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Abstract  

     The linear instability and nonlinear stability analyses are performed for the model 

of bidispersive local thermal non-equilibrium flow. The effect of local thermal non-

equilibrium on the onset of convection in a bidispersive porous medium of Darcy 

type is investigated.  The temperatures in the macropores and micropores are 

allowed to be different. The effects of various interaction parameters on the stability 

of the system are discussed. In particular, the effects of the porosity modified 

conductivity ratio parameters, 
p  and 

s , with the inter-phase momentum transfer 

parameters
1  and

2 , on the onset of thermal Convection are also considered. 

Furthermore, the nonlinear stability boundary is found to be below the linear 

instability threshold. The numerical results are presented for free-free boundary 

conditions. 

 

Keywords: Bidispersive porous medium, Local thermal non-equilibrium, Linear 

instability, Nonlinear stability, Darcy model. 

 

حرارياتحليل الاستقرار الخطي وغير الخطي للحمل الحراري في وسط ثنائي المدام مع تأثير غير متزن   
 

دحدا أحمد شذى, *منخي مخيلف إسراء  
العخاق البرخة، البرخة، جامعة العمهم، كمية الخياضيات، قدم  

 الخلاصة
السدام وغيخ متدن حخارياً. تست دراسة تم تشفيح عجم الاستقخار الخطي والاستقخار الخطي لشسهذج ثشائي      

ي السدام حيث استخجم نسهذج دارسي لسعادلة ئتأثيخ عجم الٔاتدان عمى  بجاية الحسل الحخاري في وسط ثشا
الدخم. سسحت لجرجات الحخارة بأن تكهن مختمفة في كل من السدامات الكمية والسدامات الجدئية. كسا تست 

تمفة عمى استقخاية الشظام والتي تزسشت تأثيخ كل من ندبة التهصيل السعجلة مشاقذة تأثيخ السعمسات السخ
علاوة عمى ذلك، وجج أن حجود الأستقخار غيخ الخطي  عمى بجاية الحسل الحخاري.  وانتقال زخم الطهر مدامياً 

   لا تتطابق مع حجود عجم الاستقخار الخطي. كسا قجمت الشتائج العجدية في حالة الحجود الحخة.
 

Introduction 

    Thermal convection in a bidispersive porous medium is one of much current interest due to 

its practical applications in various fields, such as in heat pipes technologies, catalytic 

chemistry, methane recovery from coal deposits, and thermal insulation see e.g., Szczygieł 

[1], Lin et al. [2], Shi and Durucan [3], Nield and Bejan [4], Straughan [5], and the references 
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therein. The funda-mental model for thermal convection in a bidispersive porous medium is 

due to Nield and Kuznetsov [6-11]. Furthermore important work discussed the problem of 

thermal convection in a bidispersive porous medium is done by Gentile and Straughan in 

[12,13]. This has also been considered further using a variety of geometries and incorporating 

various other effects, for example, anisotropic parameter and double diffusion cf. Straughan 

[14-17], and Saleh and Haddad [18]. The papers by Franchi et al. [19] present the effect of 

local thermal non-equilibrium on a bidispersive porous medium. These authors work on 

development a theory of double porosity material, where the solid skeleton, and the fluid in 

the micro and macropores may have different temperatures. It is worth to mention that the 

local thermal non-equilibrium have recently raised much interesting subject. See for example 

Malashetty et al. [20]  investigated the effect of thermal non-equilibrium on the onset of 

convection when the Lapwood–Brinkman model is included for the momentum equation. The 

same authors  in [21] studied the problem of Onset of convection in an anisotropic porous 

layer using thermal non-equilibrium. Shivakumara et al. [22] considered the effects of the 

onset of thermal non-equilibrium convection in a viscoelastic fluid saturate sparsely packed 

porous layer. Straughan [23] analyzed the linear instability and nonlinear stability boundaries 

using thermal non-equilibrium model. Malashetty et al. [24] discussed the effect of rotation 

on thermal convection in a fluid-saturated porous layer with thermal nonequilibrium model. 

Malashetty and Heera [25] considered the rotation and that the local thermal non-equilibrium 

effect on double diffusive convection in porous media. Malashetty et al. [26] considered the 

problem of double diffusive thermal convection in a fluid-saturated porous layer using a 

thermal non-equilibrium model, while Malashetty et al. [27] investigated thermal non-

equilibrium effect on the onset of convection in a couple stress fluid saturated porous 

medium. Furthermore, Gaikwad et al. [28] explained the combined effect of rotation and local 

thermal non-equilibrium on the double diffusive convection using linear instability and 

nonlinear stability methods. 

        Other aspect of the effect of thermal non-equilibrium on the onset of convection porous 

layer involving effects like rotation, variable viscosity, density maximum, heterogeneous 

permeability, and viscous dissipation have been studied by many researchers, e.g., Malashetty 

and Swamy [29], Shivakumara et al. [30, 31], and Barletta and Celli [32]. Further work using 

thermal non-equilibrium model has been given by Straughan [5,33], Dayananda and 

Shivakumara [34], and Santamaria-Holek [35].  

        In the present paper, we provide an accurate numerical calculation for linear instability 

and nonlinear stability. In particular, we investigate in details the thermal convection in a 

bidisperse porous medium where two different temperature fields for the porous solid and for 

the saturating fluid are assumed in order to model the local thermal non-equilibrium. 

Moreover, we focus our attention on the effect of different interaction parameters on the 

critical Rayleigh number. We take this opportunity to point out that the effects of various 

parameters such as couple stress, uniform magnetic field, permeability of the medium, 

concentration and the thermo-diffusion, variable viscosity, the velocity and temperature, 

thermal anisotropy and rotating, are investigated in general by many authors cf. Al-Hhafajy 

and Abdulhadi [36], Al-Khafajy and Labban [37], Kareem and Abdulhadi [38], Khudair and 

Al-Khafajy [39], and Haddad [40,41]. 

    The paper is organized as follows: In section 2 the basic equations and the 

nondimensionalized perturbation equations are presented. The linear stability and the 

nonlinear stability analysis are the subject of sections 3 and 4. In section 5 the numerical 

results are reported. 

Governing Equations 

      The equations for a bidispersive local thermal non-equilibrium flow in a Darcy porous 

material are derived in Franchi et al. [19], with 
f

iU  and   p

iU being the pore-averaged 
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velocities in the macro and micropores,   fp and   pp  are the pressures in the macro and 

micropores, μ is the dynamic viscosity, ig is the gravity vector, ρ  is the density, and fk pk are 

the permeability in the macro and micropores, and ζ is an interaction coefficient. We suppose 

that the saturated porous medium is occupying the three dimensional layer 

( ){ } { }2,      0x y z d´ < <Rò  with the temperatures            , at       and 

           , at    , where      are constants with      . The governing 

equations consist of the momentum and Continuity equations and adopting the Boussinesq 

approximation in the macro and micropores of Darcy type may be found in Nield and 

Kuznetsov [8], Straughan [5], and Franchi et al. [19], 
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where  1D      , , ,f pT T  and ,sT respectively, are reference values of temperature in 

the macro pore, micropores, and solid skeleton.   is the macroporosity,  is the microporosity.  

Standard indicial notation is employed in (1) and throughout. We let 
f f

i iU V and     

   1  p p

i iU V    to be the fluid velocities in the macro and micropores ,   f

iV and   p

iV are the 

pore average velocities in the macro and micropores. The balance of energy equations for the 

temperature is established as in Franchi et al. [19], and can be written as 

1 , 1 1 2

, , 1

2 , 2 , 2 1

( ) ( ) ( ),
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                                      (2) 

where 1 2=(1 )(1 ), =(1 )        . Here ( )sc , ( ) fc , ( ) pc are the products of the density 

and the specific heat at constant pressure in the solid in the fluid in the macro pores, and in the 

fluid in the micropores, respectively. The terms sk , fk , and pk are thermal conductivities in 

the solid, and in the fluid in the macro and micropores, respectively. We denote by s , f , and 

p the solid, the macro pores, and the micropores the terms h , 1s , and 2s are interaction 

coefficients, and we have here assumed that the interactions are linear in the temperature 

differences. 

     We suppose that the fluid saturated bidispersive porous medium satisfies equation (1) and 

equation (2). The velocity boundary conditions are 0, 0f p

i i i iU n U n  at 0, .z d  The steady 

solution in whose stability we are interested has form   

0f

iU  ,  0p

iU  ,  0s f p

LT T T z T      , 

where  

= L UT T

d



. 
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To investigate the stability of the steady solution, we introduce perturbation

 , , , , ,f p f p f p

i iu u     in such a way that 

=f f f

i i iU U u , =p p p

i i iU U u , =f f fp p  , =p p pp p  , 

=s s sT T  , =f f fT T  , =p p pT T  . 
The nonlinear perturbation equations arising from equation (1) and equation (2) are 

0 0
,
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where 3=f fw u and 3=p pw u , while  0,0,1ik  . We then introduce the 

nondimensionalizations scale with length scale d , time scale  , pressure p , velocity U , and 

temperature scale 
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Equation (4) hold on
 ( ){ } { }2,      0x y z d´ < <Rò  and the boundary conditions  

3 = 0f fw u , 3 = 0p pw u , 0f  , 0p  , 0s  ,  at = 0,1z ,                                            (5) 

with  , ,f f f f

iu u v w and  , ,p p p p

iu u v w are satisfying on plane tiling periodicity in  ,x y

.Solution of Linear Stability Equations 

In this section, we seek to find the critical Rayleigh number of linear theory, we first linearize 

equation (3) then we write the variables , , , , , ,f p f p f p

i iu u      and s by explicitly separating 

the time dependent parts and we follow the work of Chandrasekhar [42] by imposing a 

temporal growth rate like te for solutions of the form 

( ) , = ( ) , = ( ) , = ( ) ,

= ( ) , = ( ) , = ( ) .
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Then
f and p are eliminated by taking curl of equation (4)1 and equation (4)2, and then 

analysis the linear system. The linear system arising from equation (4) is  
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where 
* 2 2 2 2= / /x y      is the horizontal Laplacian. This is an eigenvalue problem for  

to be solved subject to the boundary conditions in equation (5).  

   To analyze (6) and (5), assume normal mode with the representations for
fw , 

pw , f , p

, and s in the form of 

= ( ) ( , ), = ( ) ( , ), = ( ) ( , ),

= ( ) ( , ), = ( ) ( , ),

f f p p s s

f f p p
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where f  is the horizontal plan form, which satisfies 
2 ,f a f   a is a wave number. Then, 

we allow fW , pW , f , p ,and s to be composed of sin n z , for n N which satisfies 

the boundary conditions (5). The system (6) can be written in the matrix form 
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where 2 2 2= n a  . Then, one may consider the following two cases. 

3.1 Stationary Convection ( 0  ). 
Substituting ( 0  ) in (6). The stationary convection boundary is given by 
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Then one can show 2 2/ 0R n   . Therefore, we select 1n   to obtain the lowest instability 

boundary.  

3.2 Oscillatory Convection ( = Ii  ), where I R .  

To study oscillatory convection put = Ii   in equation (6), where I R . We solve the 

determinant equation, then we have 
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Here, the coefficients 1h , 2h  and 3h  are defined by 
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 Numerical techniques are used to find the stationary convection threshold staRa and 

oscillatory convection threshold ostRa , respectively. We  minimize 2R in (8) and (9) over 2a , 

as will be presented in the numerical results section. 

Nonlinear Stability Analysis 

Let V be a period cell for the solution to (4) and (5), and let  , ( , )   be the norm and inner 

product on 
2 ( )L V . We commence by multiplying (4)1 by 

f

iu , (4)2 by 
p

iu , We also multiply 

(4)3 by s , (4)4 by f , (4)5  by p and integrate each over .V  Thus, we derive the following 

equations:
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To determine the  parameter 0    we now form 3 4 5(10) (10) (10)    ,  to obtain an 

energy identity of form  
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   Equation (11) is the same as the expression was report by Straughan [5]. 

Now put 

                  
1

= ,max
E

I

R  D
                                                       (12) 

where is the space of admissible functions which are given by 
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2 1= , , , , , ( ), , , ( ),
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Thus, ( )E t tends to 0  as t  at least exponentially. Therefore, 0f  , 0p   and 

0s   at least exponential. 

To obtain the decay of f
u  and p

u , we have to employ the arithmetic geometric mean 

inequality in (10)1 and (10)2 
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where the decay of f
u and p

u  follow. We now turn our attention to the maximization problem 

(12) with 1ER  . 

    In order to determine ER , we have to derive the Euler–Lagrange equations and to maximize 

in the coupling parameter . The Euler–Lagrange equations arising from equation (12) are 

determined from 

0ER I  D . 

Let us define 
f

iu , 
p

iu , f , p , and s  in terms of arbitrary  2 0,1C  functions 
f

ih , 
p

ih , 
f , 

p , 

and
s with (0) (1) (0) (1) 0f f p p

i i i ih h h h     and 

(0) (1) (0) (1) (0) (1) 0f f p p s s           . 

Hence we have that 
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we have included the constraint ,

f

i iu and ,

p

i iu  by using a Lagrange multiplier (x) , and   is a 

positive constant. Furthermore, after some integrations by parts and using the boundary 

conditions, we find that 
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Then the Euler–Lagrange equations for the maximum problem (12) are 
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where f  and p  are Lagrange multipliers. Further progress is made by taking curl  of 

equation 1(14)  and equation 2(14) , we obtain 
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We again use a normal mode representation as for the linear stability analysis in section 3. 

These  results are to  solve the determinant equation 
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where =
2

c
D




 and 

(1 )
=

2
b

D

 




. The corresponding boundary conditions are  

0, 0, 0, 0, 0,f fp p sW W       at  0,1.z    

  We follow the same procedure to that used in the linear instability. set the determinant of the 

matrix to zero, we arrive at the equation in 
ER  

4 2 = 0,E EAR BR C                                                             (17) 
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The energy Rayleigh number 2

ER is then given by 
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                                       (18) 

We require to find the critical nonlinear Rayleigh number ERa , such that 

 
2

2 2max min , .E E
a

Ra R a


  

Numerical results for the nonlinear energy approach are presented in section 5. 

Numerical results 

      In this section, we present new numerical computations for the linear and nonlinear 

stability analyses. Our analysis supports the work of Franchi et at [19] by computing the 

stationary convection instability threshold equation (8), and the oscillatory convection 

threshold equation (9). Both cases are studied by using golden section search to minimise 
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over 2a and find the critical values of 2R for linear instability. Moreover, the critical Rayleigh 

numbers of nonlinear energy stability ERa  for fixed 2a  and   is determined using equation 

(18). Then, we employ golden section search to minimise in 2a and then maximise in   to 

determine ERa , where for 
2

E ER Ra   we have stability for the best values of the coupling 

parameter  . We have to do  the minimization in equation (8), equation (9) and equation 

(18)  numerically by using Matlab routines.  For the parameters that are employed in this 

article, we have to be very careful when minimize 2R  in equation (8) and equation (9) over 
2a . In all cases, we found that the stationary curve always lies below the oscillatory 

convection one. 

    In the present study, Tables 1,2 and Tables 3,4 display the numerical results for values of 

0.00001, 0.9999,   1 2 0.1, 15pL    and 0.1s   with fixed value of the 

inter-phase heat transfer parameter 0.00001, 0.01H  , and the porosity modified 

conductivity ratio 0.1, 1p     with various values of the porosity modified interaction 

coefficients 1S and 2S . We also present in Figures 1, 2 and Figures 3, 4 the critical Rayleigh 

number Ra  which is plotted against 1S  and 2S . From Table 1, the values of , , p   and H

are suggested by Nield and Kuznetsov [10], it is observed that when 1 0.01S   and 0.1p   

the stationary convection boundary, 39.4815staRa  , is similar to that found in Nield and 

Kwznetsove [10]. For an increase the value of 1S  from 0.01 to 1, the critical values of staRa  

and ERa is increased as seen in Table1 and Table2. However, from Figures 1 and 2 we 

observe that as p  increases from 0.1p   to 1p  , the values of Ra  are increasing this  

shows the stabilizing effect of the porosity modified conductivity ratio p . It is clear from 

Figures 1 and 2, and from Tables 1 and 2 that when 0.1p   the stationary convection 

boundary staRa  decreases with increasing H , which shows the destabilizing effect. In 

addition, the distance between staRa  and ERa increases with decreasing H . Thus, with small 

values of H  we have wide subcritical regions. 

   Table 3 and Table 4 show that for fixed value of p , as 2S  increases, the critical Rayleigh 

number increases. Thus, an increasing in 2S  causes the system becomes more stable. It is also 

observed that for a fixed value of p   the effect of increasing the value of 2S  is to increase the 

critical wave number for the onset of linear instability. For example, for 0.1p   and 

2 1.01S   the critical wave number is 11.0525La  , when 2 8.01S  , the critical wave 

number 22.9938La  . This means the cells become narrower due to the intense increasing of 

the critical wave number. Further, it is evident from Figures 3 and 4 that as the value of p  

decreases, the difference between the linear instability and nonlinear stability thresholds 

increases. As a result, the region of potential subcritical instabilities between the linear and 

nonlinear stability thresholds considerable. It is also noted that as p  increases the linear 

instability and nonlinear stability thresholds become closer. This is, in a sense, the best 
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possible agreement between the two thresholds since the region of potential subcritical 

instabilities decreases.  

    Figure 5 and Table 5 display the effect of 0.1,1
s

   with 1 0.5,0.1   and 2 0.1,0.5 

,respectively  for fixed value of 2 0.01, 0.1pS     and H 0.01,  and for various values of 

1S . It is found that the effect of increasing 1S  is to increases the critical Rayleigh number 

Ra . However, Figure 5 shows that as s  and 2  increase with the decreasing 1 , Ra  

increases. Therefore, the parameter s  have a stabilizing effect on the stability of the system. 

Furthermore, the effect of increasing s  is to increases the value of wave number. For 

example, for 1 6S   and 0.1s   we see from Table 5 that  the wave number 9.9314La  , 

whereas, when 1s   for the same parameter 1 6S  , the wave number 11.3416La  . This 

indicates that the cell width decreases with increasing the parameter s , which corresponds to 

the narrower convection cells. It is also observed that, for a fixed value of 1 0.5  , 2 2   

and 0.1s  , the effect of increasing 2S  is to increases the wave number. For example, for 

2 4S  , we see from Table 6 that the wave number 12.6119La  , whereas, when 2 8S  , the 

wave number 15.3255La  , which leads to cells becoming narrower. 

 

Table 1-Critical Rayleigh and wave numbers of linear and energy theory, vs. 
1S , for 

0.00001,H 
1 20.00001,   0.9999,   0.1        

2 0.01,    15,   Γ 0.1p sS L    

 

 1S  
staRa  

La  
ERa  

Ea    

 0.01 39.4815 9.8672 22.8990 10.3919 0.98978 

 1.01 39.7958 9.6768 23.6458 10.5924 0.9901 

 2.01 39.9430 9.5673 24.0238 10.6205 0.9903 

0.1p   3.01 40.0281 9.4981 24.2527 10.6205 0.9903 

 4.01 40.0832 9.4503 24.4060 10.5925 0.9906 

 5.01 40.1219 9.4166 24.5160 10.5699 0.9905 

 6.01 40.1505 9.3908 24.5986 10.5612 0.9906 

 7.01 40.1725 9.3703 24.6631 10.5838 0.9906 

 8.01 40.1900 9.3546 22.8990 10.3919 0.98978 

 0.01 39.4966 9.8738 23.74825 10.36921 0.888371 

 1.01 40.7093 10.0459 24.49263 10.58381 0.892342 

 2.01 41.3136 10.0550 24.86931 10.60646 0.894236 

1p   3.01 41.6760 10.0368 25.0972 10.60646 0.895142 

 4.01 41.9175 10.0154 25.24983 10.58381 0.895356 

 5.01 42.0898 9.9946 25.35915 10.56115 0.896608 

 6.01 42.2190 9.9767 25.4412 10.54715 0.897087 

 7.01 42.3193 9.9619 25.5050 10.53315 0.897382 

 8.01 42.3995 9.9487 25.5562 10.52449 0.897647 
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Table  2 -Critical Rayleigh and wave numbers of linear and energy theory, vs. 
1S , for 

0.01,H   

1 20.00001,   0.9999,   0.1        

2 0.01,    15,   Γ 0.1p sS L    

 1S  
staRa  

La  
ERa  

Ea    

 
0.01 36.69807 9.215543 22.91493 10.37787 0.989563 

 1.01 37.03958 9.073001 23.66157 10.60646 0.989909 

 2.01 37.19873 8.988991 24.03958 10.62912 0.990123 

0.1p   3.01 37.29039 8.930459 24.26847 10.64312 0.990123 

 4.01 37.34988 8.89176 24.42182 10.60646 0.990205 

 5.01 37.39158 8.864721 24.53175 10.58381 0.990205 

 6.01 37.42242 8.84296 24.61438 10.56115 0.990337 

 7.01 37.44614 8.826617 24.67874 10.54715 0.990337 

 8.01 37.46496 8.81436 24.73028 10.53315 0.990337 

 0.01 39.21878 9.805174 23.76454 10.36921 0.888025 

 1.01 40.42548 9.975719 24.50874 10.59246 0.891996 

 2.01 41.02581 9.984855 24.88625 10.62912 0.990123 

1p   3.01 41.38551 9.965987 25.11328 10.73909 0.895142 

 4.01 41.62501 9.944595 25.26594 10.58381 0.895834 

 5.01 41.79588 9.924763 25.37527 10.58381 0.896394 

 6.01 41.92388 9.906491 25.45736 10.54715 0.896822 

 7.01 42.02333 9.892674 25.52126 10.54715 0.897168 

 8.01 42.10282 9.879452 25.57236 10.52449 0.897382 

Table  3-Critical Rayleigh and wave numbers of linear and energy theory, vs.
2S , for 

0.00001,H 
1 20.00001,   0.9999,   0.1        

1 0.01,    15,   Γ 0.1p sS L    

 2S  
staRa  

La  
ERa  

Ea    

 
0.01 39.4815 9.8672 22.8990 10.3919 0.9898 

 1.01 43.9789 11.5295 22.9283 10.3779 0.9865 

 2.01 51.4937 13.7849 22.9430 10.3779 0.9847 

0.1p   3.01 59.3218 15.8437 22.9517 10.3779 0.9837 

 4.01 67.1161 17.7086 22.9575 10.3779 0.9830 

 5.01 74.8110 19.4203 22.9615 10.3779 0.9825 

 6.01 82.3987 21.0078 22.9645 10.3779 0.9822 

 7.01 89.8857 22.4913 22.9667 10.3692 0.9820 

 8.01 97.2816 23.8909 22.9685 10.3692 0.9818 

 0.01 39.4966 9.8738 23.7482 10.3692 0.8884 

 1.01 40.117 10.1284 23.7820 10.3779 0.8842 

 2.01 41.4161 10.5795 23.7990 10.3779 0.8822 

1p   3.01 42.9383 11.0534 23.8092 10.3779 0.8810 

 4.01 44.5496 11.5188 23.8159 10.3779 0.8801 

 5.01 46.1978 11.9719 23.8206 10.3692 0.8794 

 6.01 47.8594 12.4093 23.8240 10.3692 0.8791 

 7.01 49.5228 12.8318 23.8266 10.3692 0.8787 

 8.01 51.1819 13.2422 23.8286 10.3692 0.8785 
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Table  4-Critical Rayleigh and wave numbers of linear and energy theory, vs.
2S , for 

0.01,H 
1 20.00001,   0.9999,   0.1        

1 0.01,    15,   Γ 0.1p sS L    

 2S  
staRa  

La  
ERa  

Ea    

 
0.01 36.6980 9.2155 22.9149 10.3779 0.9896 

 1.01 41.7939 11.0525 22.9442 10.3919 0.9862 

 2.01 49.3713 13.2610 22.9590 10.3919 0.9845 

0.1p   3.01 57.1666 15.2537 22.9677 10.3919 0.9834 

 4.01 64.9004 17.0529 22.9735 10.3919 0.9828 

 5.01 72.5255 18.6989 22.9775 10.3919 0.9823 

 6.01 80.0404 20.2252 22.9805 10.3919 0.9819 

 7.01 87.4544 21.6503 22.9827 10.3779 0.9816 

 8.01 94.7780 22.9938 22.9844 10.3779 0.9814 

 0.01 39.2188 9.8052 23.7645 10.3692 0.8880 

 1.01 39.8485 10.0617 23.7984 10.3919 0.8840 

1p   2.01 41.1489 10.5122 23.8154 10.3919 0.8819 

 3.01 42.6696 10.9826 23.8255 10.3919 0.8807 

 4.01 44.2780 11.4461 23.8322 10.3779 0.8798 

 5.01 45.9226 11.8951 23.8369 10.3779 0.8792 

 6.01 47.5804 12.3303 23.8403 10.3779 0.8789 

 7.01 49.2397 12.7503 23.8429 10.3779 0.8785 

 8.01 50.8946 13.1566 23.8449 10.3779 0.8782 

Table  5-Critical Rayleigh and wave numbers of linear and energy theory, vs. 
1S , for 

2 0.01S  0.00001,   0.9999, Γ 0.1,1s     

0.01,    15,   Γ 0.1p pH L    

 1S  
staRa  

La  
ERa  

Ea    

 
1.01 40.4902 9.9940 24.6603 10.5838 0.8783 

1 0.5   2.01 41.0995 10.0057 25.0361 10.6065 0.8805 

2 0.1   3.01 41.4648 9.9883 25.2633 10.6065 0.8818 

Γ 0.1s   4.01 41.7081 9.9666 25.4152 10.5838 0.8829 

 5.01 41.8818 9.9471 25.5238 10.5612 0.8835 

 6.01 42.0119 9.9314 25.6052 10.5471 0.8840 

 7.01 42.1130 9.9150 25.6683 10.5245 0.8844 

 8.01 42.1938 9.9018 25.7188 10.5245 0.8854 

 1.01 41.0188 10.2211 33.5235 10.8351 0.9193 

1 0.1   2.01 42.6773 10.5575 34.8189 11.1823 0.9225 

2 0.5   3.01 44.1767 10.8250 35.9930 11.4702 0.9253 

Γ 1s   4.01 45.5436 11.0377 37.0659 11.6934 0.9275 

 5.01 46.7979 11.2067 38.0525 11.8767 0.9295 

 6.01 47.9551 11.3416 38.9645 12.0320 0.9313 

 7.01 49.0273 11.4480 39.8112 12.1506 0.9328 

 8.01 50.0243 11.5305 40.6000 12.2466 0.9342 
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Table  6- Critical Rayleigh and wave numbers of linear and energy theory, vs.
2S , for

1 0.01S   

0.00001,   0.9999, Γ 0.1,1s     

0.01,    15,   Γ 0.1p pH L    

 2S  staRa  
La  

ERa  
Ea    

 
1.01 40.4870 10.3061 32.8520 10.3552 0.8616 

1 0.5   2.01 42.6969 11.0707 32.8797 10.3552 0.8593 

2 2   3.01 45.2245 11.8548 32.8946 10.3552 0.8579 

Γ 0.1s   4.01 47.8633 12.6119 32.9031 10.3552 0.8572 

 5.01 50.5382 13.3353 32.9078 10.3412 0.8568 

 6.01 53.2175 14.0272 32.9102 10.3412 0.8564 

 7.01 55.8869 14.6913 32.9110 10.3412 0.8563 

 8.01 58.5396 15.3255 32.9107 10.3326 0.8563 

 1.01 39.3037 9.8505 25.8696 10.3919 0.8931 

1 0.2   2.01 39.5780 9.9742 25.9125 10.4059 0.8882 

2 0.05   3.01 39.9777 10.144 25.9520 10.4145 0.8836 

Γ 1s   4.01 40.4714 10.3442 25.9884 10.4285 0.8794 

 5.01 41.0363 10.5642 26.0221 10.4372 0.8756 

 6.01 41.6559 10.7979 26.0533 10.4512 0.8720 

 7.01 42.3178 11.0387 26.0824 10.4512 0.8686 

 8.01 43.0127 11.2847 26.1096 10.4512 0.8656 

 

 
Figure 1-Critical Rayleigh number Ra   is plotted against 

1S with 0.00001, 0.9999,  

20.1, 15, 0.01s pL S    .  The solid curves are for linear instability and the dotted curves 

are for nonlinear stability, for  0.1, 1p  , 0.00001,H  , and 1 2 0.1   . 
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Figure 2-Critical Rayleigh number Ra  is plotted against 

1S with 0.00001, 0.9999,  

20.1, 15, 0.01s pL S    . The solid curves are for linear instability and the dotted curves 

are for nonlinear stability, for   0.1, 1p  , 0.01H  , and 1 2 0.1   . 

 
Figure 3-Critical Rayleigh number Ra  is  plotted against 

2S with 0.00001, 0.9999,      

10.1, 15, 0.01s pL S    . The solid curves are for linear instability and the dotted curves 

are for nonlinear stability, for  0.1, 1p  , 0.00001,H  , and 1 2 0.1   . 
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Figure 4-Critical Rayleigh number Ra  is plotted against 

2S with 0.00001, 0.9999,  

10.1, 15, 0.01s pL S    . The solid curves are for linear instability and the dotted curves 

are for nonlinear stability, for  0.1, 1p  , 0.01,H    and 1 2 0.1   . 

 

 
Figure 5-Critical Rayleigh number Ra  is plotted against 

1S with 0.00001, 0.9999,      

20.1, 15, 0.01p pL S    . The solid curves are for linear instability and the dotted curves 

are for nonlinear stability, for 0.1, 1p  , 0.01H  . 
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Figure 6-Critical Rayleigh number Ra  is plotted against 

2S with 0.00001, 0.9999,     

with 11, 15, 0.01p pL S    . The solid curves are for linear instability and the dotted  

curves are for nonlinear stability, for 0.1, 1p  , 0.01H  . 

 

Conclusion 

       The onset of convection in a fluid saturated bidsperse porous medium is investigated 

when the temperature of the fluid and solid phases is in local thermal non-equilibrium. The 

linear instability threshold and nonlinear one is derived analytically in case of free surfaces. 

The stationary convection boundary,              , is similar to that found by Nield and 

Kwznetsove for particular values of the porosity modified interaction coefficient and the 

porosity modified conductivity ratio,                              , 

2 0.01,    15,   Γ 0.1p sS L    and        . Through investigation we found that the onset of 

convection is by stationary convection for various interaction parameters. It can be argued 

from the results that the critical Rayleigh numbers Ra and the critical wave numbers 
La  are 

greater in the case of                  and    increases.  Also, we observed that the 

subcritical instability region decreases as the parameter    increases. The effects of increasing 

   and    as well as increasing the value of    were seen to stabilize the system. Also, we 

observed that for small values of    and   , the effect of increasing     is to stabilize the 

system. This indicates that the thermal convection occurs more easily. 

 
References 
[1] Szczygieł, J., 2006. Enhancement of reforming efficiency by optimizing the porous structure of 

reforming catalyst, Theoretical considerations Fuel, 85  1579–1590. 

[2] Lin, F. C. ,Liu, B. H. ,Juan, C. C. and Chen, Y. M., 2011. Effect of pore size distribution in 

bidisperse wick on heat transfer in a loop heat pipe, Heat and mass transfer, 47  933-940. 

[3] Shi ,J. Q. and Durucan, S., 2005 .Gas storage and flow in coalbed reservoirs: Implementation of a 

bidisperse pore model for gas  diffusion in a coal matrix SPE Res. Eval. ,and  Eng. 8  169–175. 

[4] Nield, D. A. and Bejan, A., 2017. Convection in Porous Media Springer New York. 

[5] Straughan, B., 2015. Convection with local thermal non-equilibrium and microfluidic effects 

Springer. 



Mankhi and Haddad                                     Iraqi Journal of Science, 2022, Vol. 63, No. 2, pp: 702-722 
 

721 

[6] Nield, D. A. and Kuznetsov, A. V., 2004. Forced convection in a bi-disperse porous medium 

channel:a conjugate problem  Int. J. Heat Mass Transfer, 47  5375-5380. 

[7] Nield, D. A. and Kuznetsov, A. V., 2005. A two-velocity two-temperature model for a bi-

dispersed porous medium: Forced convection in a channel. Transp. Porous Media, 59  325-339. 

[8] Nield, D. A. and Kuznetsov, A. V., 2006. The onset of convection in a bidisperse porous 

medium Int. J. Heat Mass Transfer, 49  3068-3074. 

[9] Nield, D. A. and Kuznetsov, A. V., 2007. The effect of combined vertical and horizontal 

heterogeneity on the onset of convection in a bidisperse porous medium  Int. J. Heat Mass 

Transfer, 50 3329-3339. 

[10] Nield D A and Kuznetsov A V., 2008. Natural convection about a vertical plate embedded in a 

bidisperse porous medium Int. J. Heat Mass Transfer 51 1658-1664. 

[11] Nield, D. A. and Kuznetsov, A. V., 2013. A note on modeling high speed flow in a bidisperse 

porous medium, Transp. Porous Media 96  495-499. 

[12] Gentile, M. and Straughan, B., 2017. Bidispersive thermal convection  Int. J. Heat Mass 

Transfer, 114  837-840. 

[13] Gentile, M. and Straughan, B., 2017. Bidispersive vertical convection, Proc. R. Soc. A 473  

20170481. 

[14] Straughan, B., 2018. Horizontally isotropic bidispersive thermal convection Proc. R. Soc. A, 474  

20180018. 

[15] Straughan, B., 2018. Bidispersive double diffusive convection Int. J. Heat Mass Transfer, 126  

504-508. 

[16] Straughan, B., 2019. Horizontally isotropic double porosity convection Proc. R. Soc. A, 475  

20180672. 

[17] Straughan, B .2019. Effect of inertia on double diffusive bidispersive convection Int. J. Heat 

Mass Transfer, 129 389-396. 

[18] Saleh, H. and Haddad, S.A., 2020. Effect of anisotropic permeability on double‐diffusive 

bidisperse porous medium Heat Transfer, 49  1825-1841. 

[19] Franchi,  F.,  Nibbi , R. and Straughan, B., 2017. Modelling bidispersive local thermal non-

equilibrium flow Fluids ,2  48. 

[20] Malashetty, M. S ., Shivakumara,  I .S. and Kulkarni, S., 2005 .The onset of Lapwood–Brinkman 

convection using a thermal non- equilibrium model  Int. J. Heat Mass Transfer, 48  1155-1163. 

[21] Malashetty, M .S ., Shivakumara, I. S. and Kulkarni, S., 2005. The onset of convection in an 

anisotropic porous layer using a thermal non-equilibrium model. Transp. Porous Media,  60  199-

215. 

[22] Shivakumara, I. S., Malashetty, M. S. and Chavaraddi, K. B.,  2006 . Onset of convection in a 

viscoelastic-fluid-saturated arselypacked porous layer using a thermal nonequilibrium model Can. 

J. phys. 84  973-990. 

[23] Straughan, B .,2006. Global nonlinear stability in porous convection with a thermal non-

equilibrium model Proc. R.  Soc. A , 462  409-418. 

[24] Malashetty, M. S., Swamy, M. and Kulkarni, S., 2007. Thermal convection in a rotating porous 

layer using a thermal  nonequilibrium model  Phys. Fluids, 19 ( 5) 054102. 

[25] Malashetty, M.S. Heera, R. ,2008. Linear and non-linear double diffusive convection in a rotating 

porous layer using a thermal non-equilibrium model  Int. J. Non Linear Mech. 43  600-621. 

[26] Malashetty, M. S., Swamy, M. and Heera, R. ,2008. Double diffusive convection in a porous 

layer using a thermal non- equilibrium  Model, Int. J. Therm. Sci. 47  1131-1147. 

[27] Malashetty, M. S., Shivakumara, I. S. and Kulkarni, S., 2009. The onset of convection in a couple 

stress fluid saturated  porous layer using a thermal non-equilibrium model  Phys. Lett. A,  373  

781-790. 

[28] Gaikwad, S. N.,  Malashetty, M. S. and   Prasad, K. R. 2009. Linear and non-linear double 

diffusive convection in a fluid-saturated anisotropic porous layer with cross-diffusion 

effects Transp. Porous Media , 80  37-560. 

[29] Malashetty, M. S. and Swamy, M., 2010. Effect of rotation on the onset of thermal convection in 

a sparsely packed porous laye using a thermal non-equilibrium model, Int. J. Heat Mass 

Transfer, 53  3088-3101. 



Mankhi and Haddad                                     Iraqi Journal of Science, 2022, Vol. 63, No. 2, pp: 702-722 
 

722 

[30] Shivakumara, I .S ., Mamatha, A. L. and Ravisha, M.,2010. Effects of variable viscosity and 

density maximum on the onset of Darcy-Bénard convection using a thermal nonequilibrium 

model J. Porous Media, 13 . 

[31] Shivakumara, I .S., Lee, J., Vajravelu, K. and Mamatha, A. L.,2011. Effects of thermal 

nonequilibrium and non-uniform temperature gradients on the onset of convection in a 

heterogeneous porous medium  Int. Commun. Heat Mass  Transfer, 38  906-910. 

[32] Barletta, A. and Celli, M. ,2011. Local thermal non-equilibrium flow with viscous dissipation in a 

plane horizontal porous Layer Int  J. Therm. Sci. 50  53-60. 

[33] Straughan, B. 2013. Porous convection with local thermal non-equilibrium temperatures and with 

Cattaneo effects in the solid,  Proc. R. Soc. A,  469  20130187. 

[34] Dayananda, R. N. and Shivakumara, I. S., 2019. Impact of thermal non-equilibrium on weak 

nonlinear rotating porous  convection  Transp. Porous Media, 130  819-845. 

[35] Santamaria-Holek, I., Grzywna, Z. J. and Rubi, J. M. 2012. A non-equilibrium thermodynamics 

model for combined  adsorption and diffusion processes in micro- and nanopores  J. Non-Equilib. 

Thermodyn, 37  273–290. 

[36] Al-Hhafajy, D.G.S. and Abdulhadi, A., 2014. Magnetohydrodynamic Peristaltic flow of a couple 

stress with heat and mass transfer of a Jeffery fluid in a tube through porous medium. Advances in 

Physics Theories and Applications, IISTE, 32, pp.16-42. 

[37] Al-Khafajy, D.G.S. and Labban, J.A., 2021. Temperature and Concentration Effects on 

Oscillatory Flow for Variable Viscosity Carreau Fluid through an Inclined Porous Channel. Iraqi 

Journal of Science, pp.45-53. 

[38] Kareem, R.S. and Abdulhadi, A.M., 2020. Impacts of Heat and Mass Transfer on Magneto 

Hydrodynamic Peristaltic Flow Having Temperature-dependent Properties in an Inclined Channel 

Through Porous Media. Iraqi Journal of Science, pp.854-869. 

[39] Khudair, W.S. and Al-Khafajy, D.G.S., 2018. Influence of heat transfer on Magneto 

hydrodynamics oscillatory flow for Williamson fluid through a porous medium. Iraqi Journal of 

Science, 59(1B), pp.389-397.  

[40] Haddad, S. A., 2014. Thermal convection in a Darcy porous medium with anisotropic spatially 

varying permeability Acta Appl. Math.132  359‐370. 

[41] Haddad, S. A., 2017. Thermal convection in a rotating anisotropic fluid saturated Darcy porous 

medium  Fluid,  2  44. 

[42] Chandrasekhar, S., 2013. Hydrodynamic and hydromagnetic stability Courier Corporation. 

 

 

 

 

 

 

 

 

 

 


