

Maximal and Minimal Regular $\boldsymbol{\beta}$-Open Sets in Topological Spaces

Nafeha O. Rashid, Sami A. Hussein*
Department of mathematics, College of Basic Education, Salahaddin University-Erbil, Iraq

Received: 26/5/2021 Accepted: 11/7/2021 Published: 30/4/2022

Abstract

In this paper, new concepts of maximal and minimal regular β-open sets are introduced and discussed. Some basic properties are obtained. The relation between maximal and minimal regular β-open sets and some other types of open sets such as regular open sets and β-open sets are investigated.

Keywords: β - open set, regular β - open set, minimal regular β - open set, maximal regular β - open set,

نافعة عمر رشيد، سامي علي حسين
قسم الرياضيات، كلية التربية الاساسية ، جامعة صلاح الاين، اربيل ، العراق

> م الخلاصه
النمط

I. INTRODUCTION

The concepts of maximal open sets and minimal open sets in topological spaces were introduced by Nakaok and Oda in [1-5,6, 7]. The study of α-open sets and their properties were initiated by Njastad in 1965[8]. Stone gave a new class of open sets called regular open sets in 1937,[9, 10]. In[1], the concepts of β-open sets have been introduced and studied. Latter, these β-open sets are recalled as semipreopen sets, which were introduced by D.Andrejevic in [2]. In [9], As a simulation of these studies, minimal and maximal β-open sets have been introduced and studied. On the other hand as a simulation of minimal regular open set in [3] has been introduced and studied. Latter, Nasser [7] explains the study of notation of minimal and maximal regular open sets and he investigates several of their basic properties. The notation of minimal and maximal α-open set is introduced in[4]. In addition, a new class of open sets called regular β - open sets were given by authors in [11]. Our aim in presenting this article is to introduce the notation of a new class of maximal and

[^0]minimal open sets which is called maximal regular β-open sets and minimal regular β-open sets. We also investigate several of their basic properties. Finally, we study their relationship with various types of open sets. Throughout this article ,the closure (Interior) of a subset U_{1} of space X is symbolized by $\mathrm{Cl}\left(U_{1}\right)\left(\operatorname{Int}\left(U_{1}\right)\right)$.

II. Basic Backgrounds.

By (X, \mathfrak{J}) or simply X we mean a topological space for which no separation axioms are considered unless it is stated.
Definition 2.1. [6] The minimal open (closed) set in a space X is a proper nonempty open(closed) subset U of X which is included in U is Φ or U.
Definition 2.2. [5] The maximal open (closed) set in a space X is a proper nonempty open(closed) subset U of X that includes U is U or X.
Definition 2.3.[1] The β - open (semipre) set in a space X is a subset U of X such that $U \subseteq C l(\operatorname{Int}(C l(U))) . U$ is called β-closed set if U^{c} is β-open set. The collection of all β-open (β-closed) set will be denoted by $(X)(\beta C(X)$).
Definition 2.4. [10] The regular open (regular closed) set in a space X is a subset V of X, such that $\quad V=\operatorname{Int}(\operatorname{Cl}(V))(V=\operatorname{Cl}(\operatorname{Int}(V))$. The collection of all regular open(regular closed) sets will be denoted $\mathrm{RO}(\mathrm{X})(\mathrm{RC}(\mathrm{X})$).
Definition 2.5. [8] The α - open set in a space X in a space X is a subset U of X such that $U \subseteq \operatorname{Int}(C l(\operatorname{Int}(U))) . U$ is called α-closed set if U^{c} is α-open set. The set of all α-open (α-closed) set will be denoted by $\alpha O(X)(\alpha C(X)$).
Definition 2.6. [11] The regular β - open set in a space X is a subset U of X, such that $U=\beta \operatorname{Int}(\beta C l(U))$.
The collection of all regular β - open sets will be denoted $\mathrm{R} \beta \mathrm{O}(X)$.
Definition 2.7. [9] The minimal β - open (β-closed) set in a space X is a proper nonempty $\quad \beta$ - open $(\beta$ - closed) subset U of X which is included in U is Φ or U. The set of all minimal β - open(β - closed) sets will be denoted by $M_{i} \beta O(X)\left(M_{i} \beta C(X)\right.$).
Definition 2.8. [9] The maximal β-open (β-closed) set in a space X is a proper nonempty β-open $(\beta$-closed) subset U of X which is includes U is U or X. The set of all maximal β - open(β - closed) sets will be denoted by $\mathrm{M}_{\mathrm{a}} \beta \mathrm{O}(\mathrm{X})\left(\mathrm{M}_{\mathrm{a}} \beta \mathrm{C}(\mathrm{X})\right.$).
Definition 2.9. [7] The maximal regular open (regular closed) set in a space X is a proper nonempty regular-open(regular -closed) subset U of X which is includes U is U or X. The set of all maximal regular open(regular closed) sets will be denoted by $\mathrm{M}_{\mathrm{a}} \mathrm{RO}(\mathrm{X})$ ($\mathrm{M}_{\mathrm{a}} \mathrm{RC}(\mathrm{X})$).
Definition 2.10. [7] The minimal regular open (regular closed) set in a space X is a proper nonempty regular open(regular closed) subset U of X which is included in U is Φ or U.
The set of all minimal regular open(regular closed) sets will be denoted by $\mathrm{M}_{\mathrm{i}} \mathrm{RO}(\mathrm{X})$ ($\mathrm{M}_{\mathrm{i}} \mathrm{RC}(\mathrm{X})$).
Definition 2.11. [9] X is said to be $T_{\beta \min }$ if $\Phi \neq G \in \beta O(X)$ implies $G \in M_{\mathrm{i}} \beta O(X)$ for each G.

Definition 2.12. [9] X is called $T_{\beta \max }$ space if $\Phi \neq G \in \beta O(X)$ implies $G \in M_{\mathrm{a}} \beta O(X)$ for each G. Theorem 2.13. [11] $U \in R \beta O(X)$ if and only if $U \in \beta O(X) \cap \beta C(X)$.
Theorem 2.14. [9] The subset U of X, is a minimal β-closed if and only if U^{c} is maximal β -open set.
Theorem 2.15. [9] A space X is $T_{\beta \text { min }}$ if and only if it is $T_{\beta \text { max }}$.
Theorem 2.16. [9] For each pair $A, B \in M_{\mathrm{i}} \beta O(X)$ of $T_{\beta \text { min }}$ such that $A \neq B$, we have $A \cap B=\Phi$.

Theorem 2.17. [9] For each pair $A, B \in M_{\mathrm{i}} \beta O(X)$ of $T_{\beta \min }$, such that $A \neq B$, we have $A \cup B=\mathrm{X}$.
Theorem 2.18. [11] $U \in \operatorname{R} \beta O(X)$ if and only if $\operatorname{Int}(U) \in R O(X)$ and $C l(U) \in R C(X)$.
Theorem 2.19.[11] If $A_{1} \in \mathrm{RO}(X)$ and $A_{2} \in \mathrm{R} \beta \mathrm{O}(X)$, then $A_{1} \cap A_{2} \in \mathrm{R} \beta \mathrm{O}(X)$.
Theorem 2.20. [11] $\alpha \mathrm{O}(X) \cap \mathrm{R} \beta \mathrm{O}(X)=\mathrm{RO}(X)$.
Theorem 2.21. [11] $\forall A_{1} \subseteq X$, we have $\beta \operatorname{Int}\left(\beta \operatorname{Cl}\left(A_{1}\right)\right), \quad \beta \operatorname{Cl}\left(\beta \operatorname{Int}\left(A_{1}\right)\right), \quad \beta \operatorname{Int}\left(\mathrm{Cl}\left(A_{1}\right)\right)$, $\beta \mathrm{Cl}\left(\operatorname{Int}\left(A_{1}\right)\right)$ and $\operatorname{Int}\left(\mathrm{Cl}\left(A_{1}\right)\right)$ are regular β-open sets.
Theorem 2.22. [11]The following conditions are equivalent for each subset W of X :
(i) $W \in \mathrm{R} \beta \mathrm{O}(X)$,
(ii) $W \in \beta \mathrm{O}(X) \cap \beta \mathrm{C}(X)$,
(iii) $X \backslash W \in \operatorname{R} \beta \mathrm{O}(X)$,
(iv) $W=$ $\beta \operatorname{Cl}(\beta \operatorname{Int}(W))$,
(v) $\beta \operatorname{Fr}(W)=\varphi, \quad$ (vi) $\operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(W))) \subset W \subset \mathrm{Cl}(\operatorname{Int}(\mathrm{Cl}(W))), \quad$ open s (vii) $W \in$ $\beta \mathrm{O}(X)$ and $X \backslash W \in \beta \mathrm{O}(X)$.
Theorem 2.23.[3] i- If the intersection of a minimal regular open set and a regular open set is not equal to Φ, then the minimal regular open set is a subset of the regular open set.
ii- If the intersection of each pair of a minimal regular open set is not equal to Φ, then it is equal to each other.
Theorem 2.24. [4] Let U_{1}, U_{2} and U_{3} be maximal α-open sets such that $U_{1} \neq U_{2}$. If $U_{1} \cap U_{2} \subset U_{3}$, then either $U_{1}=U_{3}$ or $U_{2}=U_{3}$.
Theorem2.25. [4] Let U_{1}, U_{2} and U_{3} be maximal α-open sets which are various from each ether. Then, $\left(U_{1} \cap U_{2}\right) \not \subset\left(U_{1} \cap U_{3}\right)$.
Theorem 2.26.[7] If A_{1} is proper closed set includes a maximal regular open set A_{2}, then Int $\left(A_{1}\right)=A_{2}$.

III. MAXIMAL AND MINIMAL REGULAR $\boldsymbol{\beta}$ - OPEN SETS

In this section, the concepts of minimal and maximal regular β-open sets are introduced. Then, we discuss several properties of these and their relationships with several types of nearly open sets.

Definition 3.1.

i) The minimal regular β-open set in X is a proper nonempty regular β-open subset U of X which is included in U is Φ or U.
ii) The maximal β - open set in X is a proper nonempty regular β - open subset U of X which is included in U is U or X
The collection of all minimal regular β-open (maximal regular β-open) sets in a space X is symbolized by $\mathrm{M}_{\mathrm{i}} \mathrm{R} \beta \mathrm{O}(\mathrm{X})$ ($\operatorname{MaR} \beta \mathrm{O}(\mathrm{X})$).
Remark 3.2. From the fact that $R \beta O(X)=R \beta C(X)$, by theorem 2.13. Then in any space X minimal regular β-open(maximal regular β-open) sets and minimal regular β-closed (maximal regular β-closed) sets are equivalent. It means that $\mathrm{M}_{\mathrm{i}} R \beta O(X)=M_{i} R \beta C(X)$ and $\mathrm{M}_{\mathrm{a}} \mathrm{R} \beta \mathrm{O}(\mathrm{X})=\mathrm{M}_{\mathrm{a}} \mathrm{R} \beta \mathrm{C}(\mathrm{X})$
Example 3.3. Consider $X=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and let $\mathfrak{J}=\left\{\Phi,\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{1}, u_{2}\right\}, X\right\}$ then $R \beta O(X)=\left\{\Phi,\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{1}, u_{3}\right\},\left\{u_{1}, u_{4}\right\},\left\{u_{2}, u_{3}\right\},\left\{u_{2}, u_{4}\right\},\left\{u_{1}, u_{3}, u_{4}\right\},\left\{u_{2}, u_{3}, u_{4}\right\}, X\right\}$.So, the set $\left\{u_{1}\right\}$ is minimal regular β-open and the set $\left\{u_{2}, u_{3}, u_{4}\right\}$ is maximal regular β-open.
Theorem 3.4. $A_{1} \in \mathrm{M}_{i} \mathrm{R} \beta \mathrm{O}(\mathrm{X})$ if and only if $A_{1}{ }^{c} \in \mathrm{M}_{a} \mathrm{R} \beta \mathrm{O}(\mathrm{X})$
Proof. Let $A_{1} \in \mathrm{M}_{i} \mathrm{R} \beta O(\mathrm{X})$, then by theorem 2.13, $A_{1}{ }^{c} \in R \beta O(X)$. Let $A_{2} \in R \beta O(X)$. such that $A_{1}{ }^{c} \subseteq A_{2}$, then $A_{2}{ }^{c} \subseteq A_{1}$. Since, $A_{2}{ }^{c}$ is regular β-open set included in a minimal regular β - open set A_{1}, then either $A_{2}{ }^{c}=\Phi$ or $A_{2}{ }^{c}=A_{1}$ that is either $A_{2}=\mathrm{X}$ or $A_{2}=$ $A_{1}{ }^{c}$.Therefore, $A_{1}{ }^{c}$ is maximal regular β-open set.
Corollary 3.5. Let X be a space contain at least two elements and $a_{1} \in X$. Then, if $\left\{a_{1}\right\}$ is a regular β-open set then it is minimal regular β-open set and $X \backslash\left\{a_{1}\right\}$ is maximal regular β-open set.

Proof. Let $\left\{a_{1}\right\}$ be a regular β-open set. Since there is no nonempty regular β-open set including properly in the set $\left\{a_{1}\right\}$, then $\left\{a_{1}\right\}$ is minimal regular β-open set and by theorem 3.4 $\mathrm{X} \backslash\left\{a_{1}\right\}$ is maximal regular β-open set.

Lemma 3.6. If $A_{1} \in \mathrm{M}_{i} \mathrm{R} \beta \mathrm{O}(\mathrm{X})$ and $A_{2} \in \mathrm{R} \beta \mathrm{O}(\mathrm{X})$, then $A_{1} \cap A_{2} \in \mathrm{R} \beta \mathrm{O}(\mathrm{X})$.
Proof. Let $A_{1} \in \mathrm{M}_{i} \mathrm{R} \beta \mathrm{O}(\mathrm{X})$ and $A_{2} \in \mathrm{R} \beta \mathrm{O}(\mathrm{X})$, . We have now, $A_{1} \cap A_{2} \subseteq A_{1}$. If $A_{1} \cap A_{2}=\Phi$ then, the prove is completed. If $A_{1} \cap A_{2} \neq \Phi$ and A_{1} is a minimal regular β - open set, then $A_{1} \cap A_{2}=A_{1}$. This means that, $A_{1} \cap A_{2}$ is regular β - open set.
Theorem 3.7. i- If the intersection of a minimal regular β-open set and a regular β - open set is not equal to Φ, then the minimal regular β - open set is a subset of the regular β-open set.
ii- If the intersection of each pair of a minimal regular β-open set is not equal to Φ, then equal to each other.
Proof. The proof is similar to theorem 2.23, then it is omitted.
Remark 3.8. If $a_{1} \in A_{1} \in \mathrm{M}_{i} \mathrm{R} \beta \mathrm{O}(\mathrm{X})$, then $A_{1} \subseteq A_{2}$, for each $a_{1} \in A_{2} \in \mathrm{R} \beta \mathrm{O}(\mathrm{X})$
Proof. Let $a_{1} \in A_{1}$. If A_{2} is regular β-open set including a_{1}. Then, $A_{1} \cap A_{2} \neq \Phi$. So by Theorem 3.7 $A_{1} \subseteq A_{2}$.
Theorem 3.9. i- If A_{1} is a β - closed set including properly in a minimal regular - open set A_{2}. Then, $\beta \operatorname{Int}\left(A_{1}\right)=\Phi$.
ii- If A_{1} is a β - closed set contain properly a maximal regular β-open set A_{2}. Then, $\beta \operatorname{Int}\left(A_{1}\right)=\mathrm{X}$.
iii- If A_{1} is a β - open set contain properly a maximal regular β - open set A_{2}. Then, $\beta C l\left(A_{1}\right)=X$.
Proof. i- Let $A_{2} \in \mathrm{M}_{i} \mathrm{R} \beta O(\mathrm{X})$ and $A_{1} \in \beta C(X)$ such that $A_{1} \subset A_{2}$. So, $\beta \operatorname{Int}\left(A_{1}\right)$ is regular β - open set and A_{2} is a minimal regular β - open set. Then, $\beta \operatorname{Int}\left(\mathrm{A}_{1}\right)=\Phi$.
ii- Let $A_{2} \in \mathrm{M}_{a} \mathrm{R} \beta \mathrm{O}(\mathrm{X})$ and $A_{1} \in \beta C(X)$ such that $A_{2} \subset A_{1}$.So by Theorem $2.21 \beta \operatorname{Int}\left(A_{1}\right) \in$ $R \beta O(X)$ and A_{2} is a maximal regular β-open set. Then, $\beta \operatorname{Int}\left(A_{1}\right)=X$.
iii- Let $A_{2} \in \mathrm{M}_{a} \mathrm{R} \beta O(\mathrm{X})$ and $A_{1} \in \beta O(X)$, such that $A_{2} \subset A_{1}$.So, by Theorem 2.21
$\beta C l\left(A_{1}\right) \in R \beta O(X)$ and A_{2} is a maximal regular β-open set. Then, $\beta \mathrm{Cl}\left(A_{1}\right)=\mathrm{X}$.
Remark 3.10. Next example shows that the Theorem 3.9 part i and ii are not necessary to be true if A_{1} is not β-closed set.
Example 3.11. Consider $\mathrm{X}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \quad$ with a topology $\mathfrak{J}=\left\{\Phi,\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{1}, u_{2}\right\},\left\{u_{1}, u_{3}\right\},\left\{u_{1}, u_{2}, u_{3}\right\} \mathrm{X}\right\}, \quad \beta \mathrm{O}(\mathrm{X}, \mathfrak{J}) \quad=$ $\left\{\Phi,\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{1}, u_{2}\right\},\left\{u_{1}, u_{3}\right\},\left\{u_{1}, u_{4}\right\},\left\{u_{2}, u_{4}\right\},\left\{u_{1}, u_{2}, u_{3}\right\},\left\{u_{1}, u_{3}, u_{4}\right\},\left\{u_{1}, u, u_{4}\right\}, X\right\}$, $\mathrm{R} \beta \mathrm{O}(\mathrm{X}, \mathfrak{J})=\left\{\Phi,\left\{u_{2}\right\},\left\{u_{1}, u_{3}\right\},\left\{u_{2}, u_{4}\right\},\left\{u, u_{3}, u_{4}\right\}, \mathrm{X}\right\}$.
i- Let $A_{1}=\left\{u_{1}\right\}$, and $A_{2}=\left\{u_{1}, u_{3}\right\}$, then $\beta \operatorname{Int}\left(A_{1}\right)=\left\{u_{1}\right\} \neq \Phi$.
ii- Let $A_{1}=\left\{u_{1}, u, u_{4}\right\}$, and $A_{2}=\left\{u_{2}, u_{4}\right\}$, then $\beta \operatorname{Int}\left(A_{1}\right)=A_{1} \neq X$.
Theorem 3.12. Let U_{1} be a non-empty proper regular β-open set, then the following statements are equivalent:
i. $\quad U_{1}$ is a minimal regular β-open set,
ii. $\quad U_{1} \subseteq \beta \mathrm{Cl}\left(U_{2}\right)$, where $U_{2} \subseteq U_{1}$ and $\beta \operatorname{Int}\left(U_{2}\right) \neq \Phi$,
iii. $\quad U_{1}=\beta \mathrm{Cl}\left(U_{2}\right)$, where $\Phi \neq U_{2} \subseteq U_{1}$.

Proof. ($\mathrm{i} \rightarrow \mathrm{ii}$) Let $U_{2} \subseteq U_{1}$ such that $\beta \operatorname{Int}\left(U_{2}\right) \neq \Phi$, then $\beta \operatorname{Int}\left(U_{2}\right) \subseteq \beta \operatorname{Int}\left(\beta \operatorname{Cl}\left(U_{2}\right)\right) \subseteq$ $\beta \operatorname{Int}\left(\beta \operatorname{Cl}\left(U_{1}\right)\right)=U_{1}$, which is minimal regular β-open set. This means that $U_{1}=$ $\beta \operatorname{Int}\left(\beta \mathrm{Cl}\left(U_{2}\right)\right) \subseteq \beta \mathrm{Cl}\left(U_{2}\right)$.
(ii $\rightarrow \mathrm{iii}$) Since $U_{2} \subseteq U_{1}, U_{1} \subseteq \beta C l\left(U_{2}\right) \subseteq \beta C l\left(U_{1}\right)$. Therefore, $U_{1}=\beta C l\left(U_{1}\right)=\beta C l\left(U_{2}\right)$. (iii \rightarrow i) Let U_{2} be a nonempty regular β-open set such that $U_{2} \subseteq U_{1}$, then $\beta \mathrm{Cl}\left(U_{1}\right)=U_{1}=$ $\beta \mathrm{Cl}\left(U_{2}\right)$. This means that $U_{2}=\beta \operatorname{Int}\left(\beta \mathrm{Cl}\left(U_{2}\right)\right)=\beta \operatorname{Int}\left(\beta \mathrm{Cl}\left(U_{1}\right)\right)=U_{1}$.
Therefore, U_{1} is a minimal regular β-open set.

Theorem 3.13. Let A_{1} be a nonempty proper regular β-open set. Then, the next pair of conditions are equivalent:
i- A_{1} is a minimal regular β-open set,
ii- $A_{1}=\beta \operatorname{Int}\left(A_{2}\right)$, where A_{2} is β-closed set, $A_{2} \subseteq A_{1}$ and $\beta \operatorname{Int}\left(A_{2}\right) \neq \Phi$.
Proof. (i) \rightarrow (ii) Let A_{1} be a minimal regular β-open set and A_{2} is β-closed set such that $A_{2} \subseteq A_{1}$, then $\beta \operatorname{Int}\left(A_{2}\right) \subseteq \beta \operatorname{Int}\left(A_{1}\right)=A_{1}$. Since, by theorem $2.21 \beta \operatorname{Int}\left(A_{2}\right)$ is regular β open set and A_{1} is a minimal regular β-open set. Therefore, $A_{1}=\beta$ Int $\left(A_{2}\right)$.
(ii) \rightarrow (i) Let A_{2} be a nonempty regular β-open set such that $A_{2} \subseteq A_{1} \cdot \operatorname{So}, A_{1}=\beta \operatorname{Int}\left(A_{2}\right)$ $=A_{2}$
.This means that, $A_{2}=A_{1}$. Therefore, A_{1} is a minimal regular β-open set.
Remark 3.14. Next example shows that we cannot remove the condition $\beta \operatorname{Int}\left(A_{2}\right) \neq \Phi$ in theorem 3.13.
Example 3.15. Consider $X=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ with a topology $\mathfrak{J}=\left\{\Phi,\left\{u_{1}\right\},\left\{u_{3}\right\},\left\{u_{1}, u_{3}\right\}\right.$, $\left.\left\{u_{1}, u_{2}\right\},\left\{u_{3}, u_{4}\right\},\left\{u_{1}, u_{2}, u_{3}\right\},\left\{u_{1}, u_{3}, u_{4}\right\}, X\right\}$,
$\beta \mathrm{O}(\mathrm{X}, \mathfrak{J})$
$=\left\{\Phi,\left\{u_{1}\right\},\left\{u_{3}\right\},\left\{u_{1}, u_{2}\right\},\left\{u_{1}, u_{3}\right\},\left\{u_{3}, u_{4}\right\}\right.$,
$\left.\left\{u_{1}, u_{2}, u_{3}\right\},\left\{u_{1}, u_{3}, u_{4}\right\}, \mathrm{X}\right\}, \quad \mathrm{R} \beta \mathrm{O}(\mathrm{X}, \mathfrak{J})=\left\{\Phi,\left\{u_{1}, u_{2}\right\},\left\{u_{3}, u_{4}\right\}, \mathrm{X}\right\} . \quad$ Let $A_{2}=\left\{u_{2}\right\}, A_{1}=$ $\left\{u_{1}, u_{2}\right\}$ and $\beta \operatorname{Int}\left(A_{2}\right)=\Phi$, then $\beta \operatorname{Int}\left(A_{2}\right) \neq A_{1}$.
Theorem 3.16. If A_{1} is proper β-closed set includes a maximal regular β-open set A_{2}, then $\beta \operatorname{Int}\left(A_{1}\right)=A_{2}$.
Proof. The proof is similar to theorem 2.26. Hence it is omitted.
Theorem 3.17. i- If A_{1} is a nonempty proper regular β-open set such that no existing proper β-open (β-closed) set includes A_{1} then A_{1} is maximal regular β - open set.
ii- If A_{1} is a nonempty proper regular β-open set such that no existing proper β-open (β closed) set included in A_{1} then A_{1} is minimal regular β-open set.
Proof. i- Let A_{2} be a regular β-open set such that $A_{1} \subseteq A_{2}$. So that A_{2} is β-open (β-closed) set then $A_{2}=A_{1}$ or $A_{2}=X$. Therefore, A_{1} is maximal regular β-open set.
ii- Let A_{2} be a regular β-open set such that $A_{2} \subseteq A_{1}$. So that A_{2} is β-open (β-closed) set then $A_{2}=A_{1}$ or $A_{2}=\Phi$. Therefore, A_{1} is minimal regular β-open set.
Theorem 3.18. i - If the union of a maximal regular β-open set and regular β-open set is not equal to X, then the regular β-open set is a subset of the maximal regular β-open set .
ii- If the union of each pair of a maximal regular β-open set is not equal to X, then it is equal to each other.
Proof. i- Let A_{1} be a maximal regular β-open set and A_{2} be a regular β-open set such that $A_{1} \cup A_{2} \neq X$, then we must to prove that $A_{2} \subseteq A_{1}$. Since $A_{1} \subseteq A_{1} \cup A_{2}$ and A_{1} is a maximal regular β-open set then by definition 3.1 $A_{1} \cup A_{2}=X$ or $A_{1} \cup A_{2}=A_{1}$, but $A_{1} \cup A_{2} \neq X$ then $A_{1} \cup A_{2}=A_{1}$, which means that $A_{2} \subseteq A_{1}$.
ii- If A_{1} and A_{2} are a maximal regular β-open sets such that $A_{1} \cup A_{2} \neq X$, then $A_{2} \subset$ A_{1} and $A_{1} \subset A_{2}$ by (i). Therefore $A_{2}=A_{1}$
Theorem 3.19. If U_{1} is minimal regular β-open set and U_{2} is maximal regular β-open set in a space X such that $U_{1} \nsubseteq U_{2}$, then $U_{1}=X \backslash U_{2}$.
Proof. Let U_{1} be a minimal regular β-open set ,then $X \backslash U_{1}$ is maximal regular β-open set, but U_{2} is maximal regular β-open set .Therefore, either $U_{2}=X \backslash U_{1}$ or $U_{2} \cup X \backslash U_{1}=$ X. If $U_{2} \cup X \backslash U_{1}=X$ then $U_{1} \subseteq U_{2}$ which is opposite to each other .Hence, $U_{2}=X \backslash U_{1}$.Means that, $U_{1}=X \backslash U_{2}$.
Remark 3.20. i- The class $M_{i} R \beta O(X)\left(M_{a} R \beta O(X)\right)$ and $M_{i} \beta O(X)\left(M_{a} \beta O(X)\right)$ are incomparable.
ii- Next example shows that the class $\mathrm{M}_{\mathrm{i}} \mathrm{R} \beta \mathrm{O}(\mathrm{X})\left(\mathrm{M}_{\mathrm{a}} \mathrm{R} \beta \mathrm{O}(\mathrm{X})\right.$) and $\mathrm{M}_{\mathrm{i}} \mathrm{RO}(\mathrm{X})\left(\mathrm{M}_{\mathrm{a}} \mathrm{RO}(\mathrm{X})\right.$) are incomparable.
Example3.21. In example 3.11,
i -The set $\left\{u_{1}, u_{3}\right\}$ is minimal regular β-open but not minimal β-open and the set $\left\{u_{1}\right\}$ is minimal β-open but not minimal regular β-open.
ii- The set $\left\{u_{2}, u_{4}\right\}$ is maximal regular β-open but not maximal β-open and the set $\left\{u_{1}, u_{2}, u_{3}\right\}$ is maximal β-open but not maximal regular β-open.
$\begin{array}{lrlrr}\text { Example3.22. } & \text { Consider } & \mathrm{X}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} & \text { with } & \text { a } \begin{array}{r}\text { topology } \\ \mathfrak{J}=\left\{\Phi,\left\{u_{1}\right\},\left\{u_{2}, u_{3}\right\},\left\{u_{1}, u_{2}, u_{3}\right\}, \mathrm{X}\right\},\end{array} \\ \mathrm{RO}(\mathrm{X}, \mathfrak{J})\end{array}$
$=$
$\left\{\Phi,\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}\right\},\left\{u_{1}, u_{2}\right\},\left\{u_{1}, u_{3}\right\},\left\{u_{1}, u_{4}\right\},\left\{u_{2}, u_{3}\right\},\left\{u_{3}, u_{4}\right\},\left\{u_{2}, u_{4}\right\},\left\{u_{2}, u_{3}, u_{4}\right\},\left\{u_{1}, u_{3}, u_{4}\right\}\right.$ $\left.,\left\{u_{1}, u_{2}, u_{4}\right\}, X\right\}, \operatorname{RO}(\mathrm{X}, \mathfrak{I})=\left\{\varphi,\left\{u_{1}\right\},\left\{u_{2}, u_{3}\right\}, \mathrm{X}\right\}$, Then:
i-The set $\left\{u_{2}\right\}$ is minimal regular β-open but not minimal regular open and the set $\left\{u_{2}, u_{3}\right\}$ is minimal regular open but not minimal regular β-open.
ii- The set $\left\{u_{2}, u_{3}, u_{4}\right\}$ is maximal regular β-open but not maximal regular open and the set $\left\{u_{2}, u_{3}\right\}$ is maximal regular open but not maximal regular β-open.
Theorem 3.23. Let X be a $T_{\beta \text { min }}$ space. Then, $A_{1} \in \mathrm{M}_{\mathrm{i}} \mathrm{R} \beta 0(\mathrm{X})$ if and only if $\mathrm{A}_{1} \in \mathrm{M}_{\mathrm{i}} \beta 0(\mathrm{X})$
Proof. Let A_{1} be a minimal regular β-open set and X be a $T_{\beta \min }$ space. Then, A_{1} is β-open set. By definition 2.11, have $\mathrm{A}_{1} \in \mathrm{M}_{\mathrm{i}} \mathrm{\beta O}(\mathrm{X})$. Conversely, Let A_{1} is a minimal β-open set and A_{2} is β-open set. From definition 2.11, we have A_{2} is a minimal β-open set, and by theorem 2.16,we get $A_{1} \cap A_{2}=\Phi$, then by theorem 2.17 and Theorem 2.15, $A_{1} \cup A_{2}=$ X.Hence, $A_{2}=X \backslash A_{1}$ and A_{1} is β-closed set. By Theorem 2.13, A_{1} is regular β-open set. Therefore, A_{1} is a minimal regular β-open set.
Theorem 3.24. Let X be a $T_{\beta \min }$ space. Then, A_{1} is a maximal regular β-open set if and only if A_{1} is a maximal β-closed set.
Proof. Let A_{1} be a maximal regular β-open set and X be a $T_{\beta \min }$ space. Then A_{1} is β-closed set. Assume that, A_{1} is not maximal β-closed set. So that there exists an β-closed subset A_{2} of X with $A_{2} \neq X$ such that $A_{1} \subset A_{2}$. Thus $A_{2}{ }^{c} \subset A_{1}{ }^{c}$. Hence $A_{1}{ }^{c}$ is a proper β-open set which is no minimal and this opposite of being X is $T_{\beta \min }$ space. Hence, A_{1} is a maximal β -closed set. Conversely, let A_{1} is a maximal β-closed set then by Theorem 2.14, $A_{1}{ }^{c}$ is minimal β-open set. By theorem 3.23, $A_{1}{ }^{c}$ is a minimal regular β-open set. Hence A_{1} is a maximal regular β-open set.
Remark 3.25. Next example indicates that we cannot remove the condition X be a $T_{\beta \text { min }}$ space in theorem 3.23 and Theorem 3.24.
Example 3.26. In example 3.11, the space X is not $T_{\beta \min }$, the set $\left\{a_{1}, a_{3}\right\}$ is minimal regular β-open but not minimal β-open and the set $\left\{a_{1}\right\}$ is minimal β-open but not minimal regular β-open. So, the set $\left\{a_{2}, a_{4}\right\}$ is maximal regular β-open but not maximal β-closed and the set $\left\{a_{2}, a_{3}, a_{4}\right\}$ is maximal β-closed but not maximal regular β-open.
Theorem 3.27. If any regular β-open set is maximal (minimal) β-open set then it is maximal (minimal) regular β-open set.
Proof. Let A_{1} be a regular β-open set and maximal (minimal) β-open set in a space X . We want to prove that A_{1} is a maximal (minimal) regular β-open set. Assume that A_{1} is not maximal(not minimal) regular β-open set, then $A_{1} \neq X\left(A_{1} \neq \Phi\right)$ and there exist regular β -open set A_{2} such that $A_{1} \subset A_{2}\left(A_{2} \subset A_{1}\right) \quad A_{1} \neq A_{2}$. By Theorem 2.13, A_{2} is β-open set .So, A_{2} includes (included in) A_{1}, which is opposite to each other. Hence, A_{1} is a maximal (minimal) regular β-open set.
Theorem 3.28. If any regular open set is maximal (minimal) regular β-open set then it is maximal (minimal) regular open set.
Proof. Let A_{1} be a regular open set and maximal (minimal) regular β-open set in a space X . We want to prove that A_{1} is a maximal (minimal) regular open set. Assume that A_{1} is not maximal (not minimal) regular open set, then $A_{1} \neq X\left(A_{1} \neq \Phi\right)$ and there exist regular open
set A_{2} such that $A_{1} \subset A_{2}\left(A_{2} \subset A_{1}\right)$ and $A_{1} \neq A_{2}$. By theorem 2.22, A_{2} is regular β-open set. So, A_{2} includes (included in) A_{1}, which is opposite to each other. Hence A_{1} is a maximal (minimal) regular open set.
Theorem 3.29. If any regular β-open set is maximal (minimal) β-closed set then it is maximal (minimal) regular β-open set.
Proof. Let A_{1} be a regular β-open set and maximal (minimal) β-closed set in a space X . We want to prove that A_{1} is a maximal (minimal) regular β-open set. Assume that A_{1} is not maximal (minimal) regular β-open set, then $A_{1} \neq X$ (resp. $A_{1} \neq \Phi$) and there exist regular β-open set A_{2} such that $A_{1} \subset A_{2}\left(\subset A_{1}\right) A_{1} \neq A_{2}$. By theorem 2.13, A_{2} is β-closed set . So, A_{2} includes (included in) A_{1}, which is opposite to each other. Hence A_{1} is a maximal (minimal) regular β-closed set.
Theorem 3.30. If any regular closed set is maximal (minimal) regular β-open set then it is maximal (minimal) regular open set.
Proof. Let A_{1} be a regular closed set and maximal (minimal) regular β-open set in a space X . We want to prove that A_{1} is a maximal (minimal) regular closed set. Assume that A_{1} is not maximal (not minimal) regular closed set, then $A_{1} \neq X\left(A_{1} \neq \Phi\right)$ and there exist regular closed set A_{2} such that $A_{1} \subset A_{2}\left(A_{2} \subset A_{1}\right) A_{1} \neq A_{2}$. By theorem 2.22, A_{2} is regular β-open set. So, A_{2} includes (included in) A_{1}, which is opposite to each other. Hence A_{1} is a maximal (minimal) regular closed set.
Theorem 3.31. Let $A_{1} \in M_{a} R \beta O(X)$ such that $a_{1} \notin A_{1}$. Then, $A_{1} \cup A_{2}=\mathrm{X}$ for each $A_{2} \in R \beta O\left(X, a_{1}\right) .$.
Proof. Since, $a_{1} \notin A_{1}$. We have $A_{2} \not \subset A_{1}$ for any regular β-open set A_{2} including a_{1}. By theorem $3.19 A_{1} \cup A_{2}=\mathrm{X}$.
Theorem 3.32. If the intersection of regular open set and minimal regular β-open set is not equal to φ. Then the intersection of these is equal to minimal regular β-open set.
Proof. Let U_{1} be a regular open set and U_{2} is minimal regular β-open set such that $U_{1} \cap$ $U_{2} \neq \Phi$, by theorem 2.19, $U_{1} \cap U_{2}$ is regular β-open set. We want to prove that $U_{1} \cap U_{2}$ is minimal regular β-open set. Assume that $U_{1} \cap U_{2}$ is not minimal regular β-open set, then there exists nonempty regular β-open set U_{3} such that $U_{3} \subset U_{1} \cap U_{2}$ and $U_{3} \neq U_{1} \cap$ U_{2}. Hence $U_{3} \subset U_{1}$ and $U_{3} \subset U_{2}$. This means that U_{3} is regular β-open set included in U_{2} and $U_{3} \neq U_{2}$, which is opposite to each other. Therefore $U_{1} \cap U_{2}$ is minimal regular β-open set.
Theorem 3.33. If the union of regular closed set and maximal regular β-open set is not equal to X.Then the union of these is equal to maximal regular β-open set.
Proof. Let U_{1} be a regular closed set and U_{2} be a maximal regular β-open set such that $U_{1} \cup U_{2} \neq X$, then $X \backslash U_{1}$ is regular open set and $X \backslash U_{2}$ is minimal regular β-open set. By theorem $3.32\left(X \backslash U_{1}\right) \cap\left(X \backslash U_{2}\right)=X \backslash\left(U_{1} \cup U_{2}\right)$ is minimal regular β-open set. This means that $U_{1} \cup U_{2}$ is maximal regular β-open set.
Theorem 3.34. Let U_{1} be a maximal regular β-open set such that $\mathrm{Cl}\left(U_{1}\right) \neq X$, then $\mathrm{Cl}\left(U_{1}\right)$ is maximal regular closed set.
Proof. If U_{1} is maximal regular β-open set by theorem $2.18, \mathrm{Cl}\left(U_{1}\right)$ is regular closed set. Since $\mathrm{Cl}\left(U_{1}\right) \neq X$ then $\mathrm{Cl}\left(U_{1}\right)$ is proper regular closed set. We want to prove that $\mathrm{Cl}\left(U_{1}\right)$ is maximal regular closed set. Assume that $\mathrm{Cl}\left(U_{1}\right)$ is not maximal regular closed set, then there exists proper regular closed set U_{2} such that $\mathrm{Cl}\left(U_{1}\right) \subset U_{2}$. Since $U_{1} \subset \mathrm{Cl}\left(U_{1}\right) \subset U_{2}$, then $U_{1} \subset$ U_{2}.So by theorem $2.22 U_{2}$ is regular β-open set including U_{1}, which is opposite to each other. Hence $\mathrm{Cl}\left(U_{1}\right)$ is maximal regular closed set.
Theorem 3.35. Let A_{1} be a minimal regular β-open set such that $\operatorname{Int}\left(A_{1}\right) \neq \Phi$ then $\operatorname{Int}\left(A_{1}\right)$ is minimal regular open set.
Proof. If A_{1} is minimal regular β-open set by theorem $2.18, \operatorname{Int}\left(A_{1}\right)$ is regular open set. Since $\operatorname{Int}\left(A_{1}\right) \neq \Phi$ then $\operatorname{Int}\left(A_{1}\right)$ is proper regular open set. We need to prove that $\operatorname{Int}\left(A_{1}\right)$ is
minimal regular open set. Assume that $\operatorname{Int}\left(A_{1}\right)$ is not minimal regular open set, then there exist nonempty regular open set A_{2} such that $A_{2} \subset \operatorname{Int}\left(A_{1}\right)$. Since $A_{2} \subset \operatorname{Int}\left(A_{1}\right) \subset A_{1}$, then $A_{2} \subset A_{1}$. So by theorem $2.22 A_{2}$ is regular β-open set included in A_{1}, which is opposite to each other. Hence $\operatorname{Int}\left(A_{1}\right)$ is minimal regular open set.
Remark 3.36. The following example shows that the converse part of Theorem 3.35 is not true in general.
Example 3.37. : Consider $X=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and let
$\mathfrak{J}=\left\{\Phi,\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{1}, u_{2}\right\},\left\{u_{3}, u_{4}\right\},\left\{u_{1}, u_{3}, u_{4}\right\},\left\{u_{2}, u_{3}, u_{4}\right\}, X\right\}$, then $R O(X)=$
$\left\{\Phi,\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{1}, u_{2}\right\},\left\{u_{3}, u_{4}\right\},\left\{u_{1}, u_{3}, u_{4},,\left\{u_{2}, u_{3}, u_{4}, \mathrm{X}\right\}\right.\right.$,
$R \beta O(X)=\left\{\Phi,\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}\right\},\left\{u_{4}\right\},\left\{u_{1}, u_{2}\right\},\left\{u_{3}, u_{4}\right\},\left\{u_{1}, u_{3}\right\}\right.$,
$\left.\left\{u_{2}, u_{4}\right\},\left\{u_{1}, u_{4}\right\},\left\{u_{2}, u_{3}\right\},\left\{u_{1}, u_{3}, u_{4}\right\},\left\{u_{2}, u_{3}, u_{4}\right\},\left\{u_{1}, u_{2}, u_{4}\right\},\left\{u_{1}, u_{2}, u_{3}\right\}, X\right\}$. Let
$G=\left\{u_{1}, u_{3}\right\}$, then $\operatorname{Int}(G)=\left\{u_{1}\right\}$ is minimal regular open but G is not minimal regular β-open set.
Theorem 3.38. $\alpha \mathrm{O}(\mathrm{X}) \cap \mathrm{M}_{\mathrm{i}} \mathrm{R} \beta \mathrm{O}(\mathrm{X}) \subset \mathrm{M}_{\mathrm{i}} \mathrm{RO}(\mathrm{X})$.
Proof. Let $A_{1} \in \alpha \mathrm{O}(\mathrm{X}) \cap \mathrm{M}_{\mathrm{i}} \mathrm{R} \beta \mathrm{O}(\mathrm{X})$ then $A_{1} \in \alpha \mathrm{O}(\mathrm{X}) \cap \mathrm{R} \beta \mathrm{O}(\mathrm{X})$. By theorem $2.20 A_{1} \in$ $\mathrm{RO}(\mathrm{X})$. We have to prove that A_{1} is minimal regular open $\operatorname{set}\left(A_{1} \in \mathrm{M}_{\mathrm{i}} \mathrm{RO}(\mathrm{X})\right)$. Assume that A_{1} is not minimal regular open set $\left(A_{1} \notin \mathrm{M}_{\mathrm{i}} \mathrm{RO}(\mathrm{X})\right.$), then there exists nonempty regular open set A_{2} such that $A_{2} \subset A_{1}$ and $A_{2} \neq A_{1}$. Since A_{2} is regular β-open set included in A_{1}, which is opposite to each other .Therefore A_{1} is minimal regular open set ($\left.A_{1} \in \mathrm{M}_{\mathrm{i}} \mathrm{RO}(\mathrm{X})\right)$.
Theorem3.39. If A_{1} is a minimal β-open set in a space X such that A_{1} is not dense in X, then $\beta \mathrm{Cl}\left(A_{1}\right)$ is minimal regular β-open set.
Proof. Let A_{1} be a minimal β-open set from theorem 2.21, we have $\beta \mathrm{Cl}\left(A_{1}\right)$ is regular β open set. Since A_{1} is nonempty β-open and $A_{1} \subseteq \beta \operatorname{Cl}\left(A_{1}\right)$, then $\Phi \neq \beta \mathrm{Cl}\left(A_{1}\right)$. Now $\mathrm{Cl}\left(A_{1}\right) \neq X$ because of A_{1} is not dense in X. So that $\beta \mathrm{Cl}\left(A_{1}\right) \subseteq \mathrm{Cl}\left(A_{1}\right)$ and $\beta \mathrm{Cl}\left(A_{1}\right) \neq X$. That means $\beta \mathrm{Cl}\left(A_{1}\right)$ is nonempty proper regular β-open set. We must to prove that $\beta \mathrm{Cl}\left(A_{1}\right)$ is minimal regular β-open set. Let A_{2} be a nonempty regular β-open set such that $A_{2} \subseteq$ $\beta \mathrm{Cl}\left(A_{1}\right)$. Then $\beta \mathrm{Cl}\left(A_{2}\right) \subseteq \beta \mathrm{Cl}\left(A_{1}\right)$.If $A_{1} \cap A_{2}=\Phi$, then $\beta \mathrm{Cl}\left(A_{1}\right) \cap \beta \mathrm{Cl}\left(A_{2}\right)=\Phi$ which is opposite to each other. Hence, $A_{1} \cap A_{2} \neq \Phi$ and by theorem $2.13 A_{2}$ is β-open. So that from theorem 3.7(i) we get $A_{1} \subset A_{2}$ and $\beta \mathrm{Cl}\left(A_{1}\right) \subseteq \beta \mathrm{Cl}\left(A_{2}\right)$. This implies that $\beta \mathrm{Cl}\left(A_{1}\right)=$ $\beta \mathrm{Cl}\left(A_{2}\right)$. Since, A_{2} is regular β-open set then from Theorem 2.13 we have A_{2} is β-closed. This implies that $\beta \mathrm{Cl}\left(A_{2}\right)=$, and $\beta \mathrm{Cl}\left(A_{1}\right)=A_{2}$. Therefore, $\beta \mathrm{Cl}\left(A_{1}\right)$ is minimal regular β -open set.
Theorem3.40. Let U_{1}, U_{2} and U_{3} be maximal regular β-open sets such that $U_{1} \neq U_{2}$. If $U_{1} \cap U_{2} \subset U_{3}$, then either $U_{1}=U_{3}$ or $U_{2}=U_{3}$.
Proof. The proof is similar to theorem 2.24.So that it is omitted.
Theorem3.41. Let U_{1}, U_{2} and U_{3} be maximal regular β-open sets which are various from each ether. Then, $\left(U_{1} \cap U_{2}\right) \not \subset\left(U_{1} \cap U_{3}\right)$.
Proof. The proof is similar to theorem 2.5.
Theorem3.42. i- Let G and $\left\{G_{\lambda}\right\}_{\lambda \in \Lambda}$ be minimal regular β-open sets. If $G \subset \cup_{\lambda \in \Lambda} G_{\lambda}$, then there exists $\lambda \in \Lambda$ such that $G=G_{\lambda}$.
ii- Let G and $\left\{G_{\lambda}\right\}_{\lambda \in \Lambda}$ be a minimal regular β-open sets. If $G \neq G_{\lambda}$ for each $\lambda \in \Lambda$, then $\left(\cup_{\lambda \in \Lambda} G_{\lambda}\right) \cap G=\Phi$.
Proof. i- Let G and $\left\{G_{\lambda}\right\}_{\lambda \in \Lambda}$ be a minimal regular β-open sets with $\subset \cup_{\lambda \in \Lambda} G_{\lambda}$. we must to prove that $G \cap G_{\lambda} \neq \varphi$. Since if $G \cap G_{\lambda}=\varphi$, then $G_{\lambda} \subset X \backslash G$ and hence, $G \subset \cup_{\lambda \in \Lambda} G_{\lambda} \subset X \backslash G$ which is opposite to each other. Now as $G \cap G_{\lambda} \neq \varphi$, then $G \cap G_{\lambda} \subset G$ and $G \cap G_{\lambda} \subset G_{\lambda}$. Since $G \cap G_{\lambda} \subset G$ and this gives that G is minimal regular β-open, then by definition 3.1, $G \cap G_{\lambda}=G$ or $G \cap G_{\lambda}=\varphi$. But $G \cap G_{\lambda} \neq \varphi$, then $G \cap G_{\lambda}=G$ which means $G \subset$ G_{λ}. Similarly $G \cap G_{\lambda} \subset G_{\lambda}$ gives that G_{λ} is minimal regular β-open, then by Definition
3.1, $G \cap G_{\lambda}=G_{\lambda}$ or $G \cap G_{\lambda}=\varphi$. But $G \cap G_{\lambda} \neq \varphi$ then $G \cap G_{\lambda}=G_{\lambda}$ which means $G_{\lambda} \subset$ G. Therefoer, $G=G_{\lambda}$.
ii- Assume that $\left(\cup_{\lambda \in \Lambda} G_{\lambda}\right) \cap G \neq \varphi$ then there exists $\lambda \in \Lambda$ such that $G_{\lambda} \cap G \neq \varphi$. By theorem 3.7 (ii), we have $G=G_{\lambda}$ which is opposite to the fact $G \neq G_{\lambda}$. Hence, ($\cup_{\lambda \in \Lambda} G_{\lambda}$) $\cap G=\varphi$.
CONCLUSION
In this paper, maximal and minimal open sets via regular β-open sets are introduced. We also get several results that are presented to reveal many various properties of the minimal regular β-open and maximal regular β-open sets and their complements. The relation between the minimal regular β-open and maximal regular β-open are shown. Finally, we have discussed their relationship with various types of open sets such as minimal and maximal regular open sets.

References

[1] Abd El-Monsef,M., " β-open sets and β-continuous mappings", Bull. Fac. Sci. Assiut Univ., no. 12, pp. 77-90, 1983.
[2] Andrijević, D., "Semi-preopen sets". Matematički Vesnik, vol. 38, no. 93, pp.24-32, 1986.
[3] Anuradha, N. and Chacko, B., "On minimal regular open sets and maps in topological spaces", J. Math. Sci, vol. 4, pp.182-192, 2015.
[4] Hasan, H., "Maximal and Minimal α-Open Sets", Int. J. Engineering Research and Applications. Vol. 5, pp. 50- 53, 2015.
[5] Nakaoka, F. and Oda, N., "Some properties of maximal open sets ". International Journal of Mathematics and Mathematical Sciences, vol. 2003, no. 21, pp.1331-1340, 2003.
[6] Nakaoka, F. and Oda, N., " Several applications of minimal open sets", International Journal of Mathematics and Mathematical Sciences, vol. 8, no. 27, pp. 471-476, 2001.
[7] Nasser, F.M., "On Minimal and Maximal Regular Open Sets", Doctoral dissertation, The Islamic University-Gaza, Gaza: The Islamic University - Gaza, 2016.
[8] Njástad, O., "On some classes of nearly open sets". Pacific journal of mathematics, vol. 15, no. 3, pp.961-970, 1956.
[9] Shakir, Q.R., "Minimal and Maximal Beta Open Sets", Al-Nahrain Journal of Science, vol. 17, no. 1, pp.160-166, 2015.
[10]Stone, M., " Applications of the theory of Boolean rings to general topology", Transactions of the American Mathematical Society, vol. 3, no. 41, pp. 375-481, 1937.
[11] Yunis, R., "Regular β-open setse," Zanco journal of pure and applied Science", vol. 3, no. 16, pp. 79-83, 2004.

[^0]: *Email: sami.hussein@su.edu.krd

