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Abstract

The linear instability and nonlinear stability analyses are performed for the model
of bidispersive local thermal non-equilibrium flow. The effect of local thermal non-
equilibrium on the onset of convection in a bidispersive porous medium of Darcy
type is investigated. The temperatures in the macropores and micropores are
allowed to be different. The effects of various interaction parameters on the stability
of the system are discussed. In particular, the effects of the porosity modified
conductivity ratio parameters, T and T, with the inter-phase momentum transfer

parameters 44, and z,, on the onset of thermal Convection are also considered.

Furthermore, the nonlinear stability boundary is found to be below the linear
instability threshold. The numerical results are presented for free-free boundary
conditions.

Keywords: Bidispersive porous medium, Local thermal non-equilibrium, Linear
instability, Nonlinear stability, Darcy model.
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Introduction

Thermal convection in a bidispersive porous medium is one of much current interest due to
its practical applications in various fields, such as in heat pipes technologies, catalytic
chemistry, methane recovery from coal deposits, and thermal insulation see e.g., Szczygiet
[1], Lin et al. [2], Shi and Durucan [3], Nield and Bejan [4], Straughan [5], and the references
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therein. The funda-mental model for thermal convection in a bidispersive porous medium is
due to Nield and Kuznetsov [6-11]. Furthermore important work discussed the problem of
thermal convection in a bidispersive porous medium is done by Gentile and Straughan in
[12,13]. This has also been considered further using a variety of geometries and incorporating
various other effects, for example, anisotropic parameter and double diffusion cf. Straughan
[14-17], and Saleh and Haddad [18]. The papers by Franchi et al. [19] present the effect of
local thermal non-equilibrium on a bidispersive porous medium. These authors work on
development a theory of double porosity material, where the solid skeleton, and the fluid in
the micro and macropores may have different temperatures. It is worth to mention that the
local thermal non-equilibrium have recently raised much interesting subject. See for example
Malashetty et al. [20] investigated the effect of thermal non-equilibrium on the onset of
convection when the Lapwood-Brinkman model is included for the momentum equation. The
same authors in [21] studied the problem of Onset of convection in an anisotropic porous
layer using thermal non-equilibrium. Shivakumara et al. [22] considered the effects of the
onset of thermal non-equilibrium convection in a viscoelastic fluid saturate sparsely packed
porous layer. Straughan [23] analyzed the linear instability and nonlinear stability boundaries
using thermal non-equilibrium model. Malashetty et al. [24] discussed the effect of rotation
on thermal convection in a fluid-saturated porous layer with thermal nonequilibrium model.
Malashetty and Heera [25] considered the rotation and that the local thermal non-equilibrium
effect on double diffusive convection in porous media. Malashetty et al. [26] considered the
problem of double diffusive thermal convection in a fluid-saturated porous layer using a
thermal non-equilibrium model, while Malashetty et al. [27] investigated thermal non-
equilibrium effect on the onset of convection in a couple stress fluid saturated porous
medium. Furthermore, Gaikwad et al. [28] explained the combined effect of rotation and local
thermal non-equilibrium on the double diffusive convection using linear instability and
nonlinear stability methods.

Other aspect of the effect of thermal non-equilibrium on the onset of convection porous
layer involving effects like rotation, variable viscosity, density maximum, heterogeneous
permeability, and viscous dissipation have been studied by many researchers, e.g., Malashetty
and Swamy [29], Shivakumara et al. [30, 31], and Barletta and Celli [32]. Further work using
thermal non-equilibrium model has been given by Straughan [5,33], Dayananda and
Shivakumara [34], and Santamaria-Holek [35].

In the present paper, we provide an accurate numerical calculation for linear instability
and nonlinear stability. In particular, we investigate in details the thermal convection in a
bidisperse porous medium where two different temperature fields for the porous solid and for
the saturating fluid are assumed in order to model the local thermal non-equilibrium.
Moreover, we focus our attention on the effect of different interaction parameters on the
critical Rayleigh number. We take this opportunity to point out that the effects of various
parameters such as couple stress, uniform magnetic field, permeability of the medium,
concentration and the thermo-diffusion, variable viscosity, the velocity and temperature,
thermal anisotropy and rotating, are investigated in general by many authors cf. Al-Hhafajy
and Abdulhadi [36], Al-Khafajy and Labban [37], Kareem and Abdulhadi [38], Khudair and
Al-Khafajy [39], and Haddad [40,41].

The paper is organized as follows: In section 2 the basic equations and the
nondimensionalized perturbation equations are presented. The linear stability and the
nonlinear stability analysis are the subject of sections 3 and 4. In section 5 the numerical
results are reported.

Governing Equations
The equations for a bidispersive local thermal non-equilibrium flow in a Darcy porous

material are derived in Franchi et al. [19], with U.," and UPbeing the pore-averaged
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.- . . f .
velocities in the macro and micropores, P and pp are the pressures in the macro and

micropores, U is the dynamic viscosity, J; is the gravity vector, p is the density, and K, kp are
the permeability in the macro and micropores, and¢ is an interaction coefficient. We suppose
that the saturated porous medium is occupying the three dimensional layer

{(x.y)oR*} {0< z<d} with the temperatures TS=T/ =TP =T, at z=0, and
TS=T/=TP =Ty, at z=d, where T, Tyare constants with T, > T,. The governing
equations consist of the momentum and Continuity equations and adopting the Boussinesq

approximation in the macro and micropores of Darcy type may be found in Nield and
Kuznetsov [8], Straughan [5], and Franchi et al. [19],

I(_/’luif _g(Uif _Uip)_ p‘lf _ gip5a¢-|-f _ gipoa(l_¢)g-|—p :0
f

Ui,fi =0,

1)

U -¢UP-U)-pl - g‘p[‘;“‘”Tf - gip0“§‘¢)ng -0

p
Uk =0,
where D = ¢)+(l—(0)8, T f, T? and T, respectively, are reference values of temperature in
the macro pore, micropores, and solid skeleton. ¢ is the macroporosity, ¢ is the microporosity.

Standard indicial notation is employed in (1) and throughout. We let Uif :govifand

up :(1—g0)<9Vip to be the fluid velocities in the macro and micropores , Vif and v are the

pore average velocities in the macro and micropores. The balance of energy equations for the
temperature is established as in Franchi et al. [19], and can be written as

&(pC) T =k AT +s,(T"=T°)+s,(T"-T°),

@(pC) (T +¢(pc), V' T} = gk AT +h(TP =T ) +s,(T*-T"), @)
&, (pC)thp +&,(oC) pVip Th = £,K AT PLh(T =T+ s(T°=T"),

where &=(1-¢)(1-9), &,=(1-@)e. Here(pC);,(oC);, (C),are the products of the density
and the specific heat at constant pressure in the solid in the fluid in the macro pores, and in the
fluid in the micropores, respectively. The terms ks, K, and kpare thermal conductivities in
the solid, and in the fluid in the macro and micropores, respectively. We denote byS, f , and

p the solid, the macro pores, and the micropores the terms h, S;, and S, are interaction

coefficients, and we have here assumed that the interactions are linear in the temperature
differences.
We suppose that the fluid saturated bidispersive porous medium satisfies equation (1) and

equation (2). The velocity boundary conditions are U,'n, =0,Un. =0at z = 0,d. The steady
solution in whose stability we are interested has form

U'=0, U/=0, T°=T'=T"=-p2+T, =0,

where

— TL _Tu
P d
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To investigate the stability of the steady solution, we introduce perturbation
(ufuP, 7", 7°,0",0°)in such away that
f T ot _17 R _ =
U’ =U+u’ U7 =UP+u’, p=p +1, p’=p°+7°,
T =T°+6°, T =T'+6", T°=TP+06".
The nonlinear perturbation equations arising from equation (1) and equation (2) are
_ k. k. 1-
_,Uuif o _uip)_ﬂ_yf _ 9Kipae o' — gkipa(l-9)e 9" =0

k, ‘ D

uifi =0,

iuif S (LIRS WL g kippag o' — gkipa(l-9)e 0" =0,

k, ’ D

uf; =0, )

&(pC),0; = ek AO° +5,(0" —0°) +5,(0° - 0°),

P(pc) 0/ +(pC) U/ 0] —(pc); W' =k, AO" +h(0° -0")+5,(6°-0"),

&,(pc), 07 +(pC) uPO? —(pc), BWP = £,k AO® +h (8" —0°)+5,(6° - 0°),

where  W'=ujand W"=u], while k=(0,01). We then introduce the

nondimensionalizations scale with length scale d , time scale 7, pressure P, velocity U , and
temperature scale

_ dZ(PC)f
T_—

c). d?
, p=dcU, U = Ky T*=u (p)f—ﬁ(’
K (pc), d 9,0,00K,

and the Rayleigh number R, = R? is given by

R2 — (pc)f dzﬂgpoa
gok,
Other nondimensional variables are required and these are given by
_ u _ U _ (po), _, & _sd? _5,d”
- T _ ﬂ__) LS_ ’ §S_L3_| S_ ’ S - )
k& * k< (p0), ® tgk, Lok,
2 k C
H:&’ FS:gl_ks rp:_SZp’ LP:—(p )p’ gp:LPi'
e e ok, (pC) @
The nondimensional equations which is Achieved from equation (3) are
wu' +u' —uf)=-z! +R(p—k‘9f+RM9P, u’ =0,
i D D 1
yzuip+(uip—uif):—ﬁip+R%k‘6?f +RAZDEK 5o uf =0,
£0; =T, A +5,(0" —0°)+5,(0" - 6°), @)

6! +3uif9} =Rw' +A0" +H (0" -0")+S,(6°-6"),
@

L
£,6° +j’uf’9f’ =RL,W° + L ,A0° +H 0" -0°)+S,(0° -6°).
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Equation (4) hold on {(x, y)oR*}" {0< z< d} and the boundary conditions
w'=u, =0, wP=u} =0, 9" =0, 9* =0, & =0, at z=0,1, (5)
with u =(u’,v",w')and up =(u®,v", wP)are satisfying on plane tiling periodicity in (X )

.Solution of Linear Stability Equations
In this section, we seek to find the critical Rayleigh number of linear theory, we first linearize

equation (3) then we write the variables U',u’, 7", z°,0",6°, and 6° by explicitly separating

the time dependent parts and we follow the work of Chandrasekhar [42] by imposing a
temporal growth rate like e for solutions of the form

u' =u'(x)e”, u’=u’(x)e”, 7' =x"(x)e™, z°=rx"(x)e”,

o' =6"(x)e™, 8° =6°(x)e™", 0° =6°(x)e”".

Then 7' and x"are eliminated by taking curl of equation (4); and equation (4),, and then
analysis the linear system. The linear system arising from equation (4) is

AW +(Aw' - AWP) - R%A*Qf - R%A*ep =0,

L,AWP + (AWP —Aw') — R%A*Gf - R%A*OP =0,

o0, =T AG° +S,(0" —0°)+5,(6" - 0°), (6)
o0 =Rw' +A0" +H (0" -0")+S,(0°-0"),
o&,0 =RL WP +T AG° +H(0' —0°)+S,(6° - 6°),

where A" =0°/0x* +0° 10y’ is the horizontal Laplacian. This is an eigenvalue problem for &
to be solved subject to the boundary conditions in equation (5).

To analyze (6) and (5), assume normal mode with the representations for w' , WP gt gr
,and ¢°in the form of
0" =0"(2)f(x,y), 0°=0"(2)f(x,y), 6 =0°(z)f(xy),

wh =W () f(xy), wP=WP(z)f(xy),

where f is the horizontal plan form, which satisfies Af=-a° f, is a wave number. Then,

we allow W', w?, ®",®",and ©°to be composed of sinnxzz, for ne N which satisfies
the boundary conditions (5). The system (6) can be written in the matrix form

706



Mankhi and Haddad Iraqi Journal of Science, 2022, Vol. 63, No. 2, pp: 702-722

B P 2 1-p)e | o
(1 +DA A RDa R 5 a 0 w'l o
— p
A (A RELR rU=0) o 0 w0
D D @' [=|0 ,
0 0 =S, -5, 5so0+TA+5,+5, | g0 | |0
-R 0 o+A+H+S, -H =S, o 0
0 -L,R -H §o0+T A+H+S, =S, I
(7)
where A =n®z*+a*. Then, one may consider the following two cases.
3.1 Stationary Convection (o =0).
Substituting (o =0) in (6). The stationary convection boundary is given by
R? = DALk, A +koA ] )
az[¢(k2 B, —kB) +(1-9)e(k,B, —k,B,)]

With the coefficients Ky, K, K,, A, A, B, B,,B;, and B, are given by
Ko =1= (e +1) (1, +1),

K, =1+ (2 +1),

K, =1+ (1, +1),

A =2SS,H+S2(A+H+S)+H*(A+S,+8S,),

A, =(C,A+H+S,)(S] —(A+H+S)(TA+S,+8S,)),

B,=SS,L, +L HI',A+S,+5S,),

B, =S/L,—L,(A+H+S)(T,A+S,+S,),

B, =(S; —(T,A+S,+S,) (T ,A+H+S,),
B,=S,S,+H(,A+S,+S,).

Then one can show 6R?*/én* > 0. Therefore, we select n =1 to obtain the lowest instability
boundary.

3.2 Oscillatory Convection (0=ic, ), where 0, €R .
To study oscillatory convection put O'ZiGI in equation (6), where 0, €R. We solve the
determinant equation, then we have
o DAlk(h+h+h)] o)
-a’ [lepé:s (1-p)e+ k2¢§5§p]
Here, the coefficients hl, h2 and h3 are defined by

h = §S(FPA+ H+S,),
h, :fp(FSA+ S +S,),
hy =&&,(A+H +3).

707



Mankhi and Haddad Iraqi Journal of Science, 2022, Vol. 63, No. 2, pp: 702-722

Numerical techniques are used to find the stationary convection threshold Ray,and

oscillatory convection threshold Ra, , respectively. We minimize RZin (8) and (9) over a?,

as will be presented in the numerical results section.
Nonlinear Stability Analysis

Let  be a period cell for the solution to (4) and (5), and let ||, (.-) be the norm and inner

product on L’(V). We commence by multiplying (4): by U", (4), by U’, We also multiply

(4)s by o°, (4), by 6", (4)s by 6°and integrate each over V. Thus, we derive the following
equations:

o (ot )R 2 (0" )R G2 g ) =0

o+ - () -RE (0 w)-R A2 (7 wr) =0

1d sl _ 2 f s s s|1?
A +5,(0",6°)-5, |0 0

_1"5

“+5,(0°,6°)-s,

. (10
sl =-Ivo [ +R(w' 0" ) (070" )-Ho' [ +5,(070")-s,Jo'[
salol =T v R (wor) i (0,0)-mor| 4, (0.07) -5, o]

To determine the parameter A>0 we now form 4(10), +4(10), + A(10)., to obtain an

energy identity of form
dE

G =RI-D (11)
where
E(t)-—[ ol +o' [ +&, e |
= (VoA B w0 o B ),
D=, Vo[ +[vo' [+, [VOr[ s+ s fu [+ s Jur [ +Ju” -ue [+ s 0" ~o
+s, oo +H|or o[ '

Equation (11) is the same as the expression was report by Straughan [5].
Now put
L= ma | (12)
- - X—
Re x D

whereXis the space of admissible functions which are given by
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N=u',uP,0°,0",0"|uf uP e P(V),0°,0",0" eN'(V),
vu' =0,vu? =0,u,uf,6°6",6°, are periodic in X,y, -
and w' =wP=0°=0"=6"=0,0n2z=0,1.

Then from (12) we deduce

E . pa-5y,
dt Re
and then, from the Poincaré’s inequality on D, we have %—Itz <—c'z? ||¢9||2 :

which integrates to

E(t)<E(0)e ™.

Thus, E(t)tends to 0 as t — ooat least exponentially. Therefore, 6| — 0,
05

H—>0 and

— 0 at least exponential.

To obtain the decay of Hu‘” and Hup“ we have to employ the arithmetic geometric mean
inequality in (10); and (10),

A e R T R

R R(1- R(1
e I U Ll R~ eV

. 1 1 | R? f ol
1 R X R e et A BT SRR

We let
_ (1+44)D a. = (1+4,)D _ 2R(1-p)e

_ ﬁZZR(l—(p)g
2Rp ' % 2Rp Y D(@+p)’ P DU+w)’

. 1 1 | R f o[
Hosmle T mlo ) s |t s o oo | oo,

1

where the decay of u’and u® follow. We now turn our attention to the maximization problem
(12) with R >1.

In order to determine Rc, we have to derive the Euler—Lagrange equations and to maximize

in the coupling parameter A . The Euler—Lagrange equations arising from equation (12) are
determined from

R.51-8D =0,
Let us define U, U, o', 6°, and &* in terms of arbitraryC*(0,1) functions h/', h?, n' o,
and 77’ with h'(0)=h'())=hP(0)=h°(1) =0 and

n' 0)=n'O=n"0)=n"O)=1"0)=n"1)=0.

Hence we have that
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5D = [[T V(65 +en’) +V(0" +en' ) +T V(67 +en®) 44 (u/ +n) + 1, (0P + 0P )

\

+(uif +eh/ —(uip +¢&h? ))2 + Sl(é?f +en' —(49s +g775))2 +S, (l9p +éen® —(95 +£775))2
+H (6’p +en®—(0" +en' ))Z]dV|g:0
oD =I[2FSV(95 —I—gns)Vns +2V(6’f +en' )an +2FpV(9p +gr7p)V77” +2,ul(uif +¢h! )hif
\
+2,uz(uip+ghip)hip+2(uif +eh/ —(uip+ghp))(hlf hp)+28 (Gf +éen —(0 +87]S))(77f —775)

+252(9P+577P—(9S+gn5))+2H(9"+gnp (6" +en ))(77 —n')lav| .

5I:ij[(ﬁ+DLﬁ}(wf+gh o' +en')+ [ﬂ \/Zj(wughgp)(ehgnp)

+ (0 ven')(w+eh?)+ (10 JZ) (67 +en® (W' +h) ) (U], +ehl)r" (- (U] + h?)7* (X)TaV

DA

=0

51 Z\J/.[(\/ZJFDL\}Z][(W +gh3f)77f +(0f +577f)haf]Jr(\/ZLer(gggj[(Werghap)np+(9p+g77p)h3p]

+ (0 +en" )h +(w +h?)y' ]+(Dﬁ) [(0°+en® )by +(w' +eh )n® ~hi’ () -hEz® (9]av

DV

=0

we have included the constraint uifi and U by using a Lagrange multiplier (x), and ¢ is a

positive constant. Furthermore, after some integrations by parts and using the boundary
conditions, we find that

DZJZ[FSVHSVT]S+V9fV7]f+FpV9pV77p+,ulU h' +u, uPh’ +(u' -u”)(h' -h")+S (0" -8 )n" -7n°)
Vv

+8,(0" =) - )+ H(O° =0 )n" ~n " )av.,

ff f 1 P, P PP frp [
5|:I[(ﬁ+DZZJ(W’7 +6'h! )+ (J_L W j%j(Wﬂ +0 h3)+D¢/1(0 he +why')

Nt ¢)£(0ph3f+wf77p) h'z' —h’zPldv.

oV Gt
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Then the Euler-Lagrange equations for the maximum problem (12) are

'\//1 () (1—(p)8
”u_f+ u_f_u_p —R_ (= + ka__R S Al 72 L e 7Z-f,
o ") Rel 2 2D\//1) I . 2DV A )07k I

P +(UP —u)~Re —2 6"k —R. (L, N A=0)8)poy = 1

“2DJA 2 2DJ_

S f_ps P_psy =
[ AG° +S,(0" —6°)+S,(0°—6°) =0, (14)

RE (ﬂ % )Wf %

+ +R WP +A0" +S (6°-0")+H(B"-0")=0,
9 2D\/Z EZD\/Z A ( ) ( )

A=)y «/_(140)8
R2\/_ +R:( > 2DJA

WP+ ABP +S,(0°-60°)+H(0" —6°) =0,

where 7' and ~° are Lagrange multipliers. Further progress is made by taking curl of
equation (14), and equation (14),, we obtain

ylAwf+(Awf—AwP)—RE(g+ AN TR ol 2 L2 YL}

2DJA 2DJA
1-p)e
AWP + (AWP —AW ) —R. —2 A" —R L\/_ A=)y \-po =
Ho ( ) EZD\/I e 5 ZD\/—)

C A0 +S,(0"-60°)+S,(0°-6°) =0,

NA Q f Y
R.(—+ w +R

e ( 2 2D\//1) FoDJA

(1-9p)e \/_ (1 P)EN p s_pp f Py —
Re 2D\/Z) +Re(L, > 2 \/_)W +I,A0° +5,(0° -0°)+H(@ -6°)=0.

(15)

WP +AQ" +S,(6°-0")+H(O”-6")=0,

We again use a normal mode representation as for the linear stability analysis in section 3.
These results are to solve the determinant equation

~(1, +1)A A RE(gH)aZ R:ba’ 0
A w'| [0]
A ~(p, +1)A R.ca’ RE(Lp7+b)a2 0 we | 1o
0 0 S, S, —(C,A+S,+S,) |=|©" |=]0], (16)
Ji e | |0
Re (7+c) R.C —(A+S,+H) H S, o | o]
Rcb RE(Lpg+b) H (T, A+S,+H) S,
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% b= (1_(0)‘9

where C=——— and )
2DJA 2D\A
W' =0 WP=0, ® =0, ® =0, ® =0, at z=0,1.

The corresponding boundary conditions are

We follow the same procedure to that used in the linear instability. set the determinant of the

matrix to zero, we arrive at the equation in r_
AR! +BR? +C =0,

with coefficients
A= —3.4}/11 B= aZA(Ql _QZ +Q3)’ C= _A2k0(72 +73) =0,
Where

V2 g+c)b]

Q, = A+S+S,)H[2(1, +D(L T+ b)c+2(u, +1)(

Ji

+ (T A+8,+8,) (T A +S,+ H)[(14 +1) *+ (1, +1)(T/1+ c)’]

+(CA+8,+8,)(A+S+ H)[(1 +D(L, ng b)? + (w, +1)b?],

Q, (yl+1)[Sl(Lpg+bj+82cj2+(yl+1)(81b—s{g+CD2,
G A3

0, = (5oL, 7’1+b) L be)2H (T A+S,+S,)+2S.S,)

Ji

+(L, T+b)b(2(l}A+S1 +S,)(A+S,+H)-25?)

+ (g+c)c(2(l“sA+ S, +S,)(T,A+S,+H)-2S)),

and

7, = (CA+S, + SZ)((gH:)(Lp g+b) ~bc)?,

¥, = (TA+S,+S,)(H? = (A+S,+H)(T ,A+S,+H)),

¥3=25S,(2H +S,(T' ) A+S,+H)+S,(A+S, +H).

The energy Rayleigh number rzis then given by

— Al -9, +Qs)i\/(Q1 —Q, +Q,)* — 4y, K (7, +75)]
2a%y, .

Re

We require to find the critical nonlinear Rayleigh numberre, , such that

Ra,. = maxmin R (az,/l).

Numerical results for the nonlinear energy approach are presented in section 5.

Numerical results

17

(18)

In this section, we present new numerical computations for the linear and nonlinear
stability analyses. Our analysis supports the work of Franchi et at [19] by computing the
stationary convection instability threshold equation (8), and the oscillatory convection
threshold equation (9). Both cases are studied by using golden section search to minimise
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over a*and find the critical values of R’for linear instability. Moreover, the critical Rayleigh
numbers of nonlinear energy stability Ra; for fixed a? and A is determined using equation
(18). Then, we employ golden section search to minimise in a®and then maximise in A to
determine Ra., where for Ré <Ra; we have stability for the best values of the coupling

parameter A . We have to do the minimization in equation (8), equation (9) and equation
(18) numerically by using Matlab routines. For the parameters that are employed in this
article, we have to be very careful when minimize R? in equation (8) and equation (9) over
a®. In all cases, we found that the stationary curve always lies below the oscillatory
convection one.

In the present study, Tables 1,2 and Tables 3,4 display the numerical results for values of

£=0.00001, ¢=0.9999, /4 =4,=001 L =15and I'=0.1 with fixed value of the
inter-phase heat transfer parameter H =0.00001, 0.01, and the porosity modified
conductivity ratio Fp:O.Ll with various values of the porosity modified interaction
coefficients S;and S,. We also present in Figures 1, 2 and Figures 3, 4 the critical Rayleigh
number Ra which is plotted against S; and S,. From Table 1, the values of &, @, I’ jand H
are suggested by Nield and Kuznetsov [10], it is observed that when S, =0.01 and T', =0.1
the stationary convection boundary, Ra,, =39.4815 is similar to that found in Nield and
Kwznetsove [10]. For an increase the value of S; from 0.01 to 1, the critical values of Rag,
and Ra:is increased as seen in Tablel and Table2. However, from Figures 1 and 2 we
observe that as I, increases from I')=0.1 to I' ) =1, the values of Ra are increasing this
shows the stabilizing effect of the porosity modified conductivity ratio I',. It is clear from
Figures 1 and 2, and from Tables 1 and 2 that when Fp =0.1 the stationary convection
boundary Ra, decreases with increasing H, which shows the destabilizing effect. In
addition, the distance between Ra, and Ra:increases with decreasing H . Thus, with small
values of H we have wide subcritical regions.

Table 3 and Table 4 show that for fixed value of I';, as S, increases, the critical Rayleigh
number increases. Thus, an increasing in S, causes the system becomes more stable. It is also
observed that for a fixed value of Fp the effect of increasing the value of S, is to increase the
critical wave number for the onset of linear instability. For example, for I', =0.1 and
S,=1.01 the critical wave number is & =11.0525 when S, =8.01, the critical wave
number 8, =22.9938 . This means the cells become narrower due to the intense increasing of

the critical wave number. Further, it is evident from Figures 3 and 4 that as the value of I',

decreases, the difference between the linear instability and nonlinear stability thresholds
increases. As a result, the region of potential subcritical instabilities between the linear and

nonlinear stability thresholds considerable. It is also noted that as ', increases the linear
instability and nonlinear stability thresholds become closer. This is, in a sense, the best
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possible agreement between the two thresholds since the region of potential subcritical
instabilities decreases.

Figure 5 and Table 5 display the effect of T'_=0.11 with #,=05,0.1 and u,=0105
respectively for fixed value of S,=0.0, I')=0.1 and H =0.01, and for various values of
S,. It is found that the effect of increasing S, is to increases the critical Rayleigh number
Ra . However, Figure 5 shows that as I'; and #, increase with the decreasing 4, Ra
increases. Therefore, the parameter I'; have a stabilizing effect on the stability of the system.
Furthermore, the effect of increasing I’ is to increases the value of wave number. For
example, for 5,=6 and I', =0.1 we see from Table 5 that the wave number a, =9.9314
whereas, when I', =1 for the same parameter 5,=6, the wave number 8, =11.3416. This
indicates that the cell width decreases with increasing the parameter I, which corresponds to
the narrower convection cells. It is also observed that, for a fixed value of 4 =05, u, =2
and I', =0.1, the effect of increasing S, is to increases the wave number. For example, for
S, =4 we see from Table 6 that the wave number &, =12.6119 | whereas, when S, =8, the

wave number 8, =15.3255 which leads to cells becoming narrower.

Table 1-Critical Rayleigh and wave numbers of linear and energy theory, vs. s , for
H =0.00001, £ =0.00001, ¢ =0.9999, z4 =, =0.1

5,=00L L,=15 T, =0l

S, Ra,, a, Ra. ag A
0.01 39.4815 9.8672 22.8990 10.3919 0.98978
1.01 39.7958 9.6768 23.6458 10.5924 0.9901
2.01 39.9430 9.5673 24.0238 10.6205 0.9903
Fp =0.1 3.01 40.0281 9.4981 24.2527 10.6205 0.9903
4.01 40.0832 9.4503 24.4060 10.5925 0.9906
5.01 40.1219 9.4166 24.5160 10.5699 0.9905
6.01 40.1505 9.3908 24.5986 10.5612 0.9906
7.01 40.1725 9.3703 24.6631 10.5838 0.9906
8.01 40.1900 9.3546 22.8990 10.3919 0.98978
0.01 39.4966 9.8738 23.74825 10.36921 0.888371
1.01 40.7093 10.0459 24.49263 10.58381 0.892342
2.01 41.3136 10.0550 24.86931 10.60646 0.894236
I b= 1 3.01 41.6760 10.0368 25.0972 10.60646 0.895142
4.01 41.9175 10.0154 25.24983 10.58381 0.895356
5.01 42.0898 9.9946 25.35915 10.56115 0.896608
6.01 42.2190 9.9767 25.4412 10.54715 0.897087
7.01 42.3193 9.9619 25.5050 10.53315 0.897382
8.01 42.3995 9.9487 25.5562 10.52449 0.897647
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Table 2 -Critical Rayleigh and wave numbers of linear and energy theory, vs. s , for

H =0.01,

£=0.00001, ¢ =0.9999, s, = 41, =0.1

S,=001 L,=15 I =01

S1 Rasta al_ Ra'E aE 2{
0.01 36.69807 9.215543 22.91493 10.37787 0.989563
1.01 37.03958 9.073001 23.66157 10.60646 0.989909
2.01 37.19873 8.988991 24,03958 10.62912 0.990123
I)= 0.1 3.01 37.29039 8.930459 24.26847 10.64312 0.990123
4.01 37.34988 8.89176 24.42182 10.60646 0.990205
5.01 37.39158 8.864721 2453175 10.58381 0.990205
6.01 37.42242 8.84296 24.61438 10.56115 0.990337
7.01 37.44614 8.826617 2467874 10.54715 0.990337
8.01 37.46496 8.81436 24.73028 10.53315 0.990337
0.01 39.21878 9.805174 23.76454 10.36921 0.888025
1.01 40.42548 9.975719 2450874 10.59246 0.891996
2.01 41.02581 9.984855 24.88625 10.62912 0.990123
L, =1 3.01 41.38551 9.965987 25.11328 10.73909 0.895142
4.01 41.62501 9.944595 25.26594 10.58381 0.895834
5.01 41.79588 9.924763 25.37527 10.58381 0.896394
6.01 41.92388 9.906491 25.45736 10.54715 0.896822
7.01 42.02333 9.892674 25.52126 10.54715 0.897168
8.01 42.10282 9.879452 25.57236 10.52449 0.897382
Table 3-Critical Rayleigh and wave numbers of linear and energy theory, vs.s,, for
H =0.00001, £ =0.00001, @ =0.9999, 2z = 4, =0.1
5,=0.01, L,=15 I =0.1
S, Ra,, a, Ra. ag A
0.01 39.4815 9.8672 22.8990 10.3919 0.9898
1.01 43.9789 11.5295 22.9283 10.3779 0.9865
2.01 51.4937 13.7849 22.9430 10.3779 0.9847
Fp =0.1 3.01 59.3218 15.8437 22.9517 10.3779 0.9837
4.01 67.1161 17.7086 22.9575 10.3779 0.9830
5.01 74.8110 19.4203 22.9615 10.3779 0.9825
6.01 82.3987 21.0078 22.9645 10.3779 0.9822
7.01 89.8857 22.4913 22.9667 10.3692 0.9820
8.01 97.2816 23.8909 22.9685 10.3692 0.9818
0.01 39.4966 9.8738 23.7482 10.3692 0.8884
1.01 40.117 10.1284 23.7820 10.3779 0.8842
2.01 41.4161 10.5795 23.7990 10.3779 0.8822
L, =1 3.01 42.9383 11.0534 23.8092 10.3779 0.8810
4.01 44,5496 11.5188 23.8159 10.3779 0.8801
5.01 46.1978 11.9719 23.8206 10.3692 0.8794
6.01 47.8594 12.4093 23.8240 10.3692 0.8791
7.01 49.5228 12.8318 23.8266 10.3692 0.8787
8.01 51.1819 13.2422 23.8286 10.3692 0.8785
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Table 4-Critical Rayleigh and wave numbers of linear and energy theory, vs.s,, for

H =0.01, £ =0.00001, ¢ =0.9999, 24 = 21, =0.1
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5 =001 L,=15 I =0.1

s, Ra, a, Ra, a. A
0.01 36.6980 9.2155 22.9149 10.3779 0.9896

1.01 41.7939 11.0525 22.9442 10.3919 0.9862

2.01 49.3713 13.2610 22.9590 10.3919 0.9845

Fp =0.1 3.01 57.1666 15.2537 22.9677 10.3919 0.9834
4,01 64.9004 17.0529 22.9735 10.3919 0.9828

5.01 72.5255 18.6989 22.9775 10.3919 0.9823

6.01 80.0404 20.2252 22.9805 10.3919 0.9819

7.01 87.4544 21.6503 22.9827 10.3779 0.9816

8.01 94.7780 22.9938 22.9844 10.3779 0.9814

0.01 39.2188 9.8052 23.7645 10.3692 0.8880

1.01 39.8485 10.0617 23.7984 10.3919 0.8840

I b =1 2.01 41.1489 10.5122 23.8154 10.3919 0.8819
3.01 42.6696 10.9826 23.8255 10.3919 0.8807

4,01 44,2780 11.4461 23.8322 10.3779 0.8798

5.01 45,9226 11.8951 23.8369 10.3779 0.8792

6.01 47.5804 12.3303 23.8403 10.3779 0.8789

7.01 49,2397 12.7503 23.8429 10.3779 0.8785

8.01 50.8946 13.1566 23.8449 10.3779 0.8782

Table 5-Critical Rayleigh and wave numbers of linear and energy theory, vs. s , for
S, =0.01 £ =0.00001, ¢ =0.9999, I', =0.1,1

H=001 L,=15 T,=0.1

S, Ra,, a, Ra. ag A
1.01 40.4902 9.9940 24.6603 10.5838 0.8783
1, =0.5 2.01 41.0995 10.0057 25.0361 10.6065 0.8805
4, =0.1 3.01 41.4648 9.9883 25.2633 10.6065 0.8818
I',=0.1 4.01 41.7081 9.9666 25.4152 10.5838 0.8829
5.01 41.8818 9.9471 25.5238 10.5612 0.8835
6.01 42.0119 9.9314 25.6052 10.5471 0.8840
7.01 42.1130 9.9150 25.6683 10.5245 0.8844
8.01 42.1938 9.9018 25.7188 10.5245 0.8854
1.01 41.0188 10.2211 33.5235 10.8351 0.9193
1w =0.1 2.01 42.6773 10.5575 34.8189 11.1823 0.9225
wH, =0.5 3.01 44,1767 10.8250 35.9930 11.4702 0.9253
r,=1 4.01 45.5436 11.0377 37.0659 11.6934 0.9275
5.01 46.7979 11.2067 38.0525 11.8767 0.9295
6.01 47.9551 11.3416 38.9645 12.0320 0.9313
7.01 49.0273 11.4480 39.8112 12.1506 0.9328
8.01 50.0243 11.5305 40.6000 12.2466 0.9342
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Table 6- Critical Rayleigh and wave numbers of linear and energy theory, vs.s, , for
S, =0.01
£=0.00001, ¢ =0.9999, I'_, =0.1,1

H =0.01, Lp =15, Fp =0.1
S, Ra,, a, Ra. ag A
1.01 40.4870 10.3061 32.8520 10.3552 0.8616
1, =05 2.01 42.6969 11.0707 32.8797 10.3552 0.8593
Ly, =2 3.01 45.2245 11.8548 32.8946 10.3552 0.8579
I, =0.1 4,01 47.8633 12.6119 32.9031 10.3552 0.8572
5.01 50.5382 13.3353 32.9078 10.3412 0.8568
6.01 53.2175 14.0272 32.9102 10.3412 0.8564
7.01 55.8869 14.6913 32.9110 10.3412 0.8563
8.01 58.5396 15.3255 32.9107 10.3326 0.8563
1.01 39.3037 9.8505 25.8696 10.3919 0.8931
4, =0.2 2.01 39.5780 9.9742 25.9125 10.4059 0.8882
4, =0.05 3.01 39.9777 10.144 25.9520 10.4145 0.8836
r, =1 4.01 40.4714 10.3442 25.9884 10.4285 0.8794
5.01 41.0363 10.5642 26.0221 10.4372 0.8756
6.01 41.6559 10.7979 26.0533 10.4512 0.8720
7.01 42.3178 11.0387 26.0824 10.4512 0.8686
8.01 43.0127 11.2847 26.1096 10.4512 0.8656
45.0
425 g I BaE
40.0 ‘/ T,=01
37.5 -
35.0
o 3254
CK 4
30.0 -
27.5 -
| I,J', = .
25.0 1 U= SRS
| DR rp=01
22.5
20.0 z T ¥ T y T y T T T I T ! T !
0.0 15 3.0 45 6.0 75 9.0 10.5
S

Figure 1-Critical Rayleigh number Ra is plotted against s with £=0.00001, ¢ =0.9999,
I, =01 L, =15'5,=0.01. The solid curves are for linear instability and the dotted curves

are for nonlinear stability, for T';=0.11,H =0.00001,, and t4 = 4, =0.1,
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Figure 2-Critical Rayleigh number Ra is plotted against s with s =0.00001, ¢ =0.9999,
I, =01 L,=15S,=0.01. The solid curves are for linear instability and the dotted curves
are for nonlinear stability, for ') =011 H=001,and & =#,=01.
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80

40 -

20 I,=01

Figure 3-Critical Rayleigh number Ra is plotted against s, with s =0.00001, ¢ =0.9999,
I, =01 L =155 =0.01. The solid curves are for linear instability and the dotted curves

are for nonlinear stability, for I', =0.1 1, H =0.00001,, and t4 =, =0.1.
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Figure 4-Critical Rayleigh number Ra is plotted against s, with ¢=0.00001, ¢ =0.9999,
I, =01 L =155 =0.01. The solid curves are for linear instability and the dotted curves

are for nonlinear stability, for I') =0.11,H =0.01, and & =4, =0.1.
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Figure S-Critical Rayleigh number Ra is plotted against s withs=0.00001, ¢ =0.9999,
I, =01 L,=155,=0.01. The solid curves are for linear instability and the dotted curves
are for nonlinear stability, for I'; =0.1,1,H =0.01.
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Figure 6-Critical Rayleigh number Ra is plotted against s,with & =0.00001, ¢ =0.9999,
with ') =1 L =155 =0.01. The solid curves are for linear instability and the dotted

curves are for nonlinear stability, for I') = 0.1,1,H=0.01.

Conclusion

The onset of convection in a fluid saturated bidsperse porous medium is investigated
when the temperature of the fluid and solid phases is in local thermal non-equilibrium. The
linear instability threshold and nonlinear one is derived analytically in case of free surfaces.
The stationary convection boundary, Rag,, = 39.4815, is similar to that found by Nield and
Kwznetsove for particular values of the porosity modified interaction coefficient and the
porosity modified conductivity ratio, &€= 0.00001, ¢ =0.9999, H = 0.00001,
S,=001 L, =15 T,=0.1 and I, = 0.1. Through investigation we found that the onset of

convection is by stationary convection for various interaction parameters. It can be argued
from the results that the critical Rayleigh numbers Raand the critical wave numbers 5 are

greater in the case of p; = p, = 0.1,L, = 15 and S, increases. Also, we observed that the

subcritical instability region decreases as the parameter I'; increases. The effects of increasing
r,and Iy as well as increasing the value of §; were seen to stabilize the system. Also, we

observed that for small values of I',, and I'y, the effect of increasing S, is to stabilize the
system. This indicates that the thermal convection occurs more easily.
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