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Abstract 

     In this paper, we construct a new mathematical system as Multiplicative Cyclic 

Group (MCG), called a New Digital Algebraic Generator (NDAG) Unit, which would 

generate digital sequences with good statistical properties. This new Unit can be 

considered as a new basic unit of stream ciphers.  

     A (NDAG) system can be constructed from collection of (NDAG) units using a 

Boolean function as a combining function of the system. This system could be used 

in cryptography as like as Linear Feedback Shift Register (LFSR) unit. This unit is 

basic component of  a stream cipher system. 
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 العراق، بغداد، جامعة بغداد ،كمية العموم ،قسم الرياضيات1
 العراق، بغداد ،المديرية العامة لمتعميم المهني، وزارة التربية2

 الخلاصة:
 Multiplicativeالضربية الدوارة الزمرة  باستخدام ، تم تقديم بناء نظام رياضي جديدبحثفي هذا ال     

Cyclic Group (MCG)   وحدة المولد الرقمي الجبري الجديدنظام بسمي هذه ال  ((NDAG  التي من شأنها
في نظم . يمكن اعتبار هذا النظام الجديد كوحدة أساسية توليد متتابعات رقمية لها خواص احصائية جيدة

 . التشفير الانسيابي
 المنطقية كدالة مركبة  دالةالباستخدام (NDAG)  من مجموعة من وحدات (NDAG) إنشاء نظامتم      

. والذي (LFSR) كما في المسجل الزاحف ذات التغذية المرجعيةلمنظام. يمكن استخدام هذا النظام في التشفير 
 .يعتبر الجزء الاساس في التشفير الانسيابي

 
1. Introduction 

     Cryptography is the study of mathematical techniques which are related to the aspects of 

information security such as confidentiality, data integrity, entity authentication, and data origin 

authentication[1]. 

     Number theory, in mathematics, is primarily the theory of the properties of integers (whole 

numbers) such as parity, primarily, and multiplicatively, etc.  

       ISSN: 0067-2904  
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     There are many different types of secret key cryptosystems, like monographic (character) ciphers, block 

ciphers, exponentiation ciphers and stream ciphers in which we shall focus[2]. 

     Jennings Generator scheme uses a multiplexer to combine two LFSR’s [3]. The multiplexer, 

controlled by LFSR-1, selects 1 bit of LFSR-2 for each output bit. There is also a function that maps 

the output of LFSR-2 to the input of the multiplexer. The key is the initial state of the two LFSR’s and 

the mapping function. Although this generator has great statistical properties, it fell to Ross 

Anderson’s meet-in-the middle consistency attack[4]. 

     Mitchell presents a random number (0..9) generator, for use in generating cryptographic 

keystreams, which based on the division algorithm. This generator permits choice of seed values 

giving a long cycle length that is known a priori and costlessly decimal keystream periodicity. The 

keystream can be used in stream cipher system [5]. 

     The stream cipher Grain was developed by M. Hell, T. Johansson, and was especially designed for 

being very small and fast in hardware implementation. It uses the key of length 80 bits and the IV is 64 

bits, its internal state is of size 160 bits [6]. 

     At FSE 2004, a new stream cipher called VMPC was proposed by Bartosz Zoltak, which appeared 

to be a modification of the RC4 stream cipher. In cryptanalysis, a linear distinguishing attack is one of 

the most common attacks on stream ciphers. In the paper it was claimed that VMPC is designed 

especially to resist distinguishing attacks[7]. 

     Recently, a new European project eSTREAM has started, and at the first stage of the project 35 

new proposals were received by May 2005. Although many previous stream ciphers were broken, 

collected cryptanalysis experience allowed strengthening new proposals significantly, and there are 

many of them that are strong against different kinds of attacks. One such good proposal was the new 

stream cipher Grain [8]. 

     Dragon is a word oriented stream cipher submitted to the eSTREAM project, designed by Ed Dawson et 

al. It is a word oriented stream cipher that operates on key sizes of 128 and 256 bits [9]. 

     Perez Ramirez et al. presents an algorithm to reduce the Multiplicative Computational Complexity 

(MCC) in the creation of digital holograms, where an object is considered as a set of point sources 

using mathematical symmetry properties of both the core in the Fresnel integral and the image. The 

image is modeled using group theory [10]. 

Theorem (1) [11]: (the fundamental theorem of arithmetic) 

Any positive integer n>1 can be written uniquely in the following prime factorization form: 

n= 



k

i

ik

ik pppp
1

21

21                                                                                                               (1) 

where p1<p2<…<pk are primes, and 1, 2,…, k are Nonnegative integers. 

Remark(1): 

1. The function f has the property of being "one-to-one" (or "injective") if no two elements in Domain 

are mapped into the same element in Range. 

2. The function f has the property of being "onto" (or "surjective") if the range R of f is all of B 

(R=B). 

Definition (1)[12]: Let (R,+,•) be a ring with identity element, if the Idempotency law be satisfied 

a
2
=a, aR, then the ring is called Boolean ring. 

Example (1): Let P(X) represents the set of all the subsets of the universal set X, then the ring 

(P(X),,•) is Boolean ring. 

Definition (2): The Boolean algebra is the mathematical system (B,,) where B≠φ, and the binary 

operations  and  are defined on B as follows:  

1. The operations  and  are commutative. 

2. The operations  and  satisfy the distribution law for each other. 

3.  two identity distinct elements 0 and 1 of the operations  and  respectively s.t. a0=a and 

a1=a, aB. 

Definition(3): In Boolean ring (B,,•), we defined: 

1. Complement: a=a1, aB. 

2. Sum (OR): a+b=aba.b a,bB. 
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Example (2): The system (P(X),,) is boolean algebra, X≠φ, we use φ=0 and X=1. If B be a set of 

subsets of X including φ and X which is closed on  and complement then (B,,) is boolean algebra 

too. 

Definition (4)[13]: Any non-empty set   with two operations (+) addition and multiplication (*) called 

Field if satisfying the following conditions:  

1. (G,+) is Abelian group. 

2. (G,*) is Abelian group. 

3. (G,+,*) is ring. 

Remark (2): A field of order q with q prime power is called Galois field and is denoted by GF(q) or 

just Fq. 

Example (3): The finite field F4 has elements {0, 1, 2, 3} and is described by the Table-1 addition and 

multiplication table. 

 

Table 1-The addition and multiplication for F4. 

 0 1 2 3 

 

0 0 1 2 3  1 2 3 

1 1 2 3 0 1 1 2 3 

2 2 3 0 1 2 2 0 2 

3 3 0 1 2 3 3 2 1 

 

Remark(3): for Galois field if n=1 and P=2 we obtain the binary system which contain only two 

elements zero and one that mean each value can be represent with zero or one. 

Example (4): 17 = 1 . 2
4 
+ 0 . 2

3 
+ 0 . 2

2 
+ 0 . 2

1 
+ 1 . 2

0 
 ; So the binary representation of  17 is (1 0 0 0 

1). 

Definition (5)[14]: Linear Feedback Shift Register  

     The basic component of key generator for stream cipher is feedback shift registers (FSRs) because 

they are appropriate to hardware implementation and they produce sequence with good statistical 

properties. 

     The feedback shift registers Figure-1 these are small circuits containing a number of memory cells 

each of which contains one bit the set of such cells forma a register  in each cycle a certain predefined 

set of cells are tapped and their value passed through function called the feedback function .the register 

is then shifted down by one bit .with the output bit of the feedback shift register being the bit that is 

shifted out the register .the combination of the tapped bits is then fed in to the empty cell at the top of 

register and if feedback function is linear then it’s called Linear Feedback Shift Register  and denoted 

by LFSR . 

   

SL-1 SL-2 SL-3 ................ S2 S1 S0 

 

Figure 1-Shift Register Diagram. 
 

Theorem (2): Let G,* be a mathematical system, with |G|=q-1, G,*  is a Multiplicative Cyclic Group 

(MCG) if and only if q is a prime number. 

Definition (6): The element G called a primitive (generator) element iff 
i
=, where i=1,2,…,q-1,  

G. 

Theorem (3): If  a primitive element of G on the MCG G,*, then =
i
, s.t. gcd(i,q-1)=1,  is 

another generator of G. 

Remark (4)[14]: 

1. Let us denote the set of primitive elements of the MCG G,* by  P(G). 

Feedback Function 
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2. Depending on theorem (3), then there are (q-1) primitive elements of the MCG G,*. This means 

| P (G)|= (q-1). 

Algorithm(1)  
     By using theorem (3), we can introduce Primitive Elements Generation Algorithm (PEGA) to find 

all other primitive elements of the MCG G,* for prime number q from one primitive element . The 

steps of this algorithm are as follows: 

 

 

Primitive Element Generation (APEG)  Algorithm 

 
 
 
 

Example(5): Table (2) shows number of primitive elements of different MCG G,*. 

Table (2) Number of primitive elements of different MCG G,*. 

 

 

 

Table 2-Number of primitive elements of different MCG G,* 

Primes | P (G)| P (G) 

7 2 3, 5 

11 4 2, 6, 7, 8 

13 4 2, 6, 7, 11 

 

2 .  Generating a New Digital Sequences From MCG Elements 

2 .1  Generating Digital Sequences From MCG Elements 

     Let mZ
+ 

where 2m(q-1)/2. The set G={1,2,…,q-1} partitioned into m subsets name Ni, 

0im-1which is consists of some ordered elements jG, 1jq-1. The subsets Ni is the set of all 

integers j s.t. the index j lies between the two real numbers
m

iq.
and 

m

iq )1.( 
 

Ni={j:
m

iq.
< j<

m

iq )1.( 
}                                                                                                          (2) 

Example(6): Let q=13, choose m=3, then i=0,1,2, by using equation (2) then: 

For i=0, j=1,2,3,4, then N0={1,2,3,4}. In the same way we get: 

N1={5,6,7,8} and N2={9,10,11,12}. 

Theorem (4): The subsets defined in equation (2) are disjoint sets, where i=0,1,2,…,m-1. 

Proof: We have to prove that
1

0





m

i

i
N = and 

1

0





m

i

i
N =G. 

Let us assume that
1

0





m

i

i
N , then an integer xj

1

0





m

i

i
N , this means: 

xjN0 where 0<xj<(1/m).q, 

xjN1 where (1/m).q<xj<(2/m).q, and so on, we have 

xjNk where (k/m).q<xj<((k+1)/m).q for 0km-1. 

Finally, 

xjNm-1 where ((m-1)/m).q<xj<q. 

xj has the same lowerbound and upperbound Ni, for 0im-1, then 

m

m 1
.q<j<

m

m 1
.q, then q<j<q that’s C! since 1jq-1. 

Primitive Element Generation Algorithm (PEGA)  

INPUT  : q ,   

PROCESS  :  i = 2  

     REPEAT 

   i = i +1  

 := f (  , i , q )  

         IF  gcd(i,q-1) = 1 THEN   is another generator  

  UNTIL  i = q-2  

OUTPUT : P (G)  

END. 
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must
1

0





m

i

i
N =. 

let us assume that 
1

0





m

i

i
N G, since G

1

0





m

i

i
N , then 

1

0





m

i

i
N G. 

xG but x
1

0





m

i

i
N , then xN0 and xN1and…and xNm-1, then 

x0 or xq, because of the definition of Ni, then 0 or qG C!. 

must 
1

0





m

i

i
N = G. 

It's clear that q.
m

i
, and q.

m

i 1
 are real numbers. 

From equation (2) we get i<
q

m
. j<i+1, then  

isiji+1, where sij=(m. j) div q                                                                                                   (3) 

The term "div" gives the integer part of 
q

m
j


. 

if letting j=j, then: 

[(i.q) div m]+1 j((i+1).q) div m. 

sij is the element j of the sequence Si which is corresponding to the subset Ni depending on equation 

(3), where 

Si=
  mdivqi

mdivqijij
s

)).1((

1]).[(



 . 

The finally sequence we want to generate is: 

S=
1

0





m

i

i
S                                                                                                                                         (4) 

This sequence is corresponding to 
1

0





m

i

i
N depending on equation (3). 

Remark (5): It's clear that the period P(S)=q-1. 

Example (7): Using example (6), when 


2

0i

i
N ={1,2,3,4,5,6,7,8,9,10,11,12}, then S={0,0,0,0,1,1,1,1,2,2,2,2}. 

Remark (6): Notice that in equations (3) and (4), and examples (6) and (7) that in general, j = j, 

for this reason: 

G=
1

0





m

i

i
N ={1,2,…,q-1} and S={0,0,…,0,1,1,…,1,…,m-1,m-1,…,m-1}. 

     So the sequence S in example (11) has been generated without using primitive element. 

In the next subsections we try to use j=f(,i,q), where  is primitive element of the MCG G,*. 

Algorithm (2):  

     Depending on equations (3) and (4), No Primitive Element algorithm (NPEA) can be introduced to 

find the sequence S without using primitive element. 

 

 

 

 

 

 

 

No-Primitive Element Algorithm (NPEA)   

INPUT  : q , m  

PROCESS  :  j = 0 

     REPEAT 

   j = j +1  

         sj = (m.j) div q  

  UNTIL  j = q-1  

OUTPUT : the sequence S  

END. 
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2.2 Generation of digital sequences (DS) from Single Primitive Elements 

     In this subsection we want to generate the sequence S by using one primitive element  of the 

MCG G,*. 

Let j=f(,j,q) and sj=(m.j) div q then the subsets Ni, 0im-1 has no ordered elements of G and still 

disjoint subsets. 

Notice that
1

0





m

i

i
N =G' where |G'|=|G| but has another permutation of elements. 

Example (8): Let q=13, choose m=3 and =2, then 

N0={2,4,8,3}, N1={6,12,11,9} and N2={5,10,7,1} then 

G' = {2,4,8,3,6,12,11,9,5,10,7,1} 

 S={0,0,1,0,1,2,2,2,1,2,1,0}. 

Table-3 shows five sequences generated from q=13, and =2, for m=2,3,…,6. 

 

Table 3-five sequences using q=13, =2 with m=2,…,6. 

j  
m1=2 

S1 

m2=3 

S2 

m3=4 

S3 

m4=5 

S4 

m5=6 

S5 

1 2 0 0 0 0 0 

2 4 0 0 1 1 1 

3 8 1 1 2 3 3 

4 3 0 0 0 1 1 

5 6 0 1 1 2 2 

6 12 1 2 3 4 5 

7 11 1 2 3 4 5 

8 9 1 2 2 3 4 

9 5 0 1 1 1 2 

10 10 1 2 3 3 4 

11 7 1 1 2 2 3 

12 1 0 0 0 0 0 

 

Remark (7): From the above table we notice that: 

1. Each sequence has period q-1=12. 

2. All generated sequences have balance frequencies that mean we expect good statistical 

random properties. 

Algorithm (3) 

Now we can introduce Single-Primitive Element algorithm (SPEA) to generate sequence with good 

randomness properties, generated from one primitive element  of the MCG G,*. 

 

 

 

 

 

 

 

 

 

 

 

 

Single-Primitive Element Algorithm (SPEA)   

INPUT  : q ,  , m  

PROCESS  :  j = 0  

     REPEAT 

   j = j +1  

 = f (  , j , q )  

         sj = (m.) div q  

  UNTIL  j = q-1  

OUTPUT : the sequence S  

END. 
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The DS generated from the SPE algorithm can be called Single Primitive Element Sequence (SPES). 

Remark (8): From table (3), we can notice that the period of S, theoretically, is q-1, but analytically, 

its (q-1)/2. The reason is described and proved in the next theorem. 

Theorem (5): Let S be a SPES, if j+k=q, where j=1,…,(q-1)/2 and k=j+(q-1)/2 then 

sj+sk=m-1. 

Proof: since sj=(m.j) div q, then 

sj+sk= (m.j) div q + (m.k) div q 

       = (m.j – rj)/q + (m.k – rk)/q = [m.(j+k) – (rj+rk)]/q 

Since both j and k<q, then j mod q=rj so j = rj, for the same reason 

k = rk, then (rj+rk)/q=1. 

sj+sk= [m.(j+k)] div q – 1 = (m.q) div q – 1 = m – 1.  

From the above theorem we can deduce the second half of the sequence S from the first half. 

Example (9): let i=1 and j=7, so 1=2 and 7=11, for m=4, then s1=0 and s7=3. 

We notice the following disadvantages: 

1. The periodicity decreased from q-1 to (q-1)/2. 

2. The general complexity of S decreases to (q-1)/2. 

      In this manner we want to construct a method to maximize the complexity and the periodicity to be 

q-1. This maximization must not effect the good randomness of S. 

2.3 Generation of DS from Double Primitive Elements 

In this subsection we want to generate the sequence S by using double primitive elements of the MCG 

G,*. 

Definition (7): Let 1 and 2 be two primitive elements of the MCG G,*, if =f(1,j,q) and 

=f(2,,q) s.t. 1,jq-1, then 

=f(2,,q) = f(2, f(1,j,q),q) = g(1,2,j,q) =

j
1

2


  

where g=ff and g:GG. 

Remark (9): It is clear that G, since f is 1-1 function, and 1 and 2 are primitive elements of the MCG 

G,*. To guarantee that all elements of G can be generated we have to prove that the function g is 1-1 

function. 

Theorem (6): If the function f is 1-1 then the function g is 1-1. 

Proof: we have to prove that jj' if and only if '. 

Let jj' then ' since f is 1-1 function, then '. 

Let ' then ' since f is 1-1 function, then jj'. 

Example (10): Let q=13, choose m=3, 1 = 2 and 2=6 are two primitive elements, then: 

N0={10,9,3,8}, N1={12,1,11,5} and N2={2,4,7,6} so: 

G' = {10,9,3,8,12,1,11,5,2,4,7,6} then S={2,2,0,2,1,0,2,1,0,0,1,1} 

Table-4 shows five sequences generated from q=13, 1=2 and 2=6 for m=2, 3,…,6. 

Table 4-MCG sequences from q=13, 1 =2 and 2=6 with m=2,…,6. 

J  
m1=2 

S1 

m2=3 

S2 

m3=4 

S3 

m4=5 

S4 

m5=6 

S5 

1 10 1 2 3 3 4 

2 9 1 2 2 3 4 

3 3 0 0 0 1 1 

4 8 1 2 3 4 3 

5 12 1 1 2 3 5 

6 1 0 0 0 0 0 

7 11 1 2 3 4 5 

8 5 0 1 1 1 2 

9 2 0 0 0 0 0 

10 4 0 0 1 1 1 

11 7 1 1 2 2 3 

12 6 0 1 1 2 2 
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Frequency 

0 6 4 3 2 2 

1 6 4 3 3 2 

2 -- 4 3 2 2 

3 -- -- 3 3 2 

4 -- -- -- 2 2 

5 -- -- -- -- 2 

 

     We noticed that the generated sequences have balance frequencies for different digits, this 

happened since G divided into m subsets Ni with approximate equal orders. This means we expect that 

S has good statistical properties. 

Algorithm (4) 

     The Double-Primitive Elements Algorithm (PDEA) can be introduced to generate a new sequence 

has good randomness properties generated from two primitive elements 1 and 2 of the MCG G,*. 

 

 

 

 

 

 

 

 

 

 

 

 

4. (4.5) Encoding System  

     Before we deal with our proposed generator, we have to know that the output sequence which is the 

encryption key (K), must be combined with encoding plaintext (P) by using Encryption (E) function 

(or process) to gain the Ciphertext (C). 

C = E(K,P)                                                                                                                                          (5) 

     It is important to mention that, the plaintext characters must be encoded by some suitable number 

system. 

     If E is linear (additive) operation, then relation (5) can be as follows: 

C = K + P (mod m)                                                                                                                           (6) 

where E:{0,..,m-1}{0,..,m-1}. 

     So, as we see in relation (6), the encoding plaintext and the key must be from the same number 

system (m). 

     The inverse of function E is the Decryption (D) function (or process), where D=E
-1

 and D:{0,..,m-

1}{0,..,m-1}, so: 

P = D(K,C)                                                                                                                                          (7) 

     As E defined in relation (6), the function D in equation (7) will be: 

P = C – K (mod m)                                                                                                                           (8) 

 

 

 

 

 

 

Double-Primitive Element Algorithm (DPE)   

INPUT  : q , 1 , 2  , m  

PROCESS  :  j = 0  

     REPEAT 

   j = j +1  

 = g (1 , 2 , j , q )  

         sj = (m.) div q  

  UNTIL  j = q-1  

OUTPUT : the sequence S  

END. 
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Example (11): Let m=4, then E and D are Linear functions, then we can construct the following 

encryption and decryption tables: 

 Encryption Table 

 

 Decryption Table 

 P  C 

K 

 0 1 2 3 

K 

 0 1 2 3 

0 0 1 2 3 0 0 1 2 3 

1 1 2 3 0 1 3 0 1 2 

2 2 3 0 1 2 2 3 0 1 

3 3 0 1 2 3 1 2 3 0 

     In this manner we can introduce three examples of encoding systems that can be used with the 

suggested generator. 

First: m=27, if we use the English language (26 letters with "space" character), then #"A"=0, #"B"=1,…,#"Z" 

=25 and #"space"=26. We can use relation (6) and (8) as encipher and decipher operations respectively. 

Second: As alternative encoding system, we can use the binary number system (m=2), first we have to 

translate the plaintext characters to the corresponding binary using 5 per character (or 5..8 bit per 

character, this is related to the size of language alphabetic), so relation (6) and (8) will be: C = K XOR 

P and P = K XOR C respectively. 

Third: Here we can use the ASCII code which is used in computer, as en example, this means m=256 

[15].  

Remark(10): 

1. When we use some encoding system, we must take care of choosing the prime q, the condition of 

choosing that the lower bound is q2m+1. 

2. The encoding system (specified the variable m) can be treated as fixed secret or public variable. In 

our proposed generator we can use m as an optional key variable specified by the user or as a part 

from the initial key. 

3. Design PRG for DS Using MCG 

     The function g(1,2,i,q) and PDEA can represent the smallest Pseudo Random Generator (PRG) 

to generate a digital sequence has good statistical properties. 

In order to get the sequence S we have fed the generator by which we called seed or initial key. The 

length, size and the variables of the initial key depend on how we combined the generator. In the next 

subsection we will introduce the New Digital Algebraic Generator (NDAG) unit and NDAGsystem. 

3.1 Designing of NDAGUnit 

     The mentioned simple PRG can be treated as a single unit; we called it a New Digital Algebraic 

Generator Unit (NDAGU), where the function g(1,2,i,q) represents the heart of this generator. Now 

we have to show how the secret initial key can be specified? 

1. Choose the prime number q as the 1
st
 variable of the initial key, and it does prefer to be as large as 

possible. 

2. We can choose any two primitive elements 1 and 2 P (G), these two elements can be 

considered as the 2
nd

 and 3
rd

 initial key variables. 

3. We noticed in Tables-(3) and (4), that the index j always starts from j=1 and ends with q-1, so we 

can choose another start value, name k, where 1kq-1 then k can be treated as the 4
th
 variable (initial 

key) s.t. we suggest using another index say i which start from k and it will be cyclic value. 

4. As we mentioned before, the variable m can be treated as one of the initial key variables, so it 

considered the 5
th
 variable. 

     If we consider that NDAGU as a function of five variables (seeds), then S=NDAGU (q, 1, 2, k, 

m), this function can be viewed as the NDAGU algorithm. 

Algorithm(5) 

     The NDAGU algorithm can be introduced to generate a good statistical random properties 

sequence, with initial key variables q , 1 , 2 , k and m with length Lq-1. 
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Example (12): Let us encrypt the message "MAN" using the binary representation (m=2), so 

#"MAN"= 12 0 13 =1100 0000 1101. To generate encryption key from MCGU we used the initial 

keys q=13, 1=2, 2=6, k=5 , m=2 , L=12. 

Plaintext 1 1 0 0 0 0 0 0 1 1 0 1 

Key 1 0 1 0 1 0 0 1 0 1 0 1 

Cipher 0 1 1 0 1 0 0 1 1 0 0 0 

 

3.2 Designing of NDAG System 

     A NDAGU can be considered as a basic construction unit in NDAGSystem (NDAGS) with 

combining boolean function (CF). If S is the sequence that generates from NDAGS, and the system 

has Fn=CF as combining function with n-NDAGunits, then S=Fn(S1,S2,…,Sn) s.t. Si=NDAGUi(qi,1i 

,2i,ki,m), where 1in. 

Si represents the sequence i generate from the MCG unit i. 

We defined the addition (+) and the multiplication (*) operations of the system, as follows: 

sj = sij + skj (mod m)    

sj = sij * skj (mod m)    

where sjS, j=1,2,…, and sijSi and skjSk, 1i,kn, ik. 

Let us represent the NDAGU number i by NDAGU(i), where 1in. 

Algorithm(6) 

Now we can introduce the New Digital Algebraic Generator System algorithm (NDAGS) to generate a 

digital sequence with length L, after feeding the generator of the system which is combined from 

NDAGU by the initial keys qi , 1i , 2i ,ki , m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions  and future work  
     This paper concludes the following aspects and Some of future works are presented to be 

implemented in the future: 

NDAGU Algorithm 

INPUT  : q , 1 , 2 , k , m , L  

PROCESS  :  i = k-1 ,  j = 0  

     REPEAT 

   i = i (mod(q-1))+1  

 j = j +1  

 = g (1 ,2 , i , q )  

         sj = (m.) div q  

  UNTIL  j = L  

OUTPUT : the sequence S  

END. 

New Digital Algebraic Generator System algorithm NDAGS  

INPUT  : READ n , m , L 

  For i = 1 to n    

READ qi , 1i , 2i , ki  

    ENDFOR {i} 

PROCESS  :  j = 0 ;  

     REPEAT 

   j = j + 1  

   FOR i = 1 TO n  CALL FDAGU(i)  

   sj = Fn(s1j,s2j,…,snj)  

    UNTIL j = L  

OUTPUT : the sequence S  

END. 
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1.  The LFSR is considered as the main unit which can be used in stream cipher systems designing, 

but in this research we introduce a new unit which can be used, side by side to LFSR, as an 

another basic unit of stream cipher systems designing. 

2.  This suggested NDAG unit has good randomness statistic properties, high linear complexity, accepted periodicity 

and high correlation immunity. These efficiency criteria are enough to use the NDAG as cryptosystem. 

3. The NDAG candidate to be used in many forms for digital cryptosystems like voice encryption 

systems. 

4. As a future work we have to generalize the other basic criteria of efficiency it is known that be 

applied on digital sequences. 

5. We suggest constructing a hybrid pseudo random generator with good properties by mixing the 

LFSR unit and NDAG unit. 
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