Rashid and Hussein

Iraqi Journal of Science, 2022, Vol. 63, No. 4, pp: 1720-1728 DOI: 10.24996/ijs.2022.63.4.29

ISSN: 0067-2904

Maximal and Minimal Regular β -Open Sets in Topological Spaces

Nafeha O. Rashid, Sami A. Hussein^{*}

Department of mathematics, College of Basic Education, Salahaddin University-Erbil, Iraq

Received: 26/5/2021 Accepted: 11/7/2021 Published: 30/4/2022

ABSTRACT

In this paper, new concepts of maximal and minimal regular β – open sets are introduced and discussed. Some basic properties are obtained. The relation between maximal and minimal regular β – open sets and some other types of open sets such as regular open sets and β -open sets are investigated.

Keywords: β – open set, regular β – *open set*, *minimal regular* β – *open set*, maximal regular β – open set,

المجموعات العظمى والصغري مفتوحة المنتظمة من النمط $oldsymbol{eta}$ من الفضاءات التبولوجية

نافعة عمر رشيد، سامي علي حسين *

قسم الرياضيات، كلية التربية الاساسية ، جامعة صلاح الدين، اربيل ، العراق

الخلاصه

في هذا البحث عرفنا و درسنا نوع جديد من المجموعات العضمى والصغرى المفتوحة المنتظمة من النمط β , تم الحصول على بعض خواصه , درسنا علاقه بين المجموعات العضمى والصغرى المفتوحه المنتظمه من النمط β مع مجموعات المفتوحه اخرى مثل المجموعات المفتوحة المنتظمه و مجموعات المفتوحه من النمط β

I. INTRODUCTION

The concepts of maximal open sets and minimal open sets in topological spaces were introduced by Nakaok and Oda in [1-5,6, 7]. The study of α -open sets and their properties were initiated by Njastad in 1965[8]. Stone gave a new class of open sets called regular open sets in 1937,[9, 10]. In[1], the concepts of β -open sets have been introduced and studied. Latter, these β -open sets are recalled as semipreopen sets, which were introduced by D.Andrejevic in [2]. In [9], As a simulation of these studies, minimal and maximal β - open sets have been introduced and studied. On the other hand as a simulation of minimal regular open set in [3] has been introduced and studied. Latter, Nasser [7] explains the study of notation of minimal and maximal regular open set is introduced in[4]. In addition, a new class of open sets called regular β - open sets were given by authors in [11]. Our aim in presenting this article is to introduce the notation of a new class of maximal and

^{*}Email: sami.hussein@su.edu.krd

minimal open sets which is called maximal regular β – open sets and minimal regular β –open sets. We also investigate several of their basic properties. Finally, we study their relationship with various types of open sets. Throughout this article ,the closure (Interior) of a subset U_1 of space X is symbolized by $Cl(U_1)$ (Int (U_1)).

II. Basic Backgrounds.

By (X, \mathfrak{I}) or simply X we mean a topological space for which no separation axioms are considered unless it is stated.

Definition 2.1. [6] The minimal open (closed) set in a space X is a proper nonempty open(closed) subset U of X which is included in U is Φ or U.

Definition 2.2. [5] The maximal open (closed) set in a space X is a proper nonempty open (closed) subset U of X that includes U is U or X.

Definition 2.3.[1] The β – open (semipre) set in a space *X* is a subset *U* of *X* such that

 $U \subseteq Cl(Int(Cl(U)))$. U is called β -closed set if U^c is β -open set. The collection of all β - open (β - closed) set will be denoted by (X)($\beta C(X)$).

Definition 2.4. [10] The regular open (regular closed) set in a space X is a subset V of X, such that V = Int(Cl(V)) (V = Cl(Int(V))). The collection of all regular open(regular closed) sets will be denoted RO(X) (RC(X)).

Definition 2.5. [8] The α – open set in a space *X* in a space *X* is a subset *U* of *X* such that

 $U \subseteq Int(Cl(Int(U)))$. *U* is called α - closed set if U^c is α -open set. The set of all α -open (α -closed) set will be denoted by $\alpha O(X)(\alpha C(X))$.

Definition 2.6. [11] The regular β – open set in a space X is a subset U of X, such that $U = \beta \operatorname{Int}(\beta Cl(U))$.

The collection of all regular β – open sets will be denoted R β O(*X*).

Definition 2.7. [9] The minimal β – open (β – closed) set in a space X is a proper nonempty β – open(β – closed) subset U of X which is included in U is ϕ or U. The set of all minimal β – open(β – closed) sets will be denoted by $M_i\beta O(X)$ ($M_i\beta C(X)$).

Definition 2.8. [9] The maximal β – open (β – closed) set in a space X is a proper nonempty β –open(β –closed) subset U of X which is includes U is U or X. The set of all maximal β – open(β – closed) sets will be denoted by M_a β O(X) (M_a β C(X)).

Definition 2.9. [7] The maximal regular open (regular closed) set in a space X is a proper nonempty regular–open(regular–closed) subset U of X which is includes U is U or X. The set of all maximal regular open(regular closed) sets will be denoted by $M_aRO(X)$ ($M_aRC(X)$).

Definition 2.10. [7] The minimal regular open (regular closed) set in a space X is a proper nonempty regular open(regular closed) subset U of X which is included in U is Φ or U.

The set of all minimal regular open(regular closed) sets will be denoted by $M_i RO(X)$ ($M_i RC(X)). \label{eq:minimal}$

Definition 2.11. [9] *X* is said to be $T_{\beta\min}$ if $\Phi \neq G \in \beta O(X)$ implies $G \in M_i \beta O(X)$ for each *G*.

Definition 2.12. [9] X is called $T_{\beta \max}$ space if $\Phi \neq G \in \beta O(X)$ implies $G \in M_a \beta O(X)$ for each G. **Theorem 2.13.** [11] $U \in R\beta O(X)$ if and only if $U \in \beta O(X) \cap \beta C(X)$.

Theorem 2.14. [9] The subset U of X, is a minimal β –closed if and only if U^c is maximal β –open set.

Theorem 2.15. [9] A space *X* is $T_{\beta \min}$ if and only if it is $T_{\beta \max}$.

Theorem 2.16. [9] For each pair $A, B \in M_i \beta O(X)$ of $T_{\beta \min}$ such that $A \neq B$, we have $A \cap B = \Phi$.

Theorem 2.17. [9] For each pair $A, B \in M_i \beta O(X)$ of $T_{\beta \min}$, such that $A \neq B$, we have $A \cup B = X$.

Theorem 2.18. [11] $U \in R\beta O(X)$ if and only if $Int(U) \in RO(X)$ and $Cl(U) \in RC(X)$.

Theorem 2.19.[11] If $A_1 \in RO(X)$ and $A_2 \in R\beta O(X)$, then $A_1 \cap A_2 \in R\beta O(X)$.

Theorem 2.20. [11] $\alpha O(X) \cap R\beta O(X) = RO(X)$.

Theorem 2.21. [11] $\forall A_1 \subseteq X$, we have $\beta \operatorname{Int}(\beta \operatorname{Cl}(A_1))$, $\beta \operatorname{Cl}(\beta \operatorname{Int}(A_1))$, $\beta \operatorname{Int}(\operatorname{Cl}(A_1))$, $\beta \operatorname{Cl}(\operatorname{Int}(A_1))$ and $\operatorname{Int}(\operatorname{Cl}(A_1))$ are regular β –open sets.

Theorem 2.22. [11] The following conditions are equivalent for each subset *W* of *X*:

(i) $W \in R\beta O(X)$, (ii) $W \in \beta O(X) \cap \beta C(X)$, (iii) $X \setminus W \in R\beta O(X)$, (iv) $W = \beta Cl(\beta Int(W))$,

(v) $\beta Fr(W) = \varphi$, (vi) $Int(Cl(Int(W))) \subset W \subset Cl$ (Int (Cl(W))), opens (vii) $W \in \beta O(X)$ and $X \setminus W \in \beta O(X)$.

Theorem 2.23.[3] i- If the intersection of a minimal regular open set and a regular open set is not equal to Φ , then the minimal regular open set is a subset of the regular open set.

ii- If the intersection of each pair of a minimal regular open set is not equal to Φ , then it is equal to each other.

Theorem 2.24. [4] Let U_1, U_2 and U_3 be maximal α –open sets such that $U_1 \neq U_2$. If $U_1 \cap U_2 \subset U_3$, then either $U_1 = U_3$ or $U_2 = U_3$.

Theorem2.25. [4] Let U_1 , U_2 and U_3 be maximal α –open sets which are various from each ether. Then, $(U_1 \cap U_2) \not\subset (U_1 \cap U_3)$.

Theorem 2.26.[7] If A_1 is proper closed set includes a maximal regular open set A_2 , then Int $(A_1) = A_2$.

III. MAXIMAL AND MINIMAL REGULAR β – OPEN SETS

In this section, the concepts of minimal and maximal regular β – open sets are introduced. Then, we discuss several properties of these and their relationships with several types of nearly open sets.

Definition 3.1.

i) The minimal regular β – open set in X is a proper nonempty regular β – open subset U of X which is included in U is Φ or U.

ii) The maximal β – open set in X is a proper nonempty regular β – open subset U of X which is included in U is U or X

The collection of all minimal regular β –open (maximal regular β –open) sets in a space X is symbolized by $M_i R\beta O(X)$ (MaR $\beta O(X)$).

Remark 3.2. From the fact that $R\beta O(X)=R\beta C(X)$, by theorem 2.13. Then in any space X minimal regular β –open(maximal regular β –open) sets and minimal regular β –closed (maximal regular β –closed) sets are equivalent. It means that $M_iR\beta O(X) = M_iR\beta C(X)$ and $M_aR\beta O(X) = M_aR\beta C(X)$

Example 3.3. Consider $X = \{u_1, u_2, u_3, u_4\}$ and let $\mathfrak{I} = \{\Phi, \{u_1\}, \{u_2\}, \{u_1, u_2\}, X\}$ then $R\beta O(X) = \{\Phi, \{u_1\}, \{u_2\}, \{u_1, u_3\}, \{u_1, u_4\}, \{u_2, u_3\}, \{u_2, u_4\}, \{u_1, u_3, u_4\}, \{u_2, u_3, u_4\}, X\}$.So,

the set $\{u_1\}$ is minimal regular β –open and the set $\{u_2, u_3, u_4\}$ is maximal regular β –open.

Theorem 3.4. $A_1 \in M_i R\beta O(X)$ if and only if $A_1^c \in M_a R\beta O(X)$

Proof. Let $A_1 \in M_i R\beta O(X)$, then by theorem 2.13, $A_1^c \in R\beta O(X)$. Let $A_2 \in R\beta O(X)$. such that $A_1^c \subseteq A_2$, then $A_2^c \subseteq A_1$. Since, A_2^c is regular β – open set included in a minimal regular β – open set A_1 , then either $A_2^c = \Phi$ or $A_2^c = A_1$ that is either $A_2 = X$ or $A_2 = A_1^c$. Therefore, A_1^c is maximal regular β – open set.

Corollary 3.5. Let *X* be a space contain at least two elements and $a_1 \in X$. Then, if $\{a_1\}$ is a regular β – open set then it is minimal regular β – open set and X\ $\{a_1\}$ is maximal regular β – open set.

Proof. Let $\{a_1\}$ be a regular β – open set. Since there is no nonempty regular β – open set including properly in the set $\{a_1\}$, then $\{a_1\}$ is minimal regular β – open set and by theorem 3.4 X\{ a_1 } is maximal regular β – open set.

Lemma 3.6. If $A_1 \in M_i R\beta O(X)$ and $A_2 \in R\beta O(X)$, then $A_1 \cap A_2 \in R\beta O(X)$.

Proof. Let $A_1 \in M_i R\beta O(X)$ and $A_2 \in R\beta O(X)$, . We have now, $A_1 \cap A_2 \subseteq A_1$.If $A_1 \cap A_2 = \Phi$ then, the prove is completed. If $A_1 \cap A_2 \neq \Phi$ and A_1 is a minimal regular β - open set, then $A_1 \cap A_2 = A_1$. This means that, $A_1 \cap A_2$ is regular β - open set.

Theorem 3.7. i- If the intersection of a minimal regular β – open set and a regular β – open set is not equal to ϕ , then the minimal regular β – open set is a subset of the regular β – open set.

ii- If the intersection of each pair of a minimal regular β – open set is not equal to Φ , then equal to each other.

Proof. The proof is similar to theorem 2.23, then it is omitted.

Remark 3.8. If $a_1 \in A_1 \in M_i R\beta O(X)$, then $A_1 \subseteq A_2$, for each $a_1 \in A_2 \in R\beta O(X)$

Proof. Let $a_1 \in A_1$. If A_2 is regular β – open set including a_1 . Then, $A_1 \cap A_2 \neq \Phi$. So by Theorem 3.7 $A_1 \subseteq A_2$.

Theorem 3.9. i- If A_1 is a β – closed set including properly in a minimal regular – open set A_2 . Then, $\beta \operatorname{Int}(A_1) = \Phi$.

ii- If A_1 is a β – closed set contain properly a maximal regular β –open set A_2 . Then, β Int $(A_1) = X$.

iii- If A_1 is a β – open set contain properly a maximal regular β – open set A_2 . Then, $\beta Cl(A_1) = X.$

Proof. i- Let $A_2 \in M_i R\beta O(X)$ and $A_1 \in \beta C(X)$ such that $A_1 \subset A_2$. So, $\beta Int(A_1)$ is regular β - open set and A_2 is a minimal regular β - open set. Then, β Int(A_1) = Φ .

ii- Let $A_2 \in M_a R\beta O(X)$ and $A_1 \in \beta C(X)$ such that $A_2 \subset A_1$. So by Theorem 2.21 $\beta Int(A_1) \in$ $R\beta O(X)$ and A_2 is a maximal regular β –open set. Then, $\beta Int(A_1) = X$.

iii- Let $A_2 \in M_a R\beta O(X)$ and $A_1 \in \beta O(X)$, such that $A_2 \subset A_1$. So, by Theorem 2.21 $\beta Cl(A_1) \in R\beta O(X)$ and A_2 is a maximal regular β –open set. Then, $\beta Cl(A_1) = X$.

Remark 3.10. Next example shows that the Theorem 3.9 part i and ii are not necessary to be true if A_1 is not β -closed set.

Example 3.11. Consider $X = \{u_1, u_2, u_3, u_4\}$ with a topology $\mathfrak{I} = \{ \Phi, \{u_1\}, \{u_2\}, \{u_1, u_2\}, \{u_1, u_3\}, \{u_1, u_2, u_3\} X \},\$ $\beta O(X,\mathfrak{I})$ $\{\Phi, \{u_1\}, \{u_2\}, \{u_1, u_2\}, \{u_1, u_3\}, \{u_1, u_4\}, \{u_2, u_4\}, \{u_1, u_2, u_3\}, \{u_1, u_3, u_4\}, \{u_1, u, u_4\}, X\},\$

 $R\beta O(X, \mathfrak{I}) = \{ \Phi, \{u_2\}, \{u_1, u_3\}, \{u_2, u_4\}, \{u, u_3, u_4\}, X \}.$

i- Let $A_1 = \{u_1\}$, and $A_2 = \{u_1, u_3\}$, then $\beta \text{Int}(A_1) = \{u_1\} \neq \Phi$.

ii- Let $A_1 = \{u_1, u, u_4\}$, and $A_2 = \{u_2, u_4\}$, then $\beta \text{Int}(A_1) = A_1 \neq X$.

Theorem 3.12. Let U_1 be a non-empty proper regular β – open set, then the following statements are equivalent:

i. U_1 is a minimal regular β –open set,

 $U_1 \subseteq \beta Cl(U_2)$, where $U_2 \subseteq U_1$ and $\beta Int(U_2) \neq \Phi$, ii.

 $U_1 = \beta \operatorname{Cl} (U_2)$, where $\Phi \neq U_2 \subseteq U_1$. iii.

Proof. (i \rightarrow ii) Let $U_2 \subseteq U_1$ such that $\beta \operatorname{Int}(U_2) \neq \Phi$, then $\beta \operatorname{Int}(U_2) \subseteq \beta \operatorname{Int}(\beta \operatorname{Cl}(U_2)) \subseteq \beta$ $\beta \operatorname{Int}(\beta \operatorname{Cl}(U_1)) = U_1$, which is minimal regular β -open set. This means that $U_1 =$ β Int(β Cl(U_2)) $\subseteq \beta$ Cl(U_2).

(ii \rightarrow iii) Since $U_2 \subseteq U_1, U_1 \subseteq \beta Cl(U_2) \subseteq \beta Cl(U_1)$. Therefore, $U_1 = \beta Cl(U_1) = \beta Cl(U_2)$. (iii \rightarrow i) Let U_2 be a nonempty regular β – open set such that $U_2 \subseteq U_1$, then $\beta Cl(U_1) = U_1 =$ $\beta Cl(U_2)$. This means that $U_2 = \beta Int(\beta Cl(U_2)) = \beta Int(\beta Cl(U_1)) = U_1$.

Therefore, U_1 is a minimal regular β –open set.

Theorem 3.13. Let A_1 be a nonempty proper regular β –open set. Then, the next pair of conditions are equivalent:

i- A_1 is a minimal regular β –open set,

ii- $A_1 = \beta \text{Int}(A_2)$, where A_2 is β -closed set, $A_2 \subseteq A_1$ and $\beta \text{Int}(A_2) \neq \Phi$.

Proof. (i) \rightarrow (ii) Let A_1 be a minimal regular β –open set and A_2 is β –closed set such that $A_2 \subseteq A_1$, then $\beta \operatorname{Int}(A_2) \subseteq \beta \operatorname{Int}(A_1) = A_1$. Since, by theorem 2.21 $\beta \operatorname{Int}(A_2)$ is regular β – open set and A_1 is a minimal regular β –open set. Therefore, $A_1 = \beta \operatorname{Int}(A_2)$.

(ii) \rightarrow (i) Let A_2 be a nonempty regular β -open set such that $A_2 \subseteq A_1$.So, $A_1 = \beta$ Int $(A_2) = A_2$

. This means that, $A_2 = A_1$. Therefore, A_1 is a minimal regular β –open set.

Remark 3.14. Next example shows that we cannot remove the condition $\beta \text{Int}(A_2) \neq \Phi$ in theorem 3.13.

Example 3.15. Consider $X = \{u_1, u_2, u_3, u_4\}$ with a topology $\mathfrak{I} = \{\Phi, \{u_1\}, \{u_3\}, \{u_1, u_3\}, \{u_1, u_2\}, \{u_3, u_4\}, \{u_1, u_2, u_3\}, \{u_1, u_3, u_4\}, X\}, \beta O(X, \mathfrak{I})$

 $= \{ \Phi, \{u_1\}, \{u_3\}, \{u_1, u_2\}, \{u_1, u_3\}, \{u_3, u_4\}, \{u_1, u_2, u_3\}, \{u_1, u_3, u_4\}, X \}, R\beta O(X, \mathfrak{I}) = \{ \Phi, \{u_1, u_2\}, \{u_3, u_4\}, X \}. Let A_2 = \{u_2\}, A_1 = \{u_1, u_2, u_3\}, \{u_1, u_3, u_4\}, X \}$

 $\{u_1, u_2\}$ and $\beta \text{Int}(A_2) = \Phi$, then $\beta \text{Int}(A_2) \neq A_1$.

Theorem 3.16. If A_1 is proper β -closed set includes a maximal regular β –open set A_2 , then β Int $(A_1) = A_2$.

Proof. The proof is similar to theorem 2.26. Hence it is omitted.

Theorem 3.17. i- If A_1 is a nonempty proper regular β – open set such that no existing proper β – open (β –closed) set includes A_1 then A_1 is maximal regular β – open set.

ii- If A_1 is a nonempty proper regular β -open set such that no existing proper β - open (β - closed) set included in A_1 then A_1 is minimal regular β -open set.

Proof. i- Let A_2 be a regular β –open set such that $A_1 \subseteq A_2$. So that A_2 is β –open (β –closed) set then $A_2 = A_1$ or $A_2 = X$. Therefore, A_1 is maximal regular β –open set.

ii- Let A_2 be a regular β -open set such that $A_2 \subseteq A_1$. So that A_2 is β -open (β -closed) set then $A_2 = A_1$ or $A_2 = \Phi$. Therefore, A_1 is minimal regular β -open set.

Theorem 3.18. i- If the union of a maximal regular β –open set and regular β –open set is not equal to *X*, then the regular β –open set is a subset of the maximal regular β –open set .

ii- If the union of each pair of a maximal regular β –open set is not equal to X, then it is equal to each other.

Proof. i- Let A_1 be a maximal regular β –open set and A_2 be a regular β –open set such that $A_1 \cup A_2 \neq X$, then we must to prove that $A_2 \subseteq A_1$. Since $A_1 \subseteq A_1 \cup A_2$ and A_1 is a maximal regular β –open set then by definition 3.1 $A_1 \cup A_2 = X$ or $A_1 \cup A_2 = A_1$, but $A_1 \cup A_2 \neq X$ then $A_1 \cup A_2 = A_1$, which means that $A_2 \subseteq A_1$.

ii- If A_1 and A_2 are a maximal regular β -open sets such that $A_1 \cup A_2 \neq X$, then $A_2 \subset A_1$ and $A_1 \subset A_2$ by (i). Therefore $A_2 = A_1$

Theorem 3.19. If U_1 is minimal regular β –open set and U_2 is maximal regular β –open set in a space X such that $U_1 \not\subseteq U_2$, then $U_1 = X \setminus U_2$.

Proof. Let U_1 be a minimal regular β -open set, then $X \setminus U_1$ is maximal regular β -open set, but U_2 is maximal regular β -open set. Therefore, either $U_2 = X \setminus U_1$ or $U_2 \cup X \setminus U_1 = X$. If $U_2 \cup X \setminus U_1 = X$ then $U_1 \subseteq U_2$ which is opposite to each other. Hence, $U_2 = X \setminus U_1$. Means that, $U_1 = X \setminus U_2$.

Remark 3.20. i- The class $M_i R\beta O(X)$ ($M_a R\beta O(X)$) and $M_i \beta O(X)$ ($M_a \beta O(X)$) are incomparable.

ii- Next example shows that the class $M_i R\beta O(X)$ ($M_a R\beta O(X)$) and $M_i RO(X)$ ($M_a RO(X)$) are incomparable.

Example3.21. In example 3.11,

i-The set $\{u_1, u_3\}$ is minimal regular β -open but not minimal β -open and the set $\{u_1\}$ is minimal β -open but not minimal regular β -open.

ii- The set $\{u_2, u_4\}$ is maximal regular β -open but not maximal β -open and the set $\{u_1, u_2, u_3\}$ is maximal β -open but not maximal regular β -open.

Example3.22. Consider $X = \{u_1, u_2, u_3, u_4\}$ with a topology $\Im = \{ \Phi, \{u_1\}, \{u_2, u_3\}, \{u_1, u_2, u_3\}, X \},$ $R\beta O(X, \Im)$

 $\{ \Phi, \{u_1\}, \{u_2\}, \{u_3\}, \{u_1, u_2\}, \{u_1, u_3\}, \{u_1, u_4\}, \{u_2, u_3\}, \{u_3, u_4\}, \{u_2, u_4\}, \{u_2, u_3, u_4\}, \{u_1, u_3, u_4\}, \{u_1, u_2, u_4\}, X \}, \text{RO}(X, \mathfrak{I}) = \{ \varphi, \{u_1\}, \{u_2, u_3\}, X \}, \text{Then:}$

i-The set $\{u_2\}$ is minimal regular β -open but not minimal regular open and the set $\{u_2, u_3\}$ is minimal regular open but not minimal regular β -open.

ii- The set $\{u_2, u_3, u_4\}$ is maximal regular β –open but not maximal regular open and the set $\{u_2, u_3\}$ is maximal regular open but not maximal regular β –open.

Theorem 3.23. Let *X* be a $T_{\beta\min}$ space. Then, $A_1 \in M_i R\beta O(X)$ if and only if $A_1 \in M_i \beta O(X)$ **Proof.** Let A_1 be a minimal regular β –open set and *X* be a $T_{\beta\min}$ space. Then, A_1 is β –open set. By definition 2.11, *have* $A_1 \in M_i \beta O(X)$. Conversely, Let A_1 is a minimal β –open set and A_2 is β –open set. From definition 2.11, we have A_2 is a minimal β –open set, and by theorem 2.16,we get $A_1 \cap A_2 = \Phi$, then by theorem 2.17 and Theorem 2.15, $A_1 \cup A_2 = X$. *Hence*, $A_2 = X \setminus A_1$ and A_1 is β -closed set. By Theorem 2.13, A_1 is regular β –open set. Therefore, A_1 is a minimal regular β –open set.

Theorem 3.24. Let *X* be a $T_{\beta \min}$ space. Then, A_1 is a maximal regular β –open set if and only if A_1 is a maximal β –closed set.

Proof. Let A_1 be a maximal regular β –open set and X be a $T_{\beta\min}$ space. Then A_1 is β –closed set. Assume that, A_1 is not maximal β –closed set. So that there exists an β –closed subset A_2 of X with $A_2 \neq X$ such that $A_1 \subset A_2$. Thus $A_2^{\ c} \subset A_1^{\ c}$. Hence $A_1^{\ c}$ is a proper β –open set which is no minimal and this opposite of being X is $T_{\beta\min}$ space. Hence, A_1 is a maximal β –closed set. Conversely, let A_1 is a maximal β –closed set then by Theorem 2.14, $A_1^{\ c}$ is minimal β –open set. By theorem 3.23, $A_1^{\ c}$ is a minimal regular β –open set. Hence A_1 is a maximal regular β –open set.

Remark 3.25. Next example indicates that we cannot remove the condition *X* be a $T_{\beta \min}$ space in theorem 3.23 and Theorem 3.24.

Example 3.26. In example 3.11, the space X is not $T_{\beta\min}$, the set $\{a_1, a_3\}$ is minimal regular β –open but not minimal β –open and the set $\{a_1\}$ is minimal β – open but not minimal regular β –open. So, the set $\{a_2, a_4\}$ is maximal regular β –open but not maximal β –closed and the set $\{a_2, a_3, a_4\}$ is maximal β –closed but not maximal regular β –open.

Theorem 3.27. If any regular β –open set is maximal (minimal) β –open set then it is maximal (minimal) regular β –open set.

Proof. Let A_1 be a regular β –open set and maximal (minimal) β –open set in a space X. We want to prove that A_1 is a maximal (minimal) regular β –open set. Assume that A_1 is not maximal(not minimal) regular β –open set, then $A_1 \neq X$ ($A_1 \neq \Phi$) and there exist regular β –open set A_2 such that $A_1 \subset A_2$ ($A_2 \subset A_1$) $A_1 \neq A_2$. By Theorem 2.13, A_2 is β –open set .So, A_2 includes (included in) A_1 , which is opposite to each other. Hence, A_1 is a maximal (minimal) regular β –open set.

Theorem 3.28. If any regular open set is maximal (minimal) regular β –open set then it is maximal (minimal) regular open set.

Proof. Let A_1 be a regular open set and maximal (minimal) regular β –open set in a space X. We want to prove that A_1 is a maximal (minimal) regular open set. Assume that A_1 is not maximal (not minimal) regular open set, then $A_1 \neq X$ ($A_1 \neq \Phi$) and there exist regular open set A_2 such that $A_1 \subset A_2$ ($A_2 \subset A_1$) and $A_1 \neq A_2$. By theorem 2.22, A_2 is regular β –open set. So, A_2 includes (included in) A_1 , which is opposite to each other. Hence A_1 is a maximal (minimal) regular open set.

Theorem 3.29. If any regular β –open set is maximal (minimal) β –closed set then it is maximal (minimal) regular β –open set.

Proof. Let A_1 be a regular β –open set and maximal (minimal) β –closed set in a space X. We want to prove that A_1 is a maximal (minimal) regular β –open set. Assume that A_1 is not maximal (minimal) regular β –open set, then $A_1 \neq X$ (resp. $A_1 \neq \Phi$) and there exist regular β –open set A_2 such that $A_1 \subset A_2$ ($\subset A_1$) $A_1 \neq A_2$. By theorem 2.13, A_2 is β –closed set .So, A_2 includes (included in) A_1 , which is opposite to each other. Hence A_1 is a maximal (minimal) regular β –closed set.

Theorem 3.30. If any regular closed set is maximal (minimal) regular β –open set then it is maximal (minimal) regular open set.

Proof. Let A_1 be a regular closed set and maximal (minimal) regular β –open set in a space X. We want to prove that A_1 is a maximal (minimal) regular closed set. Assume that A_1 is not maximal (not minimal) regular closed set, then $A_1 \neq X$ ($A_1 \neq \Phi$) and there exist regular closed set A_2 such that $A_1 \subset A_2(A_2 \subset A_1)$ $A_1 \neq A_2$. By theorem 2.22, A_2 is regular β –open set. So, A_2 includes (included in) A_1 , which is opposite to each other. Hence A_1 is a maximal (minimal) regular closed set.

Theorem 3.31. Let $A_1 \in M_a R \beta O(X)$ such that $a_1 \notin A_1$. Then, $A_1 \cup A_2 = X$ for each $A_2 \in R \beta O(X, a_1)$.

Proof. Since, $a_1 \notin A_1$. We have $A_2 \notin A_1$ for any regular β –open set A_2 including a_1 . By theorem 3.19 $A_1 \cup A_2 = X$.

Theorem 3.32. If the intersection of regular open set and minimal regular β –open set is not equal to φ . Then the intersection of these is equal to minimal regular β –open set.

Proof. Let U_1 be a regular open set and U_2 is minimal regular β -open set such that $U_1 \cap U_2 \neq \Phi$, by theorem 2.19, $U_1 \cap U_2$ is regular β -open set. We want to prove that $U_1 \cap U_2$ is minimal regular β -open set. Assume that $U_1 \cap U_2$ is not minimal regular β -open set, then there exists nonempty regular β -open set U_3 such that $U_3 \subset U_1 \cap U_2$ and $U_3 \neq U_1 \cap U_2$. Hence $U_3 \subset U_1$ and $U_3 \subset U_2$. This means that U_3 is regular β -open set included in U_2 and $U_3 \neq U_2$, which is opposite to each other. Therefore $U_1 \cap U_2$ is minimal regular β -open set.

Theorem 3.33. If the union of regular closed set and maximal regular β –open set is not equal to *X*. Then the union of these *is* equal to maximal regular β –open set.

Proof. Let U_1 be a regular closed set and U_2 be a maximal regular β –open set such that $U_1 \cup U_2 \neq X$, then $X \setminus U_1$ is regular open set and $X \setminus U_2$ is minimal regular β –open set. By theorem 3.32 $(X \setminus U_1) \cap (X \setminus U_2) = X \setminus (U_1 \cup U_2)$ is minimal regular β –open set. This means that $U_1 \cup U_2$ is maximal regular β –open set.

Theorem 3.34. Let U_1 be a maximal regular β –open set such that Cl $(U_1) \neq X$, then Cl (U_1) is maximal regular closed set.

Proof. If U_1 is maximal regular β –open set by theorem 2.18, Cl (U_1) is regular closed set. Since Cl $(U_1) \neq X$ then Cl (U_1) is proper regular closed set. We want to prove that Cl (U_1) is maximal regular closed set. Assume that Cl (U_1) is not maximal regular closed set, then there exists proper regular closed set U_2 such that Cl $(U_1) \subset U_2$.Since $U_1 \subset Cl(U_1) \subset U_2$, then $U_1 \subset U_2$.So by theorem 2.22 U_2 is regular β –open set including U_1 , which is opposite to each other. Hence Cl (U_1) is maximal regular closed set.

Theorem 3.35. Let A_1 be a minimal regular β –open set such that Int $(A_1) \neq \Phi$ then Int (A_1) is minimal regular open set.

Proof. If A_1 is minimal regular β –open set by theorem 2.18, $Int(A_1)$ is regular open set. Since Int $(A_1) \neq \Phi$ then $Int(A_1)$ is proper regular open set. We need to prove that Int (A_1) is minimal regular open set. Assume that $Int(A_1)$ is not minimal regular open set, then there exist nonempty regular open set A_2 such that $A_2 \subset Int(A_1)$. Since $A_2 \subset Int(A_1) \subset A_1$, then $A_2 \subset A_1$. So by theorem 2.22 A_2 is regular β –open set included in A_1 , which is opposite to each other. Hence Int (A_1) is minimal regular open set.

Remark 3.36. The following example shows that the converse part of Theorem 3.35 is not true in general.

Example 3.37. : Consider $X = \{u_1, u_2, u_3, u_4\}$ and let $\Im = \{\Phi, \{u_1\}, \{u_2\}, \{u_1, u_2\}, \{u_3, u_4\}, \{u_1, u_3, u_4\}, \{u_2, u_3, u_4\}, X\}$, then $RO(X) = \{\Phi, \{u_1\}, \{u_2\}, \{u_1, u_2\}, \{u_3, u_4\}, \{u_1, u_3, u_4, \{u_2, u_3, u_4, X\}, M\}$

 $R\beta O(X) = \{ \Phi, \{u_1\}, \{u_2\}, \{u_3\}, \{u_4\}, \{u_1, u_2\}, \{u_3, u_4\}, \{u_1, u_3\}, \{u_1, u_3\}, \{u_2, u_3\}, \{u_3, u_4\}, \{u_1, u_3\}, \{u_3, u_4\}, \{u_4, u_3\}, \{u_4, u_4\}, \{u_4, u_4$

 $\{u_2, u_4\}, \{u_1, u_4\}, \{u_2, u_3\}, \{u_1, u_3, u_4\}, \{u_2, u_3, u_4\}, \{u_1, u_2, u_4\}, \{u_1, u_2, u_3\}, X\}.$ Let $G = \{u_1, u_3\}$, then Int $(G) = \{u_1\}$ is minimal regular open but G is not minimal regular β –open set.

Theorem 3.38. $\alpha O(X) \cap M_i R\beta O(X) \subset M_i RO(X)$.

Proof. Let $A_1 \in \alpha O(X) \cap M_i R\beta O(X)$ then $A_1 \in \alpha O(X) \cap R\beta O(X)$. By theorem 2.20 $A_1 \in RO(X)$. We have to prove that A_1 is minimal regular open set ($A_1 \in M_i RO(X)$). Assume that A_1 is not minimal regular open set ($A_1 \notin M_i RO(X)$), then there exists nonempty regular open set A_2 such that $A_2 \subset A_1$ and $A_2 \neq A_1$. Since A_2 is regular β –open set included in A_1 , which is opposite to each other . Therefore A_1 is minimal regular open set ($A_1 \in M_i RO(X)$).

Theorem3.39. If A_1 is a minimal β –open set in a space X such that A_1 is not dense in X, then $\beta Cl(A_1)$ is minimal regular β –open set.

Proof. Let A_1 be a minimal β –open set from theorem 2.21, we have $\beta Cl(A_1)$ is regular β – open set. Since A_1 is nonempty β –open and $A_1 \subseteq \beta Cl(A_1)$, then $\Phi \neq \beta Cl(A_1)$. Now $Cl(A_1) \neq X$ because of A_1 is not dense in X. So that $\beta Cl(A_1) \subseteq Cl(A_1)$ and $\beta Cl(A_1) \neq X$. That means $\beta Cl(A_1)$ is nonempty proper regular β –open set. We must to prove that $\beta Cl(A_1)$ is minimal regular β –open set. Let A_2 be a nonempty regular β –open set such that $A_2 \subseteq \beta Cl(A_1)$. Then $\beta Cl(A_2) \subseteq \beta Cl(A_1)$. If $A_1 \cap A_2 = \Phi$, then $\beta Cl(A_1) \cap \beta Cl(A_2) = \Phi$ which is opposite to each other. Hence, $A_1 \cap A_2 \neq \Phi$ and by theorem 2.13 A_2 is β –open. So that from theorem 3.7(i) we get $A_1 \subset A_2$ and $\beta Cl(A_1) \subseteq \beta Cl(A_2)$. This implies that $\beta Cl(A_1) = \beta Cl(A_2)$. Since, A_2 is regular β –open set then from Theorem 2.13 we have A_2 is β –closed. This implies that $\beta Cl(A_2) =$, and $\beta Cl(A_1) = A_2$. Therefore, $\beta Cl(A_1)$ is minimal regular β –open set.

Theorem3.40. Let U_1, U_2 and U_3 be maximal regular β –open sets such that $U_1 \neq U_2$. If $U_1 \cap U_2 \subset U_3$, then either $U_1 = U_3$ or $U_2 = U_3$.

Proof. The proof is similar to theorem 2.24.So that it is omitted.

Theorem3.41. Let U_1 , U_2 and U_3 be maximal regular β –open sets which are various from each ether. Then, $(U_1 \cap U_2) \not\subset (U_1 \cap U_3)$.

Proof. The proof is similar to theorem 2.5.

Theorem3.42. i- Let *G* and $\{G_{\lambda}\}_{\lambda \in \Lambda}$ be minimal regular β –open sets. If $G \subset \bigcup_{\lambda \in \Lambda} G_{\lambda}$, then there exists $\lambda \in \Lambda$ such that $G = G_{\lambda}$.

ii- Let G and $\{G_{\lambda}\}_{\lambda \in \Lambda}$ be a minimal regular β -open sets. If $G \neq G_{\lambda}$ for each $\lambda \in \Lambda$, then $(\bigcup_{\lambda \in \Lambda} G_{\lambda}) \cap G = \Phi$.

Proof. i- Let *G* and $\{G_{\lambda}\}_{\lambda \in \Lambda}$ be a minimal regular β -open sets with $\subset \bigcup_{\lambda \in \Lambda} G_{\lambda}$. we must to prove that $G \cap G_{\lambda} \neq \varphi$. Since if $G \cap G_{\lambda} = \varphi$, then $G_{\lambda} \subset X \setminus G$ and hence, $G \subset \bigcup_{\lambda \in \Lambda} G_{\lambda} \subset X \setminus G$ which is opposite to each other. Now as $G \cap G_{\lambda} \neq \varphi$, then $G \cap G_{\lambda} \subset G$ and $G \cap G_{\lambda} \subset G_{\lambda}$. Since $G \cap G_{\lambda} \subset G$ and this gives that *G* is minimal regular β -open, then by definition 3.1, $G \cap G_{\lambda} = G$ or $G \cap G_{\lambda} = \varphi$. But $G \cap G_{\lambda} \neq \varphi$, then $G \cap G_{\lambda} = G$ which means $G \subset G_{\lambda}$. Similarly $G \cap G_{\lambda} \subset G_{\lambda}$ gives that G_{λ} is minimal regular β -open, then by Definition

3.1, $G \cap G_{\lambda} = G_{\lambda}$ or $G \cap G_{\lambda} = \varphi$. But $G \cap G_{\lambda} \neq \varphi$ then $G \cap G_{\lambda} = G_{\lambda}$ which means $G_{\lambda} \subset G$. Therefore, $G = G_{\lambda}$.

ii- Assume that $(\bigcup_{\lambda \in \Lambda} G_{\lambda}) \cap G \neq \varphi$ then there exists $\lambda \in \Lambda$ such that $G_{\lambda} \cap G \neq \varphi$. By theorem 3.7 (ii), we have $G = G_{\lambda}$ which is opposite to the fact $G \neq G_{\lambda}$. Hence, $(\bigcup_{\lambda \in \Lambda} G_{\lambda}) \cap G = \varphi$.

CONCLUSION

In this paper, maximal and minimal open sets via regular β -open sets are introduced. We also get several results that are presented to reveal many various properties of the minimal regular β -open and maximal regular β -open sets and their complements. The relation between the minimal regular β -open and maximal regular β -open are shown. Finally, we have discussed their relationship with various types of open sets such as minimal and maximal regular open sets.

References

- Abd El-Monsef,M., "β-open sets and β-continuous mappings", Bull. Fac. Sci. Assiut Univ., no. 12, pp. 77-90, 1983.
- [2] Andrijević, D., "Semi-preopen sets". Matematički Vesnik, vol. 38, no. 93, pp.24-32, 1986.
- [3] Anuradha, N. and Chacko, B., "On minimal regular open sets and maps in topological spaces", *J. Math. Sci*, vol. 4, pp.182-192, 2015.
- [4] Hasan, H., "Maximal and Minimal α-Open Sets", *Int. J. Engineering Research and Applications*. Vol. 5, pp. 50- 53, 2015.
- [5] Nakaoka, F. and Oda, N., "Some properties of maximal open sets". *International Journal of Mathematics and Mathematical Sciences*, vol. 2003, no. 21, pp.1331-1340, 2003.
- [6] Nakaoka, F. and Oda, N., " Several applications of minimal open sets", *International Journal of Mathematics and Mathematical Sciences*, vol. 8, no. 27, pp. 471-476, 2001.
- [7] Nasser, F.M., "On Minimal and Maximal Regular Open Sets", Doctoral dissertation, The Islamic University-Gaza, Gaza: The Islamic University Gaza, 2016.
- [8] Njåstad, O., "On some classes of nearly open sets". *Pacific journal of mathematics*, vol. 15, no. 3, pp.961-970, 1956.
- [9] Shakir, Q.R., "Minimal and Maximal Beta Open Sets", *Al-Nahrain Journal of Science*, vol. 17, no. 1, pp.160-166, 2015.
- [10] Stone, M., " Applications of the theory of Boolean rings to general topology", *Transactions of the American Mathematical Society*, vol. 3, no. 41, pp. 375-481, 1937.
- **[11]** Yunis, R., "Regular β -open setse," *Zanco journal of pure and applied Science*", vol. 3, no. 16, pp. 79-83, 2004.