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Abstract

In this study we introduce the concepts of topological I'-ring as generalization of
Topological ring. We also present and study the concepts of topological I"-ring,
Homomorphism of topological T'-ring, and compact of topological I'-ring. The
results have
confirmed that: if (G, +, . ,J) is a compact topological I'-ring and
f:(G,+,.,J)—(G*+,., T*) epimorphism topological I'-ring Then G* is compact.
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1. INTRODUCTION

The concepts of topological ring is one of the most important topics in topological algebra.
The objective of the concept of topological I'-ring is to generalize the definition of topological
ring.

The concept of I'-ring was presented by Nobusawa 1964 in [1], and it was generalized by
Barnes 1966 [2] as below:

Let M and T" be two additive abelian groups. Suppose that there is a mapping from
MxI'xM—M, the image of (a,a,b) is denoted by aab, a,b M and a I, that satisfies the
following for all a,b,c M, a,p I':

1) (atb)oc= aact+ boc
a(a +B )c = aoc + afc
aob+c)=aab+taac
i1) ( aa b)Bc = aa(bfc)

Then M is called a I'-ring., where every ring is a I'-ring. M is said to be 2-torsion free if 2a =
0 implies a=0 for all a€ M. Besides, M is called a prime I'-ring if for all a,b M, aMI'Mb = (0)
implies either a=0 or b=0, and M is called a semiprime if aMI'Ma=(0) with a€M implies a=0.
Note that every prime I'-ring is obviously a semiprime [3], [4] ,[5-10].
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In this paper we present the concept of topological I'-ring as generalization of topological
ring where we get every topological ring is topological T'-ring. In general the converse is not
true .

In this paper we introduce and study the concepts of topological I'-ring, norm, homomorphism
of topological I'-ring some type of homomorphism kernel of homomorphism, and natural
mapping as well as we present the compact of topological I'-rings. We also prove that: If
£G4+, .,T) = (Gy,+,.,T*) is homomorphism of topological I'-ring G onto topological T-
ring Gy,then

1)If 1 is an ideal of topological I'-ring of G then f(I ) is an ideal of topological I'- ring G .

2) If J is an ideal of topological I'-ring of G; then £~ (J) is an ideal of topological I'-ring G.
The results have confirmed that: If f:(G,+, ., J)— (G*,+',.", T*) is isomorphism topological
I'-ring from G into compact topological I'-ring G* then G is compact topological I'-ring.

2. Topological I'- Rings:

Basic concepts related to the talked topic are given as follows with few important
properties has been presented in the next section.

Definition (2-1): A topology 7 on aI'-ring G is a topological I"-ring, which is denoted by (G,
+, ., 1), iff:

1)(m,n)—=m-+n is continuous from GxG into G

ii)(m,y), » m a n is continuous from GXG into G

iii)m —- m is continuous from GXG into G

where G is given topology t and GXxG the Cartesian product topology determined by .
Example ( 2-2) : Let G be any I'-ring andt be discrete topology on G then (G,+, . ,7) is
topology I'-ring, which is called discrete topological I'-ring

Example (2-3) : Let G be any I'-ring andt be indiscrete topology on G then (G,+, . ,7) is
topology I'-ring,which is called indiscrete topological I"-ring

Example (2-4) : Let R be the set of all real numbers and Q be the set of all rational numbers
then R is Q-ring if t is usual topology on R ,and then (R,+, ., 7) is topological Q-ring, which
is called usual topological I'-ring. By Definition (2.1), G=R and I'= Q, also the operations +,
- and - are continuous from R X R into R.

Since every ring is I'-ring, then we can get the following lemma

Lemma (2-5): Every topological ring is topological I'-ring

The next example shows that the converse of Lemma (2-5) is not true in general.

a b
Example (2-6):Let G ={(c d) :a,b,c,d,s, t € Z} and I'= {(; i 127) 'X.Y.Z.W. UV E Z}
s t

then G is I'-ring, if we define the discrete topology 7 on G then (G, +, ., 7) is topological I'-
ring. However (G, +, ., 7) is not topological ring .

Definition (2-7): A function N from a I'-ring G into R*U {0} is a norm if the

following conditions hold for all p, heG and ael

1)N(0)=0

2) N(p+h) <N(P)+N (h)

3) N(-p)=N(p)

4) N(pah) <N(p)aN(h)

5) N(p) =0 if and only if p=0.

Remark (2-8): If N is a norm on a I'- ring G, then d defined by d(p,h) = N(p-h) for all p,heG
and oel’, is a metric. Indeed (1) and (5) imply that d(p,h)=0 iff p=h, (3) implies that d(p,h)=
d(h,p) , and (2) yields the triangle inequality.

Theorem (2.8): Let N be a norm on a I'-ring. The topology is given by the metric d which is
defined by N is a I'- ring topology

Proof: Leta, b, p, h €G and a €T.
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d(pth, atb)= N((p+h)-(a+b))

= N((p-a)+(h-b))

< N(p-a) + N(h-b)

=d(p,a) + d(h-b)
Hence the definition (2-1) (1) holds, for all a, b €G
d(-p.-a) = N(-p+a)

= N(p-a)
=d(p,a)

By (3) of definition 2-6-hence the definition 2-1 (2) holds. Finally for all p, aeG
d(pah,aab)= N((p-a) @ (h-b)+aa(h-b)+(p-a)aab)
<N(p-a)aN(h-b)+N(a)aN(h-b)+N(p-a)aN(b)
Hence the definition 2-1 (3) holds, and the proof is finished
Let f be a partial function from the carrier of S to R, we recall that f is said to be uniformly
continuous on X if and only if the following conditions are satisfied (i) X < dom f, and (ii) for
every r such that 0 < r there exists s such that 0 < s and for all x3, X, such that x;, x, € X and
lx1 — x2]| <s holds [f(x1) — f(x2) | < r.) from G into R*U {0}.
Theorem (2-9): Let N be a norm on a I'-ring G. for all p,heG, then|N(p) — N(h)| <N(p-h)
,and hence N is a uniformly continuous function .
Proof: N(p) = N((p-h)+h)

<N(p-h)+N(h)
Then N(h) —=N(p) < N(h—p)= N(p—nh)
Therefore |[N(p) — N(h)| < N(p — h)
Definition(2-10):Let (G, +, ., 7) be topological I'-ring. A basis of 7 is a collection B of t U =
u{B:BeB.}.
Theorem(2-11):The Cartesian product of topological I'-rings is a topological I'-ring .
Proof: "Let (G, +, ., ) and (G4, +, ., T;) are two topological spaces and B be a basis of T and
C be a basis for 7;then
H={BxC: BEB and C€eC} is a basis for the product topology (GXG1 ,+,., W)
Let (x,y) be any point of GXGiand N'be a neighborhood of (X,y)
Since E={XXxY: Xe tand YE 7, } is a basis for W there exists a member
XXxY of E such that (X,y)EXXYCN (1)
Since X is T-open and B is a basis for t there exists some BEB such that
xeBCX. Similarly there exists some CeC such that yeCCY. It follows that
(x,y)€ BXC € XXY cen(2)
Hence from (1) and (2) , we get (x,y) € BXCSV .This implies that H is basis for GXG1
3. HOMOMORPHISM of TOPOLOGICAL I'- RINGS:

We introduce and study in this section the following concepts subtopological I'-ring, ideal
of topological I'-ring, and homomorphism of topological I'-ring as well as some properties of
them are given.

Definition (3-1) : Let (G,+,., T) be topological I'-ring a subring S of topological I'- ring is
called topological I'-subring ( or called subtopological I'-ring) denoted by (S,+,., T's) where
A€ Ts Asc=AnS,forall A€T.

Every topological I'-ring (G,+,., T) have two topologica I'-subrings (0) and G itself which is
called trivial topologica I'-subrings. Any topological T'-subring except trivial is called proper
topological I'-subring.

Definition (3-2): A topological I"-subring (I, +, ., T) of topological I"-ring (G,+, . ,T) is called
an ideal of (G,+, . ,T) if I'GEI and GT'ICI.

Definition (3-3): Let (G,+,., T) and (G4, 4,7, T*)be two topological T'- rings.

Amap f: (G+,.,T) - (G, +',.",T") is called homomorphism of topological T'-ring , if
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(G, T)- (G4, T*) is continuous and f satisfies:

f(p+h)=f(p)+'f(h),and f(p.a.h) = f(p).'a.’'f(h), for all p,h € G and ael.

An epimorphism topological I'-ring if f is continuous map and epimorphism I'-ring, a
monomorphism topological I'- ring is a continuous mapping and monomorphism I'-ring. An
isomorphism topological I'-ring is a homeomorphism topological map ( A mapping
f:(X,Ty)—(Y,Ty) is called homeomorphism if f is 1-1 and onto also f and f* are continuous)
and isomorphic I'- rings, an automrphism topological I'-ring is a continuous mapping and
automorphism I"-ring.

Lemma (3-4):Let f: (G,+,., T) —(Gy,+, -, T*)be isomomorphism of topological I" -ring
then:

1) If S is a subtopological I'- ring of , thenf(S) is a subtopological I'-ring of G, .

2) If E is a subtopologicall'-ring of Gy,then f(E) is a subtopologicall-ring of G.

proof :We prove (2) and (1) by using the same technical

2) By assumption we get

(E,+,., T* g) is subtopologicall-ring of (Gy, +, -, T")

Since f is homomorphism

Therefore for all E€ T* ¢ thenf ™ (E)€ Tj-14,,

Now, let p,h € f™}(E) then f(p), 22222a f(h)€E and el

i)f(p-h)= £(p) — f(h)

Since f(p) , f(h)eE and E is subtopologicall-ring then f (p) — f(h)€E, and hence

p-he f*(E)

iN)f(pa h) = f(p)af(h)

Since f(p), f(h)€E, ael and E is subtopological I'- ring then f(p)af(h)€EE hence

pah € f *(E) . Therefore f(E) is subtopological I'- ring.

Lemma (3-5) : If fi(G,+, .,T)— (Gy,+,.,T*) is homomorphism of topological I'-ring G
onto topological I'-ring Gy,then

D)If T is an ideal of topological I'-ring of G then f(I ) is an ideal of topological I'- ring G .

2) If J is an ideal of topological I'-ring of G; then £~ (J) is an ideal of topological I'-ring G.
Proof:1) (i) By theorem (3-4) f(I) is a subtopological I"-ring

(i.e. f(I) #@ and a-bef(l), va,bef(l))

(ii) Letr € G, and for all a € f(I), and a€T.

TP. a/a’ref(Dand t ‘a.. a€ f(I)

wfisonto,then3reG st.,r =f(r)- - *

andixel.s.t. a=f(x)--- *x

since,reR , x €I andsince I is an ideal of aring

= X.ar€l and r.axel

= f(x.a.r) € f(l) and  f(r.a. x) € f(l)

= f(x) .~a . f(r) € f(D) and f(r) ‘a’ f(x) € f(I)

= aqla/tefl) and ralacf(l)

Therefore, f(I) is an ideal of topological I'-ring G;.

2)By using the same technic of (1) we get the require result.

,

Theorem (3-6): If f:(M,+,.,T) —» (My,+,7,T;) is homomorphism of topological I"-ring M
onto topological I'-ring M; then every homomorphism image of

1) If M is commutative topological I'-ring then M; is a commutative topological I'-ring.

2) If M is topological I'-ring with identity 1 then M, is a topological I'-ring with identity 1.
Proof: Since f is a homomorphism from a topological I'-ring (M,+,.,T) into a topological T
ring (M1,+', S ,T]_).

1) Suppose that ( M,+, ., T) be a commutative topological I"-ring

Let a,b € M, , ael and since fisonto,
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Then, 3x,yeM ,s.t.,a = f(x)and b = f(y)
~aab=f(x)af(y)=f(xay) (since fis homo.)

= f(y ox) ( since M is a comm. topological I"-ring)
=f(y) .. f(x) (since fishomo.)
=baa

Hence , M; is a commutative topological I'-ring
2) Suppose that M be a topological I"-ring with identity
Let a M since f is onto therefore 3 x EM s.t. a=f(X)
xol=lax=xX ,VXEM,ael.
= f(x al)=f(lox) =f(x)
= f(x) a f(1) =1(1) a f(x) =1f(x) [fis homomorphism ]
= aal =1Taa=a ,forall a eM;.
Thus, M is a topological I"-ring with identity 1'.
Definition (3-7):Let f: (M, +,.,T) » (M;,+,,T;) is homomorphism of topological I'-
ring s ,then the kernel of f is denoted by ker. ( f), and it is defined by
ker.( f) = { meM: f(m) = On,}
Lemma (3-8): If f: (G,+,., T) — (G*,+,,T*) is homomorphism of topological I'-ring G
into topological I'-ring G*, then the ker.(f) is an ideal of topological I"-ring G.
Proof: 1)Let p, he Kker. ( f) and fis homomorphism of topological T"-ring .,
we get f(p —h) = f(p) —f(h) = 06~
then p-he ker. ( f)
2)Let p, he ker. ( f),oel and fis homomorphism of topological I"-ring
we get f(pah) = f(p)af(h) = 04+
then pah€ ker. ( f)
Hence ker. ( f) is an ideal of topological I'-ring (G,+, ., 7).
Theorem (3-9): If fis homomorphism of topological I'-ring (G,+, . ,T) into topological I'-
ring (G*,+,7,T*) then fis one-one iff ker.(f)={0}.
Proof : Suppose that ker.(f)= {0}
Letr,e €G st , f(r) =fle) = f(r) —f(e) =0
f(r —e) =0 (f ishomo.)
r —e € Ker.f
But , Ker.f={0} > r—e=0= r=e
Suppose that f is one to one
Let r € Ker(f) = f(r) = 0 and since (0)=0, therefore f(r) = £(0)
Since ,fisonetoone = r =0=r € {0} = Ker(f) < {0}.
Since f(0)=0
= 0 € Ker.f = {0} € Ker(f)
Ker(f)={0} .
Theorem (3-10): If (I,+, . ) is an ideal of the topological I"-ring (M,+,.,T ) then the natural
map is a homomorphism from a topological I'-ring M to the topological quotient I'-ring
(M/1, +,.,T) with kernel equal to I.
Proof: Let m ,neM,a €Tl
1-nat;(m+n)=(m+n)+1 =(m+ 1)+ (E+ I)=nat;(m) + nat,;(n)
2- nat;(man) = (man) +1 = (m+1) a (E + I)=nat;(m)anat;(n)
nat;: (M, T)—(M/I,T) is continuous map since every open set VV in M/I then natl.™ (V) is open in
M.
Hence nat.; is homomorphism
Now, to prove nat; isonto
V m+l ER/l = I m €R s.t. nat;(m) = m+l
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~ nat; is onto.
Ker. (nat))={meR:nat; (m)=0+1}
={meR :m+1 =0+I}
={€R m+1 =1}
={meR :mel}
=1
Theorem (3-11): If f is homomorphism of topological I'-ring (G,+,.,T ) into topological I'-
ring (G*,+,7,T*) then M/ker. ( f) is isomorphic to topological I'-ring G* 1.
Proof: We define a map g from topological I'-ring (M/Kker. ( f),+, ., T) into topological T
ring (G*,+,7,T*) by g(E+ker.(f))= f(E), for all Ee G
It's clear that g is will define and one to one.
Now, to show g is homomorphism.
Let p+ ker. ( f), h+ ker.(f)e M/ker.(f)
g((p+ker.(f) +(h+ ker. (f))) = f(pth) = f(p) + f(h) =g(ptker.(f)) + g( h+ker(f))
g(((p+ Ker(fa( htker.(f)) = f(pah) = £(p) @ f(h) =g(p+ker. ( £))ag( h+ker. ( £))
To prove g is onto.
Let E+ ker. ( f)e M /ker.(f) where me G, since f is onto then there exist f(E) € G*such that
g (E+ ker. ( f))=f(E).hence g is onto.
Hence g is isomorphism I'-ring.
Now, since f is continuous therefore g is continuous.
Let U be an open set in G/ker(f)
Since g(E+ker(f))=f(E) and f is continuous, so it g™ is continuous
gt G*— G/ker.( f) and f is continuous then g™is continuous .
Hence the topological I'-ring G /Ker. ( f) is isomorphic topological I'-ring to G*.
Theorem (3-12): If M is a topological I'-ring let S be a subring, and | be an ideal of M.
Then:
(1)S+I={s+a:seS, ael}isatopological subring of M,
(2) Sn lisanideal of S.
(3) (S + 1)/ lis isomorphic topological I'-ringto S/(S N I).
Proof : It is clear so that the proof is omitted.
Theorem (3-13): Let (M,+,., T) be a topological I'-ring and let J c | be ideals of M. Then 1/J
is an ideal of M/J and

M o

Proof: Since | and J are ideals, they are non-empty and so that I/J = {a + J: a € I} is also
non-empty. Let a;, a; € I; m € M, and a € I'. By definition of addition , and multiplication of
the cosets , we have (a; +J) + (a2 +J) = (a1 + ap) +J, (m + J)a(a; + J) = maa; + J, and (a; +
J)a(m +J) = ajam + J. Since | is an ideal, a; + ap, maay, and a;am are contained in | so that
1/J is an ideal of M/J. Let ¢: M/J — M/I that sends m + J to m+ 1. It is clear that this is a well-
defined surjective homomorphism with kernel equal to I/J, and ¢ is also open map. Then
(M/)/(11d) is isomorphism topological I'-ring to M/I by the first isomorphism theorem.

4. COPMACT TOPOLOGICAL I'- RINGS:

Definition (4-1): Let (G,+, .,J) be a topological I'-ring ,the family{ G; €J: (G;, +, ., J i)}is
a proper subrings of G, for all i €A} is a cover topological I'-ring of (G,+, ., J) if G= U;ep Gi.
Definition (4-2): Let (G,+, ., J) be topological I'-ring then (G,+, ., () is compact topological
I'-ring if for every cover topological rings of (G,+, . ,J) there is a finite sub cover topological
Example(4-3): Every finite topological I'-ring is compact topological I'-ring.

Theorem (4-4):1f £:(G,+, ., J)— (G*,+'..", T") is isomorphism topological I'-ring from G ito
compact topological I'-ring G* then G is compact topological I'-ring.Proof : Suppose that S={
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Gi€J: (Gj, +,.) is a proper subrings of G, for all i €A} is a cover topological I'-ring of (G,+
, »J). That means G= U;ep G;. Therefore f(G)=G* = U;ep f(G*),where f(Gi) € T™.

Since G* is compact ,it follows that there is a finite subcover H € S

SuchthatG* € H

Since f is isomorphism we get G= f~1(#).where f~1(#) is a finite subcover of G.
Theorem (4-5): Every closed subset of a compact topological I"-ring space is compact.
Proof: Let B be a closed subset of the compact topological I"-ring (G, +,. ,J).

Let D*={ G €J: (Gj, +, . ) is a proper subrings of G, for all i €A} be a cover topological I'-
ring of D*. Since B is closed then G-B is open, and

C=D" U (G-B)is an open cover of G. Since G is compact topological ring, it has a finite
subcover, containing only finitely many members Gy, ...,, of D* and may contain G-B. Since
G=(G-B)U}L, G; it follows that BS U}, G; and D* has a finite subcover.

Theorem (4-6): If (G, +, . ,J) is a compact topological I'-ring, and

f:(G+,.,J)—(G*+..", T*) epimorphism topological I'-ring , then G* is compact.

Proof: Assume that S*={G*; € T*: (G*;, +',.") is a proper subrings of G*, for all i eA} isa
cover topological I'-ring of § thatis G *= U;ep G™;

Since f is epimorphism topological I'-ring this implies that

G=Uien f71(G™) wheref~1(G*)) €

Since G is compact topological I'-ring ,this gives G=U, f “1(G*;). Hence f is epimorphism
topological I'-ringG*=Uj~, G*;.

Thus G* is compact topological I'-ring
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