $D \cap (C_1 \oplus C_2) = (D \cap A_1 \oplus D \cap A_2) \cap (C_1 \oplus C_2) = (D_1 \cap C_1) \oplus (D_2 \cap C_2) \ll_J F_1 \oplus F_2.$

Proposition 2.13: Let $A = \bigoplus_{i \in I} A_i$ be a direct sum of the submodules $\{A_i\}_{i \in I}$ of A, if A is F-*J*-semi regular, then each A_i is F_i -*J*-semi regular where $F_i = F \cap A_i$.

Proof: Let $x_i \in A_i$, since $x_i \in A$ and A is F-J-semi regular, it is implies that there exists $B_i \leq Rx_i$, where B_i is projective and it is a direct summand of A, since $A = B_i \oplus C_i$ such that $C_i \leq A$ and $Rx_i \cap C_i \ll_J F$ for all $i \in I$. Now $A_i \cap A = A_i \cap (B_i \oplus C_i) = B_i \oplus (A_i \cap C_i)$, since B_i is a direct summand of A_i , where B_i is projective and $(C_i \cap A_i) \cap Rx_i \leq Rx_i \cap C_i \ll_J F$. Hence $(C_i \cap A_i) \cap Rx_i \leq A_i \cap F \leq F$, but $= \bigoplus_{i \in I} A_i$. Therefore, $F = \bigoplus_{i \in I} (A_i \cap F)$. Since $A_i \cap F$ is direct summand of F and $(A_i \cap C_i) \cap Rx_i \ll_J A_i \cap F$. Therefore, A_i is F_i -J-semi regular module for all i such that $i \in I$.

3- R - F - J –semi regular modules

This section is devoted to introduce R - F - J -semi regular module , which is a generalization of the F - J -semi regular module .

Definition 3.1:-

Let *A* be any *R*-module and let *F* be a proper submodule of . A module *A* is called *R***-***F***-***J***-semi regular** module if for each $x \in A$ such that $Rad_J(A) \leq F$, then there exists a projective summand submodule *B* of *Rx* such that $A = B \oplus C$, $\leq A$, and $C \cap Rx \ll_J F$.

Examples 3.2:-

1. Z_6 as Z_6 -module is R-F-J-semi regular module for every proper submodule F of Z_6 .

2. Z_4 as Z-module is not $R \cdot \langle \overline{2} \rangle$ -J-semi regular module.

3. Every F - J – semi regular module is R - F - J – semi regular module. However, the converse is not true by (2)

Proposition 3.3:-

Let $A = A_1 \bigoplus A_2$ be a direct sum of a projective submodules A_i of for i = 1,2. If A is R-F-J-semi regular, then A_i is R- F_i -J-semi regular module for all i = 1,2, where $F = F_1 \bigoplus F_2$

Proof: Let $Rx_1 \leq A_1$ such that $Rad_J(A_1) \leq Rx_1$ so that $Rad_J(A) \leq RX_1 + Rad_J(A)$, since A is R-F-J-semi regular, then there exists a projective submodule $B B \leq Rx$, where B is a direct summand of A, and $A = B \bigoplus C$ for some $C \leq A$ and $C \cap (Rx_1 + Rad_J(A)) \ll_J F$. Hence $A_1 = (B \bigoplus C) \cap A_1 = (B \cap A_1) \bigoplus (C \cap A_1)$, since A_1 is projective, then $B \cap A_1$ is projective, now $(C \cap A_1) \cap (Rx_1 + Rad_J(A)) \leq C \cap Rx_1 + Rad_J(A) \ll_J F = F_1 \bigoplus F_2$, and $B \cap Rx_1 \leq F_1$, because of F_1 is direct summand of F, then $C \cap Rx_1 \ll_J F_1$, by[3]. By the same way one can get for A_2 .

Proposition 3.4:-

Let A be a duo module such that $A = A_1 \bigoplus A_2$. If A_i is R-F-J-semi regular module $(\forall i = 1,2)$, then A is R-F-J-semi regular module where $F = F_1 \bigoplus F_2$

Proof: Let Rx be a cyclic submodule of A such that $Rad_J(A) \leq Rx$, then $Rad_J(A) \cap A_i \leq Rx \cap A_i$, i = 1,2, but $Rad_J(A_i) \leq Rad_J(A) \cap A_i \leq Rx \cap A_i$ and A_i is R-F-J-semi regular

module for all i = 1,2, then there exists a projective submodule $B_i \leq Rx \cap A_i$ and $A_i = B_i \bigoplus C_i$ for some $C_i \leq A_i$, (i = 1,2) with $C_i \cap Rx_i \ll_J F_i$. Now $= A_1 \bigoplus A_2 = (B_1 \bigoplus B_2) \bigoplus (C_1 \bigoplus C_2)$, $B_1 \bigoplus B_2$ is projective and $(C_1 \bigoplus C_2) \cap Rx = (C_1 \bigoplus C_2) \cap (Rx \cap A_1) \bigoplus (Rx \cap A_1) \bigoplus (Rx \cap A_2)) = (C_1 \cap Rx \cap A_1) \bigoplus (C_2 \cap Rx \cap A_2) \leq (C_1 \cap Rx_1) \bigoplus (C_2 \cap Rx_2) \ll_J F_1 \bigoplus F_2 = F$ [3].

proposition 3.5:-

Let A be an R-module and D be a submodule of A such that $Rad_J(A) \leq D$ and F is a proper fully invariant submodule of , the following are equivalent :

1. There exists a decomposition $A = B \oplus C$ such that B is projective submodule of D and $\cap C \ll_I F$.

2. There exists a homomorphism $\alpha: A \to D$ such that $\alpha^2 = \alpha$, $\alpha(A)$ is projective and $(I - \alpha)(D) \ll_I F$.

3. *D* can be written as $D = B \bigoplus S$, where *B* is projective summand and $S \ll_I F$.

Proof :1 \rightarrow 2) Let *D* be a submodule of *A*, From our assumption, we have $A = B \oplus C$ where *B* is a projective submodule of *D* and $D \cap C \ll_J F$ by the modular law, D = B $\oplus (C \cap D)$. Let $\alpha: A \rightarrow B$ be the projective map, it is clear $\alpha^2 = \alpha$ and $\alpha(A)$ is a projective. Now consider the map $(I - \alpha): A \rightarrow C$ and $(I - \alpha)(D) \leq C$ if $\in (I - \alpha)(D)$, then $x = d - \alpha(d)$ for some $d \in D$ but $\alpha(x) \in B \leq D$. Therefore $x \in D$ and $x \in D \cap C \ll_J F$. This implies that $(I - \alpha)(D) \leq D \cap C \ll_J F$.

 $2 \to 1$) Assume that there exists a homomorphism $\alpha: A \to D$ such that $\alpha^2 = \alpha$, $\alpha(A)$ is projective and $(I - \alpha)(D) \ll_J F$. Claim that $A = \alpha(A) \oplus (I - \alpha)(A)$ if $a \in A$, then $= a + \alpha(a) - \alpha(a) = \alpha(a) + a - \alpha(a)$, thus $A = \alpha(A) + (I - \alpha)(A)$. Now let $x \in \alpha(A) \cap (I - \alpha)(A)$ and $= \alpha(a_1)$, $x = (I - \alpha)(a_2)$ for some $a_1, a_2 \in A$, so that $\alpha(x) = \alpha(a_1) = \alpha(a_2) - \alpha(a_2) = 0$, hence $\alpha(a_1) = 0$ and hence x = 0 $\alpha(A)$ is projective, if $t \in D \cap (I - \alpha)(A)$, then $t \in D$ and $t \in (I - \alpha)(A)$, since $t \in (I - \alpha)(A)$ it implies that $t = (I - \alpha)(a)$

Where $\in A$, now $t = a - \alpha(a)$ and hence $a \in D$ so that $t \in (I - \alpha)(D)$. Therefore $D \cap (I - \alpha)(A) \le (I - \alpha)(D) \ll_I F$.

 $3 \to 1$) Let D be submodule of A so that by our assumption $D = B \bigoplus S$ where B is projective summand of A and $S \ll_J F$ and then $A = B \bigoplus C$ for some submodule C of A, by the modular law $D = B \bigoplus (D \cap C)$ let $P: A \to C$ the projection map, claim that $P(S) = P(D \cap C)$, $P(D) = P(B) \bigoplus P(S) = P(S)$. On other hand, $P(D) = P(B) \bigoplus P(D) \bigoplus P(D \cap C) = P(D \cap C)$ thus $D \cap C = P(S) \le P(F)$, because of F is fully invariant submodule of , therefore $P(F) \le F$ and $D \cap C \ll_J F$.

4- FJ-hollow semi regular and CF-J-semi regular modules

We introduce the concepts of F –Jacobson hollow semi regular module and CF-J-semiregular module was introduced. Some of their properties are also investigated .

Definition 4.1: Let A be R-module and F a proper submodule of A. A proper submodule A is called F-jacobson hollow semi regular (for short FJ —hollow semi regular) if for any cyclic submodule B of A with $\frac{A}{B}$ is J —hollow , then there exists C a projective submodule of B such that $A = C \bigoplus \acute{C}$ where $\acute{C} \le A$ and $\acute{C} \cap B \ll_J F$.

Proposition 4.2:-

Let $A = A_1 \bigoplus A_2$ be a duo module, if A_i *FJ*-hollow semi regular (i = 1,2), then A is *FJ*-hollow semi regular where $F = F_1 \bigoplus F_2$ provided that $B \cap A_i \neq A_i$ (i = 1,2).

Proof: let *B* be a cyclic submodule of *A* such that $\frac{A}{B}J$ -hllow, so that $B = B \cap A_1 \bigoplus B \cap A_2$ $\frac{A}{B} \cong \frac{A_1 \bigoplus A_2}{(B \cap A_1) \bigoplus (B \cap A_2)} \cong \frac{A_1}{B \cap A_1} \bigoplus \frac{A_2}{B \cap A_2}$, because of $\frac{A}{B}$ is *J*-hollow, then by [8], $\frac{A_1}{B \cap A_1}$ and $\frac{A_2}{B \cap A_2}$ are *J*-hollow. Thus, there exists $C_i \leq A_i$ where C_i is projective summand of A_i i.e $\exists \hat{C}_i \leq A_i$ such that $A_i = c_i \bigoplus \hat{C}_i$ and $\hat{C}_i \cap (B \cap A_i) \ll_i F_i$

Now $A = A_1 \bigoplus A_2 = (C_1 \bigoplus \acute{C_1}) \bigoplus (C_2 \bigoplus \acute{C_2}) = (C_1 \bigoplus C_2) \bigoplus \acute{C_1} \bigoplus \acute{C_2}$, $C_1 \bigoplus C_2$ is projective and $B \cap \acute{C_1} \bigoplus \acute{C_2} = (B \cap A_1) \bigoplus (B \cap A_2) \cap (\acute{C_1} \bigoplus \acute{C_2}) = (B \cap A_1 \cap \acute{C_1}) \bigoplus (B \cap A_2 \cap \acute{C_2}) \ll_J F_1 \bigoplus F_2$ by [9], then $B \cap (\acute{C_1} \bigoplus \acute{C_2}) \ll_J F$. Therefore A is FJ -hollow semi regular module.

Proposition 4. **3**:- Let $A = A_1 \bigoplus A_2$, if A is FJ-hollow semi regular module, then A_1 and A_2 are F_iJ -hollow semi regular where $F = F_1 \bigoplus F_2$ provided that $\frac{A}{B_i}$ is J-hollow for each $B_i \le A_i$ (i = 1, 2)

Proof: let $B_1 \leq A_1$ such that B_1 is cyclic and $\frac{A_1}{B_1}$ is *J*-hollow, $B_1 \leq A_1 \leq A$, so that B_1 is a cyclic submodule of A, but $\frac{A}{B_i}$ is *J*-hollow, then there exists $C_1 \leq B_1$, C_1 is projective summand of A and $A = C_1 \bigoplus \acute{C_1}$ $\acute{C_1} \leq A_1$, and $B_1 \cap \acute{C_1} \ll_J F$, since $B_1 \cap \acute{C_1} \leq F_1 \leq F$ and F_1 is a direct summand of F, then $B_1 \cap \acute{C_1} \ll_J F_1$ [3]. Now $A_1 \cap A = A_1 \cap (C_1 \bigoplus \acute{C_1}) = C_1 \bigoplus (A_1 \cap \acute{C_1})$

 $B_1 = C_1 \bigoplus S_1$ and $S_1 \ll_J A$, and $A_1 \cap A = A_1 \cap (C_1 \bigoplus \acute{C_1}) = C_1 \bigoplus (A_1 \bigoplus \acute{C_1})$ thus C_1 is projective summand of A_1 in B_1 , $B \cap (A_1 \cap \acute{C_1}) = A_1 \cap B \cap \acute{C} \leq B \cap \acute{C_1} \ll_J F_1$, then $B \cap (A_1 \cap \acute{C_1}) \ll_J F_1 \to A_1$ is F_1J -hollow semi regular.

Corollary4. 4 :- If $A = A_1 \bigoplus A_2 \bigoplus ... \bigoplus A_n$ be a duo module , then A is FJ -hollow semi regular if and only if A_i is F_iJ -hollow semi regular where $F = F_1 \bigoplus F_2 \bigoplus ... \bigoplus F_n$ provided $A_i \cap B \neq A_i$, $\forall B \leq A \forall i = 1, 2, ..., n$.

Proposition 4.5: Let A_1 and A_2 be J —hollow modules provided that $A_i \cap B \neq A_i$ (i = 1,2), where B is a cyclic submodule of A.

if $A = A_1 \bigoplus A_2$, then the following are equivalent

1. *A* is *FJ* –hollow semi regular .

2. A is FJ —semi regular.

Proof : 1 → 2) Let *B* be a cyclic submodule of *A*. since A_1 and A_2 are *J* -hollow, then *A* is *J* -hollow and $\frac{A}{B}J$ -hollow by [9] but *A* is *FJ* -hollow semi regular, then there exists *C* a submodule projective of *B* such that $A = C \oplus \acute{C}$, $\acute{C} \leq A$ and $\acute{C} \cap A \ll_J F$, then *A* is *FJ* -semi regular.

 $2 \rightarrow 1$) it is easy to prove that .

Recall that a submodule B of an R-module A is called cofinite if $\frac{A}{B}$ is finitely generated [10].

Definition 4.6: Let *A* be an *R*-module and *F* be a proper submodule of *A*, then *A* is called cofinitely *F*-Jacobson semi regular module (for short *CFJ* –semi regular module) if for any coffinite submodule *B* of *A*, there exists *C* projective submodule of *B* such that $A = C \oplus \acute{C}$ and $B \cap \acute{C} \ll_J F$ where $\acute{C} \leq A$.

Examples 4.7:-

1. Z as z-module, let F = 3Z 2Z < Z, such that $\frac{z}{2Z} \cong Z_2$ is finitely generated, there exists 0 < 2Z such that 0 is projective and $Z = 0 \oplus Z$ $Z \cap 2Z = 2Z$ is not J-small in 3Z since 2Z is not containd 3Z, then Z as Z-module is not C3Z-semi regular.

2. Z_6 as Z_6 -module, $F = \langle \overline{3} \rangle$ $\langle \overline{2} \rangle < Z_6$, $\frac{Z_6}{\langle \overline{2} \rangle} \cong \langle \overline{3} \rangle$ is finitely generated, then there exists $\langle \overline{2} \rangle \leq Z_6$ is projective $\langle \overline{2} \rangle \oplus \langle \overline{3} \rangle = Z_6$ $\langle \overline{2} \rangle \cap \langle \overline{3} \rangle = 0 \ll_J \langle \overline{3} \rangle$. Therefore, Z_6 is $C \langle \overline{3} \rangle$ -semi regular.

Proposition 4.8:- Let *A* be *CFJ* –semi regular *R*-module , let $B \le F$ submodule of *A* such that $\frac{B+C}{B}$ is projective for any *C* projective submodule of *A* , then $\frac{A}{B}$ is $C \frac{F}{B} - J$ –semi regular module .

Proof: Let $\frac{D}{B}$ cofinite submodule of $\frac{A}{B} \cdot \frac{A/B}{D/B} \cong \frac{A}{D}$ is finitely generated, since A is CFJ-semi regular, then there exists C is projective submodule of D such that $A = C \bigoplus \acute{C}$, $\acute{C} \cap D \ll_J F$. $\cdot \frac{A}{B} = \frac{C \oplus \acute{C}}{B} = \frac{C+B}{B} \bigoplus \frac{\acute{C}+B}{B}$, $\frac{C+B}{B}$ is projective in $\frac{D}{B}$, now $\frac{\acute{C}+B}{B} \cap \frac{D}{B} = \frac{(\acute{C}+B)\cap D}{B} \ll_J \frac{F}{B}$, then $\frac{A}{B}$ is C^{F}/BJ -semi regular module.

Proposition 4.9:- Let $= A_1 \bigoplus A_2$, then A_1 and A_2 are $CF_i - J$ -semi regular if and only if A is CF - J -semi regular where $F = F_1 \bigoplus F_2$.

Proof: let *L* be a cofinite submodule of *A*, $\frac{A}{L} = \frac{A_1+L}{L} \bigoplus \frac{A_2+L}{L}$, so that $\frac{A_{/L}}{A_2+L_{/L}} \cong \frac{A_1+L}{L} \cong \frac{A_1}{A_1 \cap L}$ is finitely generated, then $A_1 \cap L$ is cofinite in A_1 , since A_1 is CF_1J –semi regular then there exists C_1 a projective submodule of $A_1 \cap L$ such that $A_1 = C_1 \bigoplus C_1$ and $C_1 \cap L \ll_J F_1$ and similarly there exists C_2 a projective submodule of $A_2 \cap L$ such that $A_2 = C_2 \bigoplus C_2$ and $C_2 \cap L \ll_J F_2$

 $A = A_1 \bigoplus A_2 = (C_1 \bigoplus C_2) \bigoplus (\acute{C}_1 \bigoplus \acute{C}_2)$, $C_1 \bigoplus C_2$ is projective and $(\acute{C}_1 \bigoplus \acute{C}_2) \cap L = (\acute{C}_1 \cap L) \bigoplus (\acute{C}_2 \cap L) \ll_J F_1 \bigoplus F_2$, then $(\acute{C}_1 \bigoplus \acute{C}_2) \cap L \ll_J F$, then A is CF - J-semi regular.

Conversly, let *L* cofinite submodule in A_1 , $\frac{A}{L} = \frac{A_1 \oplus A_2}{L} = \frac{A_1}{L} \oplus \frac{A_2 + L}{L}$, $\frac{A_{/L}}{A_2 + L_{/L}} \cong \frac{A_1}{L}$, so that $\frac{A}{L}$ finitely generated, thus there exists *C* a projective submodule of *L* such that $A = C \oplus \acute{C}$ and $L \cap \acute{C} \ll_J A$, $A = C \oplus \acute{C}$ and $A_1 \cap A = A_1 \cap (C \oplus \acute{C}) = C \oplus (A_1 \cap \acute{C})$, $(A_1 \cap \acute{C}) \cap L = (A_1 \cap (\acute{C} \cap L)) \leq \acute{C} \cap L \ll_J F$ and F_1 is direct summand of *F*. Hence, $A_1 \cap \acute{C} \cap L \ll_J F_1$ by [3], therefore A_1 is $CF_1 - J$ -semi regular module.

Proposition 4.10 :- If \overline{A} is a projective *R*-module and *CFJ* —semi regular module where *F* is proper submodule of *A* , then $\frac{A}{B}$ has projective J-cover for every cofinite submodule *B* of *A* .

Proof: Let *A* be a projective and *CFJ*—semi regular module and *B* a cofinite submodule of *A*, so that there exists a decomposition $A = C \bigoplus \acute{C}$ such that *C* is a projective submodule of *B* and $B \cap \acute{C} \ll_J F$ since $F \leq A$, then $B \cap \acute{C} \ll_J A$, consider $\pi: \acute{C} \rightarrow \frac{\acute{C}}{(\acute{C} \cap B)}$ epimorphism and Ker (π) = $(\acute{C} \cap B)$. By the second isomorphism theorem $\frac{A}{B} = \frac{B+\acute{C}}{B} \cong \frac{\acute{C}}{B\cap\acute{C}}$, since $(B \cap \acute{C}) \leq \acute{C} \leq A$ and $(B \cap \acute{C}) \ll_J A$ and \acute{C} is a direct summand of *A*, then $(B \cap \acute{C}) \ll_J \acute{C}$. Therefore $\frac{A}{B}$ has a projective *J*-cover.

Proposition 4.11:- Let *A* be an indecomposable finitely generated *R*-module and *F* is a proper submodule of *A*, if *A* is CF - J -semi regular, then *A* is *J*-semi hollow.

Proof: Let B < A be a proper cofinite submodule in A and since A is CF - J -semi regular, then there exists a decomposition $A = C \oplus \acute{C}$ such that $C \leq B$ and C is projective and $B \cap \acute{C} \ll_{I} F$, but A is indecomposable, then either C = 0 or C = A if C = A, then B = A,

we get a contradiction, thus C = 0 and $\dot{C} = A$ imply that $B \cap \dot{C} = B \ll_J F \leq A$ and $B \ll_I A$, therefore A is J-semi hollow.

Recall that $Rad_{J}(A)$ is the sum of all *J*-small submodules of A [3]. It is clear that $(A) \leq Rad_{J}(A)$. However, the converse in general is not true see [3].

Definition 4. **12**:- Let A be an R-module. If F proper in A, then A is called F- Rad_J -semi regular module and if for each cyclic Rx in A such that $Rad_J(A) \leq Rx$, then there exists a decomposition $A = C \bigoplus \acute{C}$, where C is a projective submodule of Rx and $\acute{C} \cap Rx \ll_J F$.

Example 4.13:-

1- Consider Z_6 as Z_6 -module, and $F = \langle \overline{2} \rangle$ proper in Z_6 $Rad_J(Z_6) = Z_6$, then $Rad_J(Z_6) \leq \langle \overline{1} \rangle$ and Z_6 is projective summand $Z_6 = Z_6 \bigoplus \{0\}$ and $Z_6 \cap \{0\} = \{0\} \ll_J F$ then Z_6 is F- Rad_J -semi regular module.

2- Consider Z as Z-module , and F any proper in Z , $Rad_J(Z) = Z$, then Z has projective summand $Z = Z \oplus \{0\}$, and $Z \cap \{0\} = \{0\} \{0\} \ll_J F$, then Z is F-Rad_J-semi regular module .

3- Consider Z_4 as Z-module and $F = \langle \overline{2} \rangle$, $Rad_J(Z_4) = \langle \overline{2} \rangle$ since $Z_4 = Z_4 \bigoplus \{0\}$ such that only $\{0\}$ is projective submodule in Z_4 such that $Rad_J(Z_4) \leq Z_4$ and $Z_4 \cap Z_4 = Z_4$ but Z_4 is not J-small in F, then Z_4 as Z-module is not F-Rad_J-semi regular module.

Proposition4.14:- If A is a non-cyclic J-semi hollow R-module and F is proper direct summand of A, then A is F- Rad_{I} -semi regular module.

Proof: Let Rx be a submodule of A such that $Rad_J(A) \le Rx$, $A = A \bigoplus \{0\}$ and $Rx \cap A = Rx$ since $Rx \ne A$, then $Rx \ll_J A$ and $Rx \ll_J F$, therefore A is F-Rad_J-semi regular module. **Proposition 4.15:-** Let A_1 , A_2 be R-modules and $A = A_1 \bigoplus A_2$ be a duo module, then A_1 and A_2 are F-Rad_J-semi regular module if and only if A is F-Rad_J-semi regular module, where $= F_1 \bigoplus F_2$, F_i proper in F_i for i = 1, 2.

Proof : Let $Rx \leq A$ such that $Rad_{I}(A) \leq Rx$, since A is duo module , then $Rx = (Rx \cap A_{1}) \bigoplus (Rx \cap A_{2})$ and $Rad_{I}(A_{i}) \leq Rad_{I}(A) \cap A_{i} \leq Rx \cap A_{i}$ [3].

Since A_i is F- Rad_J -semi regular module (i = 1,2), then there exists a projective summand of A_i , $C_i \leq A_i \cap Rx$, (i = 1,2) such that $A_i = C_i \oplus \acute{C}_i$ for $\acute{C}_i \leq A_i$, (i = 1,2) and $\acute{C}_i \cap (A_i \cap Rx_i) \ll_J F_i$, put $C = C_1 \oplus C_2$, where C is a projective summand of A and $A = (C_1 \oplus C_2) \oplus (\acute{C}_1 \oplus \acute{C}_2)$, $(\acute{C}_1 \oplus \acute{C}_2) \cap Rx = (\acute{C}_1 \oplus \acute{C}_2) \cap (Rx \cap A_1) \oplus (Rx \cap A_2) =$ $(\acute{C}_1 \cap Rx \cap A_1) \oplus (\acute{C}_2 \cap Rx \cap A_2) \ll_J F_1 \oplus F_2 = F.$

Conversely, let $Rx_i \leq A_i$, such that $Rad_J(A_i) \leq Rx_i$, (i = 1,2), then from [3], we have $Rad_J(A_1) \bigoplus Rad_J(A_2) = Rad_J(A) \leq Rx_1 \bigoplus Rx_2$, since A is F- Rad_J -semi regular module, then there exists a projective summand C of A such that $C \leq Rx_1 \bigoplus Rx_2$, $A = C \bigoplus \acute{C}$, $\acute{C} \leq A$, and $\acute{C} \cap (Rx_1 \bigoplus Rx_2) \ll_J F$. Now $A_i = A_i \cap (C \bigoplus \acute{C}) = A_i \cap C \bigoplus (A_i \cap \acute{C})$. Since $x_i \leq A_i$, then $A_i \cap C \leq A_i$ and $Rx_i \cap C \leq A_i$ for i = 1, 2 ($A_i \cap \acute{C}) \cap Rx_i \leq (\acute{C} \cap Rx_i) \ll_J F$, $\acute{C} \cap Rx_i \leq F_i$ since F_i is a direct summand of F for i = 1, 2, from [8], we get $(\acute{C} \cap Rx_i \cap A_i) \ll_J F_i$.

Proposition 4.16:- If A be an R-module , $Rad_J(A) \leq B$ is a submodule of A , and F is proper fully invariant submodule of A , then the following statements are equivalent:

1- There exists a decomposition $A = C \oplus \acute{C}$, such that $C \leq B$ and C is a projective summand of A and $B \cap \acute{C} \ll_I F$

2- There exists a homomorphism $\alpha: A \to B$ such that $\alpha^2 = \alpha, \alpha(A)$ is projective and $(I - \alpha)(A) \ll_J F$

3- Let *B* can be written as $B = C \oplus S$, where *C* is projective summand of *A* and $S \ll_J F$ **Proof**: $1 \rightarrow 2$) Let $B \leq A$ such that $Rad_J(A) \leq B$ by our assumption, we get $A = C \oplus C$, where *C* is projective submodule of *B* and $C \leq A$ with $B \cap C \ll_J F$. Therefore $B = B \cap (C \oplus C) = C \oplus (B \cap C)$.

Let $\alpha: A \to B$ the projection homomorphism .It is clear that $\alpha^2 = \alpha$ and $\alpha(A)$ is projective. Now consider the map $(I - \alpha): A \to \acute{C}, (I - \alpha)(\acute{C}) \leq \acute{C}$, let $x \in (I - \alpha)(B)$ then there exists $b \in B$ such that $x = (I - \alpha)(b) = b - \alpha(b)$, but $\alpha(x) \in C \leq B$, thus $x \in B$ and $x \in B \cap \acute{C} \ll_I F$ and $(I - \alpha)(B) \leq B \cap \acute{C} \ll_I F$.

 $2 \rightarrow 3$) Suppose that there exists a homomorphism $\alpha: A \rightarrow B$ such that $\alpha^2 = \alpha$, $\alpha(A)$ is projective and $(I - \alpha)(A)A \ll_J F$. Claim that $A = \alpha(A) \oplus (I - \alpha)(A)$, let $a \in A$, then $a = a + \alpha(a) - \alpha(a) = \alpha(a) + a - \alpha(a) = \alpha(a) + (I - \alpha)(a)$, thus $A = \alpha(A) + (I - \alpha)(A)$, if $x \in \alpha(A) \cap (I - \alpha)(A)$, then $x = \alpha(a_1)$ and $x = (I - \alpha)(a_2)$ for some $a_1, a_2 \in A$, it implies that $\alpha(x) = \alpha(a_1) = \alpha(a_2) - \alpha^2(a_2) = \alpha(a_2) - \alpha(a_2) = 0$, therefore x = 0 and $A = \alpha(A) \oplus (I - \alpha)(A)$, $\alpha(A)$ is projective. Now, let $y \in B \cap (I - \alpha)(A)$ so that $\in B$, $y \in (I - \alpha)(A)$, and $\in (I - \alpha)(B)$, hence $B \cap (I - \alpha)(A) \leq (I - \alpha)(A) \ll_J F$. If one takes $\alpha(A) = C$, $(I - \alpha)(A) = C$, then we get the statement 1.

 $3 \to 1$) Let $B \leq A$ such that $ad_J(A) \leq B$ so that $B = C \oplus S$, where C is projective and $S \ll_J F$ hence $A = C \oplus \acute{C}$ for $\acute{C} \leq A$ such that $\acute{C} \cap B = (C \oplus S) \cap \acute{C} = S \cap \acute{C}$, but $S \cap \acute{C} \leq S \ll_J F$, then $B \cap \acute{C} \ll_J F$.

Proposition 4.17:- Every semi simple projective *R*-module *A* is F-*Rad*_J-semi regular module. **Proof :** Let Rx be submodule of *A* such that Rad_J - $(A) \le Rx$ and *F* is proper submodule of *A*, since *A* is semi simple, then Rx is a direct summand of *A*, $A = Rx \bigoplus C$ for some submodule *C* of *M* and since *A* is projective, then Rx is projective. Now, $Rx \cap C = \{0\} \ll_J F$, therefore *A* is F-*Rad*_J-semi regular module.

References :

- P. Flury. "Hollow modules and local endomorphism rings", Pac. J. Mat., vol. 53, pp. 379-385 1974.
- [2] Kasch, F. "Modules and Rings," Academic press, London, 1982.
- [3] A., Kabban and Wasan Khalid. "On Jacobson Small Submodules," *Iraqi Journal of Science*, vol. 60, no. 7, pp. 1584-1591, 2019.
- [4] Zelmanowitz, J. "Regular modules". Trans. Amer. Math. Soc. Vol. 163, pp. 341–355, 1973.
- [5] Lewaa R. Turki and Wasan Khalid ."J-semi regular modules," J. Phys.: Conf. Ser. Vol. 1818, 012215, 2021.
- [6] M.Alkan and Ozcan."Semiregular modules with respect to fully inversint submodules," *Comm* .*Alg.*, vol. 11, pp. 4285-4301, 2004.
- [7] N.Orhan ,D.K.Tutunc ,and R.Tribak. "On Hollow-lifiting Modules," *Taiwanese J.Math* ., pp. 545-568, 2007.
- [8] A., Ali Hussein and W., Khalid. " ⊕ Rad_J-supplemented modules," J. Phys.: Conf. Ser. Vol. 1818, 012203, 2021.
- [9] A., Kabban and W., Khalid ."On J-lifting Modules," J. Phys.: Conf. Ser. Vol. 1530, 012025, 2020.
- [10] R. Alizade, G. Bilhan, and P. F. Smith. "Modules whose maximal submodules have supplements", *Comm. Algebra*, vol. 29, no. 6, pp. 389–2405, 2001.