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Abstract 

     In this article, an attempt has been made to introduce the concept of Neutrosophic 

d-Filter and Neutrosophic Prime d-Filter of d-Algebra by generalizing the notion of 

Intuitionistic Fuzzy d-Filter of d-Algebra. Besides, we establish different properties 

of them. Further, we study several relations on this notion from the point of view of 

Neutrosophic d-Algebra. 
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1. Introduction                                                                                                                             

      In the year 1965, Zadeh [1] grounded the notions of the Fuzzy Set theory. In the year 1966, 

Iseki [2] grounded an algebraic relation with propositional calculus. Afterward, the concepts of 

BCK and BCI algebra are introduced by Imai and Iseki [3] in the year 1966. In the year 1986, 

Atanassov [4] introduced notions of the Intuitionistic Fuzzy Set, which is the natural 

generalization of fuzzy set theory. Thereafter, Negger and Kim [5] presented the idea of d-

Algebra as an extension of BCK algebra in the year 1999. In the year 2000, Neggers et al. [6] 

introduced and studied d-Fuzzy Functions via d-Algebra. Thereafter, Negger et al. [7] 

introduced and studied the theory of ideal in d-Algebra. The concept of the Neutrosophic Set 

was grounded by Smarandache [8] in the year 2005. Thereafter, Neutrosophic Set and its 

extensions have been applied in theoretical research [9-22] as well as practical research [23-

92 ]. Jun et al. [30] applied the notion of Intuitionistic Fuzzy Set on d-Algebra, and grounded 

the idea of Intuitionistic Fuzzy d-Algebra in the year 2006. In the year 2007, Allen et al. [31] 

studied companion d-Algebra. In the year 2017, Abdullah and Hassan [32] presented the 

concept of Fuzzy Filter Spectrum of d-Algebra. Later on, Hasan [33] introduced the notion of 

Intuitionistic Fuzzy d-Filter by the year 2020. In the year 2021, Das et al. [8] introduced and 

studied the notions of Neutrosophic d-Ideal of d-Algebra, which are very useful generalizations 

of Intuitionistic Fuzzy d-Algebra. Thereafter, Das et al. [34] studied the notions of 

Pentapartitioned Neutrosophic Q-Ideals of Q-Algebra. In this paper, we introduce the notion of 

Neutrosophic d-Filter and Neutrosophic Prime d-Filter of d-Algebra with several interesting 

properties. Besides, we study some relations on Neutrosophic d-Algebra.  
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       Jun et al. [30] and Hasan [33] presented the notion of Intuitionistic Fuzzy d-Algebra and 

Intuitionistic Fuzzy d-Filter respectively by generalizing the notion of Fuzzy d-Algebra and 

Fuzzy d-Filter. But, no investigation on Neutrosophic d-Filter and Neutrosophic Prime d-Filter 

of d-Algebra has been reported in the recent literature. So, it is necessary to study the concept 

of Neutrosophic d-Filter and Neutrosophic Prime d-Filter of d-Algebra. 

                        

Motivation                                                                                                                                     

    To fill the research gap, we introduce the notion of Neutrosophic d-Filter and Neutrosophic 

Prime d-Filter of d-Algebra.                                                                                                           

                                                                                                          

2. Preliminaries 

     In this section, we give some basic definitions and results on d-Algebra, d-Filter, Fuzzy d-

Algebra, Fuzzy d-Filter, Intuitionistic Fuzzy d-Algebra, Intuitionistic Fuzzy d-Filter, 

Neutrosophic Set and Neutrosophic d-Ideal. 

 

Definition 2.1:[5]. Assume that X be a fixed set. Then, X with a constant 0 and a binary 

operation “∗” is called a d-Algebra if the following axioms hold:  

(i) a ∗ a = 0  for all aX; 

(ii) 0 ∗ a = 0  for all aX; 

(iii) a ∗ b = 0 and b ∗ a = 0  a = b  for all  a, bX.  

We will refer to a ∗ b by ab and a  b if and only if ab = 0. Further, b(ba) is denoted by (ab). 

 

Definition 2.2:[5]. A d-Algebra X is said to be commutative if and only if  a(ab) = b(ba)  for 

all a, bX. 

 

Definition 2.3:[5].  A d-Algebra X is called bounded if there is an element eX such that a  e, 

for all aX, i.e., ae = 0 for all  aX. In a bounded d-Algebra, we denote “ea” by “a” for all 

aX. 

 

Remark 2.1: The operator “∗” is similar to the complement. 

 

Definition 2.4:[5]. A d-Algebra X is called a dS-Algebra if the following conditions hold: 

(i) a0 = a for all a X; 

(ii) (ab)c = (ac)b  for all a, b, c X.  

 

Proposition 2.1:[5]. In a bounded commutative dS-Algebra, the following properties hold: 

(i) (a) = a  for all aX; 

(ii) (a  b) = a  b and (a  b) = a  b  for all a, bX; 

(iii) ab = ba  for all a, bX; 

(iv) (a  b)  b   for all a, bX; 

(v) a  0 = a and a  e = e, aX. 

 

Proposition 2.2:[5]. In a bounded dS-Algebra X, the following properties hold: 

(i) (ab)  a   for all a, bX; 

(ii) a  b  b  a  for all a, bX; 

(iii) a(ab)  b   for all a, bX. 

Definition 2.5:[5]. A fixed sub-set F of a bounded d-Algebra X is called a d-Filter of X if the 

following conditions hold: 

(i) eF; 
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(ii) (ab)F, and bF  aF   for all a, bX. 

 

Definition 2.6:[34]. A proper d-Filter F of a d-Algebra X is called a prime d-Filter if a  bF 

 aF or bF, for all a, bX.  

 

Definition 2.7:[1]. A Fuzzy Set R over a fixed set X is defined by R={(a, TR(a)): aX}, where 

TR(a) ([0,1]) is the membership value of aX towards R. 

 

Definition 2.8:[32]. Let Y={(c,TY(c)):cX} be a Fuzzy Set over a d-Algebra X. Then, Y is 

called a Fuzzy d-Algebra if TY(cd)  min{TY(c), TY(d)}, for all c, dX. 

 

Definition 2.9:[32]. A Fuzzy Fet Y={(c,TY(c)):cX} is called a Fuzzy d-Filter of a d-Algebra 

X if the following holds: 

(i) TY(e)  TY(c), for all cX, 

(ii) TY(c) ≥ min{TY((c*d*)*), TY(d)}, for all c, dX. 

 

Definition 2.10:[32]. A Fuzzy d-Filter Y={(c,TY(c)):cX} of a d-Algebra is called a Fuzzy 

Prime d-Algebra if and only if TY(c  d)  max{TY(c), TY(d)}, for all c, dX. 

 

Definition 2.11:[4]. An Intuitionistic Fuzzy Set D over a fixed set X is defined by D={(a, TD(a), 

FD(a)): aX}, where TR(a), FD(a) ([0,1]) is the membership and non-membership values of 

aX towards R.  

 

Definition 2.12:[4]. Assume that f:X→Y be a one to one and onto mapping. If D={(a, TD(a), 

FD(a)): aY} be an Intuitionistic Fuzzy Set over Y, then f-1(D) is the Intuitionistic Fuzzy Set 

over X defined by: 

f-1(D)={(a, f −1(TD(a)), f −1(FD(a))): aX} 

Further, if D={(a, TD(a), FD(a)):aX} be an Intuitionistic Fuzzy Set over X, then f(D) is an 

Intuitionistic Fuzzy Set over Y defined by 

f(D)={(a, fsup(TD(a)), finf(FD(a))):aY}, 

where fsup(TD(a)) = {
supb∈f−1(a)TD(b) if f −1(a) ≠ ∅

0                                    otherwise  
,   

and finf(FD(a)) = {
infb∈f−1(a)FD(b) if f −1(a) ≠ ∅

0                                    otherwise  
,  for each aY. 

 

Definition 2.13:[30]. Let Y={(c,TY(c),FY(c)): cX} be an Intuitionistic Fuzzy Set over a d-

Algebra X. Then, Y is called an Intuitionistic Fuzzy d-Algebra if it satisfies the followings: 

(i) TY(cd) min{TY(c), TY(d)}, for all c, dX; 

(ii) FY(cd) max{ FY(c), FY(d)}, for all c, dX. 

 

Definition 2.14:[33]. An Intuitionistic Fuzzy Set Y={(c,TY(c),FY(c)): cX} over a d-Algebra 

(X, *) is said to be an Intuitionistic Fuzzy d-Filter (IF-d-Filter) of X, if the following holds: 

(i) TY(e) ≥ TY(c), FY(e) ≤ FY(c), for all cX;  

(ii) TY(c) ≥ min{TY((c*d*)*), TY(d)}, FY(c)  ≤ max{FY((c*d*)*), FY(d)}, for all c, dX. 

Definition 2.15:[33]. An IF-d-Filter Y={(c,TY(c),IY(c),FY(c)): cX} of a d-Algebra X is called 

an Intuitionistic Fuzzy Prime d-Filter (IF-P-d-Filter) of X if the following conditions hold: 

(i) TY(a  b)  max{TY(a), TY(b)}, for all a, bX; 

(ii) FY(a  b)  min{FY(a), FY(b)}, for all a, bX. 
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Proposition 2.3:[33]. Assume that Y={(c,TY(c),FY(c)): cX} be an IF-d-Filter of a bounded 

commutative dS-Algebra X. Then, the followings hold: 

(i) a* ≤  b*  TY(a) ≥ TY(b) and FY(a) ≥ FY(b), for all a, bX; 

(ii) b ≤ a  TY(b) ≤ TY(a) and FY(b)  FY(a), for all a, bX.  

 

Definition 2.16:[35]. An Neutrosophic Set over a universal set X is defined as follows: 

H={(y,TH(y),IH(y),FH(y)): yX}, 

where TH(y), IH(y) and FH(y) ([0,1]) are the truth, indeterminacy and false membership values 

of y, and so 0  TH(y) + IH(y) + FH(y)  3, for all yX. 

 

Definition 2.17:[35]. Suppose that Y={(c,TY(c),IY(c),FY(c)): cX} be an Neutrosophic Set 

over a d-Algebra X. Then, A is called an Neutrosophic d-Algebra (N-d-Algebra) if the 

following condition satisfies: 

(i) TY(cd) min{TY(c), TY(d)}, for all c, dX; 

(ii) IY(cd) max{IY(c), IY(d)}, for all c, dX; 

(iii) FY(cd) max{FY(c), FY(d)}, for all c, dX. 

 

3. Neutrosophic d-Filter and Neutrosophic Prime d-Filter 

     In this section, we procure the concept of Neutrosophic d-Filter (N-d-Filter) and 

Neutrosophic Prime d-Filter of d-Algebra as an extension of Intuitionistic Fuzzy d-Filter of d-

Algebra. Further, some of the theorems and properties of this concept have been established. 

 

Definition 3.1: An Neutrosophic Set Y={(c,TY(c),IY(c),FY(c)): cX} over X is called an N-d-

Filter if the following conditions hold: 

(i) TY(e) ≥ TY(c), IY(e) ≤ IY(c), FY(e) ≤ FY(c), for all cX; 

(ii) TY(c) ≥ min{TY((c*d*)*), TY(d)},  

 IY(c) ≤ max{IY((c*d*)*), IY(d)}, 

and FY(c) ≤ max{FY((c*d*)*), FY(d)}, for all c, dX. 

Here, e is the boundary element of X. 

 

Theorem 3.1: Let Y={(c,TY(c),IY(c),FY(c)): cX} be an N-d-Filter of a bounded commutative 

dS-Algebra X. Then,  

(i) c* ≤ d*  TY(c) ≥ TY(d), IY(c) ≥ IY(d) and FY(c) ≥ FY(d), for all c, dX; 

(ii) d ≤ c  TY(d) ≤ TY(c), IY(d)  IY(c) and FY(d)  FY(c), for all c, dX. 

 

Proof. (i) since c* ≤  d*, so (c*d*)* = e. 

Now, TY(c)  min{TY((c*d*)*), TY(d)}= min{TY(e), TY(d)}= TY(d), for all c, dX. 

IY(c)  max{IY((c*d*)*), IY(d)}= max {IY(e), IY(d)}= IY(d), for all c, dX. 

and FY(c)  max{FY((c*d*)*), FY(d)}= max {FY(e), FY(d)}= FY(d), for all c, dX. 

(ii)  Since d  c, so dc = 0. By a known result, we have c*d* = dc that means c*  d*. By (i), 

we have, TY(c)  TY(d), IY(c)  IY(d), and FY(c)  FY(d). 

 

 

Theorem 3.2: Let Y={(c,TY(c),IY(c),FY(c)): cX} be an N-d-Filter of a d-Algebra X. 

Then, (i) TY(e)  TY(c), IY(e)  IY(c), FY(e)  FY(c), for all cX;  

(ii) TY(d)  min{TY(cd)*, TY(c)}, IY(d)  max {IY(cd)*, IY(c)}, FY(d)  max {FY(cd)*, FY(c)}, 

for all c, dX. 

 



Das et al.                                                      Iraqi Journal of Science, 2023, Vol. 65, No. 2, pp: 855-864 
 

859 

Proof. Suppose that Y={(c,TY(c),IY(c),FY(c)): cX} be an N-d-Filter of a d-Algebra X. By 

Definition 3.1, the proof of (i) holds easily. 

Now, TY((c*d*)*) = TY((d*c*)*), IY((c*d*)*) = IY((d*c*)*), and FY((c*d*)*) = FY((d*c*)*). 

Therefore, TY(d)  min{TY((c*d*)*), TY(c)}= min{TY((d*c*)*), TY(c)}, 

IY(d)  max{IY((c*d*)*), IY(c)}= max{IY((d*c*)*), IY(c)}, 

and FY(d)  max{FY((c*d*)*), FY(c)}= max{FY((d*c*)*), FY(c)}. 

 

Theorem 3.3: An Neutrosophic Set Y={(c,TY(c),IY(c),FY(c)): cX} over a bounded 

commutative dS-Algebra X is called a N-d-Filter if and only if (m* n*) b* = 0  TY(m)  

min{TY(n), TY(b)}, IY(m)  min{IY(n), IY(b)}, FY(m)  min{FY(n), FY(b)}, for all m, n, bX. 

 

Proof. Let Y={(c,TY(c),IY(c),FY(c)): cX} be an N-d-Filter of a bounded commutative dS-

Algebra  X. Assume that (m* n*) b* = 0, then (m* n*)**  b*. By Proposition 2.2, we have 

TY(b)   TY ((m*n*)*), IY(b)   IY((m*n*)*) and FY(b)   FY((m*n*)*). Then, we will get TY(m)  

min {TY((m*n*)*), TY(m)}  min {TY(b), TY(n)}, IY(m)   max{IY ((m*n*)*), IY(n)}   

max{IY(b), IY(n)}, and FY(m)   max{FY ((m*n*)*), FY(n)}  max{FY(b),FY(n)}.  

Conversely, let Y={(c,TY(c),IY(c),FY(c)): cX} be an Neutrosophic Set satisfies that (m*n*)b*= 

0 implies TY(m)  min{TY(n), TY(b)}, IY(m)  max {IY(n), IY(b)} and FY(m)  max {FY(n), 

FY(b)}, for all m, n, bX. 

Since, (e*n*)n* = (0n*) n* = 0, it is follow that  

TY(b)  min{TY(n), TY(n)} = TY(n),  

IY(b)  max{IY(n), IY(n)} = IY(n), 

 and FY(b)  max{FY(n), FY(n)} = FY(n).  

Now, since X is a dS-Algebra, so m(mn)n = 0, for all m, nX.  

This implies, [m*(m*n*)* *]n* = 0. Therefore, we have 

TY(n)  min{TY((m*n*)*), TY(n)}, IY(b)  max{IY((m*n*)*), IY(n)}, and FY(b)  

max{FY((m*n*)*), FY(n)}.  

Hence, Y={(c,TY(c),IY(c),FY(c)): cX} is an N-d-Filter. 

 

Theorem 3.4: Let {Yi: i} be a family of N-d-Filters of a d-Algebra X. Then, their 

intersection Yi = {(c, 𝐓𝐘𝐢
(c), 𝐈𝐘𝐢

(c), 𝐅𝐘𝐢
(c)): cX} is also an N-d-Filter of X. 

 

Proof. Assume that {Yi: i} be a family of N-d-Filter of a d-Algebra X. It is known that, 

𝐓𝐘𝐢
(e)  𝐓𝐘𝐢

(c), 𝐈𝐘𝐢
(e)  𝐈𝐘𝐢

(c) and 𝐅𝐘𝐢
(e)  𝐅𝐘𝐢

(c), for all cX (for all i). Now, we have 𝐓𝐘𝐢
(e) 

 𝐓𝐘𝐢
(a), 𝐈𝐘𝐢

(e)  𝐈𝐘𝐢
(a), and 𝐅𝐘𝐢

(e)  𝐅𝐘𝐢
(a). Since 𝐓𝐘𝐢

(c)  min{𝐓𝐘𝐢
((c*d*)*), 𝐓𝐘𝐢

(d)}, 

𝐈𝐘𝐢
(c)  max {𝐈𝐘𝐢

((c*d*)*), 𝐈𝐘𝐢
(d)}, and 𝐅𝐘𝐢

(c)  max {𝐅𝐘𝐢
((c*d*)*), 𝐅𝐘𝐢

(d)}, for all c, dX (for all 

i). Therefore, 𝐓𝐘𝐢
(c)  {min{𝐓𝐘𝐢

((c*d*)*), 𝐓𝐘𝐢
(d)}} 

= {min{𝐓𝐘𝐢
((c*d*)*), 𝐓𝐘𝐢

(d)}, for all c, dX (i). 

𝐈𝐘𝐢
(c)  {max{𝐈𝐘𝐢

((c*d*)*), 𝐈𝐘𝐢
(d)}}= {min{𝐈𝐘𝐢

((c*d*)*), 𝐈𝐘𝐢
(d)}}, for all c, dX (i). 

and 𝐅𝐘𝐢
(c)  {max{𝐅𝐘𝐢

((c*d*)*), 𝐅𝐘𝐢
(d)}}= {min{𝐅𝐘𝐢

((c*d*)*), 𝐅𝐘𝐢
(d)}}, for all c, dX 

(i). Hence, Yi = {(c, 𝐓𝐘𝐢
(c),  𝐈𝐘𝐢

(c), 𝐅𝐘𝐢
(c)): cX} is also an N-d-Filter of X. 

 

Lemma 3.1: An Neutrosophic Set Y={(c,TY(c),IY(c),FY(c)): cX} is an N-d-Filter of X if and 

only if TY={(c,TY(c)): cX}, 𝐈̅Y={(c, 1-IY(c)): cX}, and 𝐅̅Y={(c, 1-FY(c)): cX} are F-d-

Filters of X. 
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Proof. Suppose that Y={(c,TY(c),IY(c),FY(c)): cX} be an N-d-Filter of a d-Algebra X. Then, 

by Definition 3.1 and Definition 2.3, it is clear that TY is a Fuzzy d-Filter of X. 

Now, for all a, bX, we have 𝐈̅Y(e)=1-IY(e) 1-IY(a)= 𝐈̅Y(a) 

and 𝐈̅Y(a)=1-IY(a) 1- max{IY((a*b*)*), IY(b)}= min{1-IY((a*b*)*), 1-IY(b)} 

= min {𝐈̅Y((a*b*)*), 𝐈̅Y(b)}. 

Hence, 𝐈̅Y is a Fuzzy d-Filter of X. Further,𝐅̅Y(e)=1-FY(e) 1-FY(a)= 𝐅̅Y(a) 

and  𝐅̅Y(a)=1-FY(a) 1- max{FY((a*b*)*), FY(b)}= min{1-FY((a*b*)*), 1-FY(b)} 

= min {𝐅̅Y((a*b*)*), 𝐅̅Y(b)}. 

Hence, 𝐅̅Y is a Fuzzy d-Filter of X. 

Conversely, let Y={(c,TY(c),IY(c),FY(c)): cX} be an Neutrosophic Set over a d-Algebra X 

such that TY={(c,TY(c)): cX}, 𝐈̅Y={(c, 1-IY(c)): cX} and 𝐅̅Y={(c, 1-FY(c)): cX} are F-d-

Filters of X. 

Now, for all a, bX, we havebTY(e)  TY(a); 

TY(a)  min {TY((a*b*)*), TY(b)};  𝐈̅Y(e)= 1-IY(e) 1-IY(a)= 𝐈̅Y(a) 𝐈̅Y(e)  𝐈̅Y(a); 

𝐈̅Y(a) = 1-IY(a)= 𝐈̅Y(a) min{𝐈̅Y((a*b*)*), 𝐈̅Y(b)}= min{1-IY((a*b*)*), 1-IY(b)} 

=1- max{IY((a*b*)*), IY(b)} 𝐈̅Y(a)  1- max{IY((a*b*)*), IY(b)}; 

𝐅̅Y(e) = 1-FY(e) 1-FY(a)= 𝐅̅Y(a)  𝐅̅Y(e)  𝐅̅Y(a); 

𝐅̅Y(a) = 1-FY(a)= 𝐅̅Y(a) min{𝐅̅Y((a*b*)*), 𝐅̅Y(b)}= min{1-FY((a*b*)*), 1-FY(b)} 

=1- max{FY((a*b*)*), FY(b)} 𝐅̅Y(a)  1- max{FY((a*b*)*), FY(b)}; 

Hence, Y={(c,TY(c),IY(c),FY(c)): cX} is an N-d-Filter of X. 

 

Theorem 3.5: Let f:X→Y be a homomorphism from a d-Algebra X to another d-Algebra Y. If 

N={(c, TN(c), IN(c), FN(c)): cY} is an N-d-Filter of Y, then, f-1(N) is also an N-d-Filter of X. 

 

Proof. Let f:X→Y be a homomorphism from a d-Algebra X to another d-Algebra Y. Suppose 

that N={(c, TN(c), IN(c), FN(c)): cY} be an N-d-Filter of Y. Now, for any aX, we have TN(𝐞́) 

 TN(𝐚́), IN(𝐞́)  IN(𝐚́), and FN(𝐞́)  FN(𝐚́). Let  𝐞́ = f(e) and 𝐚́ = f(a). 

We have, 

𝐓𝐟−𝟏(𝐍)(e) = TN(f(e))  TN(f(a)) = 𝐓𝐟−𝟏(𝐍)(a); 

𝐈𝐟−𝟏(𝐍)(e) = IN(f(e)) = IN(𝐞́)  IN(𝐚́) = IN(f(a)) = 𝐈𝐟−𝟏(𝐍)(a); 

and 𝐅𝐟−𝟏(𝐍)(e) = FN(f(e)) = FN(𝐞́)  FN(𝐚́) = FN(f(a)) = 𝐅𝐟−𝟏(𝐍)(a). 

Now,  

min{𝐓𝐟−𝟏(𝐍)((a*b*)*), 𝐓𝐟−𝟏(𝐍)(b)} = min {TN(f((a*b*)*), TN(f(b))} TN(f(a)) = 𝐓𝐟−𝟏(𝐍)(a); 

max{𝐈𝐟−𝟏(𝐍)((a*b*)*), 𝐈𝐟−𝟏(𝐍)(b)} = min {IN(f((a*b*)*), IN(f(b))}  IN(f(a)) = 𝐈𝐟−𝟏(𝐍)(a); 

and max{𝐅𝐟−𝟏(𝐍)((a*b*)*), 𝐅𝐟−𝟏(𝐍)(b)} = min {FN(f((a*b*)*), FN(f(b))} FN(f(a)) = 𝐅𝐟−𝟏(𝐍)(a). 

 

Theorem 3.6: Let f:X→Y be an epimorphism from a d-Algebra X to another d-Algebra Y. Let 

N={(c, TN(c), IN(c), FN(c)): cY} be an Neutrosophic Set over Y. If f-1(N) ={(c, 𝐓𝐟−𝟏(𝐍)(c), 

𝐈𝐟−𝟏(𝐍)(c), 𝐅𝐟−𝟏(𝐍)(c)): cX} is an N-d-Filter of X, then N={(c, TN(c), IN(c), FN(c)): cY} is an 

N-d-Filter of Y. 

 

Proof. For any a, bY such that f(c) = a, f(d) = b and f(𝐞́) = e such that 𝐞́ and e are the bounded 

element in X and Y respectively. 

Now, we have 

TN(e) = TN(f(𝐞́)) = 𝐓𝐟−𝟏(𝐍)(𝐞́)  𝐓𝐟−𝟏(𝐍)(c) = TN(f(c))  = TN(a); 

IN(e) = IN(f(𝐞́)) = 𝐈𝐟−𝟏(𝐍)(𝐞́)  𝐈𝐟−𝟏(𝐍)(c) = IN(f(c)) = IN(a); 
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and FN(e) = FN(f(𝐞́)) = 𝐅𝐟−𝟏(𝐍)(𝐞́)  𝐅𝐟−𝟏(𝐍)(c) = FN(f(c)) = FN(a). 

Now,  TN(a)= TN(f(c))= 𝐓𝐟−𝟏(𝐍)(c) min {𝐓𝐟−𝟏(𝐍)((c*d*)*), 𝐓𝐟−𝟏(𝐍)(d)}= min {TN(f(c*d*)*), 

TN(d)}= min {TN(f(a*b*)*), TN(b)}; 

IN(a)= IN(f(c))= 𝐈𝐟−𝟏(𝐍)(c) max {𝐈𝐟−𝟏(𝐍)((c*d*)*), 𝐈𝐟−𝟏(𝐍)(d)}= max {IN(f(c*d*)*), IN(f(d))} 

= max {IN( (a*b*)*), IN(b)} and FN(a)= FN(f(c))= 𝐅𝐟−𝟏(𝐍) (c) max { 𝐅𝐟−𝟏(𝐍) ((c*d*)*), 

𝐅𝐟−𝟏(𝐍)(d)}= max {FN(f(c*d*)*), FN(f(d))}= max {FN((a*b*)*), FN(b)}. 

Therefore, f-1(N) is an N-d-Filter of X. 

 

Definition 3.2: An N-d-Filter Y={(c,TY(c),IY(c),FY(c)): cX} of a d-Algebra X is called an 

Neutrosophic Prime d-Filter (N-P-d-Filter) of X if the following conditions hold: 

(i) TY(a  b)  max{TY(a), TY(b)}, for all a, bX; 

(ii) IY(a  b)  min{IY(a), IY(b)}, for all a, bX; 

(ii) FY(a  b)  min{FY(a), FY(b)}, for all a, bX. 

 

Theorem 3.7: Let {Ni, i} be the family of N-P-d-Filters of X. Then, Ni={(c, TNi
(a), 

INi
(c), FNi

(c)): cX} is also an N-P-d-Filter of X. 

 

Proof. Assume that {Ni: iI} be a collection of N-P-d-Filters of X. By a known theorem, we 

have Ni is an N-d-Filter of X. It is known that, TNi
(ab)  max{TNi

(a), TNi
(b)}, INi

(ab)  

min{ INi
(a), INi

(b)} and FNi
(ab)  min{ FNi

(a), FNi
(b)},  a, bX (i). 

Now, 

iITNi
(ab)  iI{max{TNi

(a), TNi
(b)}} {max{iI αFi

(a), iI αFi
(b)}}; 

iIFNi
(ab)  iI{min{FNi

(a), FNi
(b)}} {min{iI FNi

(a), iI FNi
(b)}}, 

and iIFNi
(ab)  iI {min{ FNi

(a), FNi
(b)}} {min{ iI FNi

(a), iI FNi
(b)}}, 

Therefore, the intersection Ni ={(a, TNi
(a), INi

(a), FNi
(a)): aX} is an N-P-d-Filter. 

 

Theorem 3.8: An Neutrosophic Set Y={(c,TY(c),IY(c),FY(c)): cX} is an N-P-d-Filter of X if 

and only if TY={(c, TY(c)): cX}, IY̅={(c, 1-IY(c)): cX} and F̅Y={(c, 1-FY(c)): cX} are F-P-

d-Filters of X. 

 

Proof. Suppose that Y={(c,TY(c),IY(c),FY(c)): cX} be an N-P-d-Filter of X. Therefore, 

Y={(c,TY(c),IY(c),FY(c)): cX} is an N-d-Filter of X. Since Y={(c,TY(c),IY(c),FY(c)): cX} is 

an N-d-Filter, so TY={(c, TY(c)): cX}, IY̅={(c, 1-IY(c)): cX}, and F̅Y={(c, 1-FY(c)): cX} 

are Fuzzy d-Filter of X. 

Now, we have 

TY(a  b)  max{TY (a), TY(b)}, for all a, bX. 

IY(a  b)  min{IY(a), IY(b)}, for all a, bX. 

and FY(a  b)  min{FY(a), FY(b)}, for all a, bX. 

Now,IY̅(a  b) = 1-IY(a  b) 1 - min{IY(a), IY(b)}= max{1 - IY(a), 1 - IY(b)} 

= max{IY̅(a), IY̅(b)}, for all a, bX; 

and F̅Y(a  b) = 1-FY(a  b) 1 - min{FY(a), FY(b)}= max{1 - FY(a), 1 - FY(b)} 

= max{F̅Y(a), F̅Y(b)}, for all a, bX. 

Therefore, TY={(c, TY(c)): cX}, IY̅={(c, 1-IY(c)): cX}, and F̅Y={(c, 1-FY(c)): cX} are F-

P-d-Filters of X. 

Theorem 3.9:  
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     If an Neutrosophic Set Y={(c,TY(c),IY(c),FY(c)): cX} is an N-P-d-Filter of X, then the sets 

U(TY, p)={c: TY(c)p}, L(IY, q) ={c: IY(c)q}, and L(FY, q)={c: FY(c)q} are Prime d-Filters 

of X, for all p, q[0, 1]. 

 

Proof. Suppose that Y={(c,TY(c),IY(c),FY(c)): cX} be an N-P-d-Filter of a d-Algebra X. 

Therefore, Y is an N-d-Filter. Let us consider three sets U(TY, p)={c: TY(c)p}, L(IY, p) ={c: 

IY(c)p}, and L(FY, p)={c: FY(c)p}, for any p, q[0, 1]. 

By Theorem 3.8, U(TY, p) is d-Filter. 

Let a, bX such that abU(TY, p). Therefore, TY(ab)  p. 

It is known that, TY(ab)  max{TY(a), TY(b)} max{TY(a), TY(b)}  TY(ab)  p 

 TY(a)   p or TY(b)  p   aU(TY, p) or bU(TY, p) 

Hence, the set U(TY, p)={c: TY(c)p} is a Prime d-Filter of X for any p[0, 1]. 

Similarly, it can be shown that the sets L(IY, p) ={c: IY(c)p} and L(FY, p)={c: FY(c)p} are 

the Prime d-Filters of X for any p[0, 1]. 

 

Definition 3.3: Let f:X→Y be a one to one and onto mapping. If D={(a, TD(a), ID(a), FD(a)): 

aY} be an Neutrosophic Set over Y, then f-1(D) is the Neutrosophic Set over X defined by: 

f-1(D)={(a, f −1(TD(a)), f −1(ID(a)), f −1(FD(a))): aX} 

Further, if D={(a, TD(a), ID(a), FD(a)): aX} be an Neutrosophic Set over X, then f(D) is an 

Neutrosophic Set over Y defined by 

f(D)={(a, fsup(TD(a)), finf(ID(a)), finf(FD(a))):aY}, 

where                fsup(TD(a)) = {
supb∈f−1(a)TD(b) if f −1(a) ≠ ∅

0                                    otherwise  
,  for each aY, 

finf(ID(a)) = {
infb∈f−1(a)ID(b) if f −1(a) ≠ ∅

0                                    otherwise  
, for each aY, 

and                      finf(FD(a)) = {
infb∈f−1(a)FD(b) if f −1(a) ≠ ∅

0                                    otherwise  
,  for each aY. 

 

Theorem 3.10: Let f : X→Y be an epimorphism from a d-Algebra X to another d-Algebra Y. 

Assume that N={(c, TN(c), IN(c), FN(c)): cY} be an Neutrosophic Set over a d-Algebra Y. If 

f-1(N) = {(c, Tf−1(N)(c), If−1(N)(c), Ff−1(N)(c)): cX} is an N-P-d-Filter of X, then N={(c, TN(c), 

IN(c), FN(c)): cY} is also an N-P-d-Filter of Y. 

 

Proof. Since f-1(N) = {(c, Tf−1(N)(c), If−1(N)(c), Ff−1(N)(c)): cX} is an N-P-d-Filter of X, so f-

1(N) is a N-d-Filter of X. By Theorem 3.6, N={(c, TN(c), IN(c), FN(c)): cY} is a N-d-Filter of 

Y. Now, let a, bX. Then, f(c) = a, f(d) = b, for some c, dX. 

Now, TN(a  b) = TN(f(c)  f(d))= TN(f(c  d))= Tf−1(N)(c  d) max{Tf−1(N) (c), Tf−1(N) (d)} 

= max{TN(f(c)), TN(f(d))}= {TN(a), TN(b)}. 

IN(a  b) = IN(f(c)  f(d))= IN(f(c  d))= If−1(F)(cd) min{If−1(N) (c), If−1(N) (d)} 

= min{IN(f(c)), IN(f(d))}= {IN(a), IN(b)}. 

and FN(a  b) = FN(f(c)  f(d)) 

= FN(f(c  d))= Ff−1(F)(cd) min{Ff−1(N) (c), Ff−1(N) (d)}= min{FN(f(c)), FN(f(d))} 

= {FN(a), FN(b)}. Hence, N={(c, TN(c), IN(c), FN(c)): cY} is an N-P-d-Filter of X. 

5. Conclusions 

    In this article, we have grounded the notion of Neutrosophic d-Filter and Neutrosophic Prime 

d-Filter of d-Algebra. Besides, we have also established a few interesting results on them via 

d-Algebra.  Further, it is hoped that the concept of Neutrosophic d-Filter and Neutrosophic 
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Prime d-Filter of d-Algebra can also be used in the area of Bipolar Neutrosophic Set [27], 

Quadripartitioned Neutrosophic Set [23], Bipolar Quadripartitioned Neutrosophic Set [21], 

Pentapartitioned Neutrosophic Set [19], Bipolar Pentapartitioned Neutrosophic Set [24], etc. 
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