Iraqi Journal of Science, 2018, Vol. 59, No.3B, pp: 1347-1365 DOI:10.24996/ijs.2018.59.3B.2





## Synthesis, Identification, Theoretical and Experimental Studies of Carbon Steel Corrosion Inhibition in Sea Water by Some New Diazine Derivatives linked to 5-Nitro Isatin Moiety

Athraa H. Ahmed<sup>\*</sup>, Rehab M. Kubba, Suaad M. H. Al-Majidi

Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq

#### Abstract

This research includes synthesis of new 5-Nitro isatin derivatives starting from 5-nitro-3-(imino acetohydrazide)-2-oxo indole (1) namely 5-nitro-3-[iminoaceto(tetra hydropyridazin-3,6-dione)-2-yl]-2-oxo indole (2); 5-nitro-3-[iminoaceto(hexahydrodiazepine-3,7-dione)-2-yl]-2-oxo indole (3); 5-nitro-3-[iminoaceto (1,2-dihydro pyridiazin-3,6-dione)-2-yl]-2-oxo indole (4); 5-nitro-3-[iminoaceto (8-nitro- 1,2-dihydrophtalazin-3,10-dione)-2-yl]-2-oxo indole (5) and 5-nitro-3-[iminoaceto (1,2-dihydrophtalazin-3,10-dione)-2-yl]-2-oxo indole (6). The derivatives were characterized using FTIR, <sup>1</sup>HNMR, <sup>13</sup>CNMR and C.H.N.S analysis with the measurement of some physical properties.

Quantum mechanical method of the Density Functional Theory (DFT) of B3LYP with a level of 6-311++G (2d, 2p) were used to calculate the geometrical structure, physical properties and inhibition efficiency parameters, were at the equilibrium geometry in four media (vacuum, DMSO, EtOH and H<sub>2</sub>O). The theoretical results showed that compound (3) was the best corrosion inhibitor among the others. Finally, the corrosion inhibition, kinetics, and thermodynamics studies of the prepared compound (3) for carbon-steel in sea water had been conducted using the potentiodynamic polarization procedure, while the surface changes of the carbon steel were studied using SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) techniques.

**Keywords:** 5-Nitro isatin, Diazine derivatives, Corrosion inhibitors, Quantum chemical calculations, Electrochemical measurements.

# عذراء حكمت أحمد ، رحاب ماجد كبة، سعاد محمد حسين الماجدي

كلية العلوم، قسم الكيمياء، جامعة بغداد، بغداد، العراق

الخلاصة

يتضمن البحث تحضير مشتقات جديدة من 5- نايترو ايساتين بدأ من 5- نايترو -3- (امينو اسيتو هايدرازيد)-2-اوكسو اندول (1) وهي 5- نايترو -3- [امينو اسيتو (تيترا هيدروبايردازين-3،6- دايون)-2-يل]-2-اوكسو ادول (2) ;5- نايترو -3- [امينو اسيتو (هكسا هيدروبايردازين-3،7- دايون)-2- يل]-2-اوكسو ادول (3) ;5- نايترو -3- [امينو اسيتو (8- داي هيدروبايردازين-6,3- دايون)-2- يل]-2-اوكسو ادول (4) ;5- نايترو -3- [امينو اسيتو (8- نايترو -1,2- داي هيدروبايردازين-6,3- دايون)-2- يل]-2-يل]-2- اوكسو ادول (5) ;5- نايترو -3- [امينو اسيتو (8- نايترو -1,2- داي هيدروبايردازين-10,3- دايون)-2- يل]-2-

<sup>\*</sup>Email: hekmat@yahoo.com

#### Introduction

Isatin is the reference compound of an important class of nitrogen-containing aromatic heterocyclic compounds, which have been found in many plants and tissue [1]. The pyridazine represents new pharmacologically active compounds. Diazines and their derivatives have become an important in chemistry. Diazines contain two azomethine nitrogen atoms. There are three types of diazines. The three diazines, pyridazine, pyrimidine and pyrazine are stable, colorless compounds, which are soluble in water [2].

Quantum chemical calculations had been used to study the reaction mechanism and to solve chemical ambiguities. This is a useful approach to investigate the reaction mechanism of the inhibitor molecule and the metal surface. The structural and electronic parameters of the inhibitor molecule can be obtained by theoretical calculations using the computational methodologies of quantum chemistry [3].

Corrosion inhibitors are chemicals that react with a metallic surface or the environments the metal surface is exposed to and act to protect the metal against corrosion [4]. Most organic compounds having hetero atoms (N, O, S) in their aromatic structure have been successfully used as corrosion inhibitors [5]. The heterogeneous organic compounds having higher basicity and electron density on the hetero atoms usually have tendency to resist corrosion.

The aim of the present work was to prepare new 5-nitro isatin derivatives, then studying theoretically their corrosion inhibition ability in four media (vacuum, DMSO, EtOH and water) for choosing the best corrosion inhibitor of them. This was done depending on parameters of quantum mechanical inhibition efficiency using DFT [6-311/B3LYP++G (2d, 2p)] method. For proving that, the best corrosion inhibitor, expected theoretically (compound (3)) was studied experimentally as a corrosion inhibitor of carbon steel in sea water by the potentiodynamic polarization, SEM and AFM measurements technique.

#### **Experimental part**

Synthesis of 5-nitro-3-[iminoaceto(tetra hydropyridazin-3,6-dione)-2-yl]-2-oxo indole (2), 5-nitro-3-[imino aceto(hexahydrodiazepine-3,7-dione)-2-yl]-2-oxo indole (3), 5-nitro-3-[iminoaceto (1,2-dihydro pyridiazin-3,6-dione)-2-yl]-2-oxo indole (4), 5-nitro-3-[iminoaceto (8-nitro-1,2-dihydrophtalazin-3,10-dione)-2-yl]-2-oxo indole (5) and 5-nitro-3-[iminoaceto (1,2-dihydrophtalazin-3,10-dione)-2-yl]-2-oxo indole (6) [6].

To the mixture of hydrazid derivative (1) [7], (0.5 g, 0.0017 mol) with succinic anhydride, glutaric anhydride, maleic anhydride, 3-nitrophthalic anhydride or phthalic anhydride respectively (0.0017 mol) in 10 ml of glacial acetic acid, refluxed the mixture for (14) hours, then cooling by adding it on ice water. The obtained precipitate was filtered and recrystallized from ethanol solvent. The physical properties of compounds (2-6) are listed in Table-1.

## **Preparation of solutions**

#### **Blank solution**

35 g of NaCl was dissolved in distilled water, then transferred to 1L volumetric flask, and 2 ml of DMSO was added, then the volume completed to 1 L with distal water.

#### 5-Nitro-3-[imino aceto (hexahydrodiazepine-3,7-dione)-2-yl]-2-oxo indole (3) solutions

Three concentrations of (5, 10 and 20) ppm were prepared by dissolving (0.005, 0.01 and 0.02) g, of compound (3) respectively, in 2ml DMSO, transferred to a volumetric flask of 1L. Then 35g of NaCl

was added to each concentration after dissolving in distilled water before completing the volume to 1L.

## **Electrochemical measurements**

## Potentiostatic polarization study

The potentiostat set up includes Host computer, thermostat, magnetic stirrer, Mat lab (Germany, 2000), potentiostat, and galvanostat. The corrosion cell is (1 L) capacity made of Pyrex consist of two bowls internal and external. The electrochemical corrosion cell is a three electrodes cell containing a working electrode carbon steel with  $1 \text{ cm}^2$  surface area used to determine the potential of working electrode according to the reference electrode, a platinum auxiliary electrode with length (10cm) and a silver-silver chloride (Ag/AgCl, 3.0M KCl) reference electrode. The working electrode was immersed in the test solution for 30 min. to establish state open circuit potential ( $E_{ocp}$ ), then electrochemical measurements were performed in potential range of (±200) mV. All tests were carried out at temperature of (298-318) K by controlling the cell temperature using a cooling heating circulating water bath.

#### **Results and discussion**

#### Synthesis of 5-Nitro isatin derivatives

Diazine compounds (2-6) were synthesized from the reaction of hydrazide derivative (1) with (succinic anhydride, glutaric anhydride, maleic anhydride, 4-nitrophthalic anhydride, and phthalic anhydride) respectively; in the presence of glacial acetic acid as a catalyst and as a solvent, Scheme 1.



**Scheme 1** The mechanism for the synthesized derivatives is shown in Scheme 2 [7, 8].



Scheme 2

The FTIR spectra of compounds (2-6) show disappearance of two bands of  $(-NH_2)$  group of hydrazide derivative (1), and the appearance of a band due to (-NH) group at the range (3224-3245) cm<sup>-1</sup>. Two carbonyl groups of compounds (2-6) appeared at (1721-1701) cm<sup>-1</sup> for cyclic carbonyl and at (1699-1688) cm<sup>-1</sup> for the amide carbonyl group, Table-2.

The <sup>1</sup>H-NMR spectrum for compound (3) was showed signal at  $\delta$ =(3.72) ppm for (-C<u>H</u><sub>2</sub>-) protons, signal at  $\delta$ = (4.23) ppm due to (O=C-C<u>H</u><sub>2</sub>) protons, singlet signal at  $\delta$ = (4.99) ppm due to (=N-C<u>H</u><sub>2</sub>-) protons, multiple signal at  $\delta$ = (7.04-8.27) ppm due to aromatic rings protons, singlet signal at  $\delta$ = (8.29) ppm due to (N-N-<u>H</u>) proton and singlet signal at  $\delta$ = (10.21) ppm due to (N-<u>H</u> indole ring) proton, Table-3.

The <sup>1</sup>H-NMR spectrum for compound (4) shown, singlet signal at  $\delta = (3.62)$  ppm due to (=N-C<u>H</u><sub>2</sub>-) protons, triplet signal at  $\delta = (6.21)$  ppm due to (-C<u>H</u><sub>2</sub>=C<u>H</u><sub>2</sub>-) protons, multiple signal at  $\delta = (7.01-8.23)$  ppm due to aromatic rings protons, singlet signal at  $\delta = (8.81)$  ppm due to (N-N-<u>H</u>) proton and singlet signal at  $\delta = (10.19)$  ppm due to (N-<u>H</u> indole ring) proton, Table-3. The <sup>13</sup>CNMR spectral data of compounds (**3 and 4**) are listed in Table-4. The C.H.N.S analysis for compound (**3**) is listed in Table-5.

| Com<br>No. | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Molecular<br>formula                                          | M.W<br>g/mol | M.P<br>°C   | Yield<br>% | Color          | Solvent<br>of<br>Recryst. |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------|-------------|------------|----------------|---------------------------|
| 2          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>14</sub> H <sub>11</sub> N <sub>5</sub> O <sub>6</sub> | 345.27       | 183-<br>185 | 80         | Brown          | Acetone                   |
| 3          | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>15</sub> H <sub>13</sub> N <sub>5</sub> O <sub>6</sub> | 359.29       | 168-<br>169 | 70         | Brown          | Chloro<br>form            |
| 4          | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_{14}H_9N_5O_6$                                             | 343.25       | 183-<br>184 | 73         | Brown          | Dichloro<br>-methan       |
| 5          | $NO_{2} O O O O O O O O O O O O O O O O O O O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{18}H_{10}N_6O_8$                                          | 438.31       | 237-<br>239 | 88         | Pale<br>orange | Chloro<br>form            |
| 6          | $O_{2}N$ $O$ | C <sub>18</sub> H <sub>11</sub> N <sub>5</sub> O <sub>6</sub> | 393.31       | 237-<br>239 | 65         | Pale<br>orange | Chloro<br>form            |

**Table 1-**Physical properties of compounds (2-6)

**Table 2-** FTIR spectral data  $(v, cm^{-1})$  of compounds (2-6)

| Com   |                                                                                                   | FTIR spectral data cm <sup>-1</sup> |                 |                  |                 |        |                                                      |  |  |  |
|-------|---------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|------------------|-----------------|--------|------------------------------------------------------|--|--|--|
| . No. | Structure                                                                                         | ν(N-H)                              | v(C-H)<br>arom. | v(C-H)<br>aliph. | v(C=O)<br>Amide | v(C=N) | Others                                               |  |  |  |
| 2     | $ \begin{array}{c}                                     $                                          | 3226                                | 3076            | 2921<br>2852     | 1710<br>1688    | 1623   | v(NO <sub>2</sub> )<br>Asym.<br>1519<br>Sym.<br>1338 |  |  |  |
| 3     | $NO_{2} \qquad O \qquad $ | 3245                                | 3088            | 2921<br>2852     | 1711<br>1692    | 1622   | v(NO <sub>2</sub> )<br>Asym.<br>1521<br>Sym.<br>1338 |  |  |  |

| 4 | $\begin{array}{c c} NO_2 & O & O \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3226 | 3082 | 2921<br>2852 | 1701<br>1688 | 1623 | v(NO <sub>2</sub> )<br>Asym.<br>1519<br>Sym.<br>1340<br>(=CH <sub>2</sub> )<br>1598 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--------------|--------------|------|-------------------------------------------------------------------------------------|
| 5 | $\begin{array}{c} \overset{NO_2}{} & \overset{O}{\underset{H}{}} & \overset{O}{\underset{H}{}} \\ \overset{N}{\underset{H}{}} & \overset{C}{\underset{H}{}} & \overset{N}{\underset{H}{}} \\ \overset{H}{\underset{H}{}} & \overset{O}{\underset{H}{}} & \overset{O}{\underset{H}{}} \\ \overset{N}{\underset{H}{}} & \overset{O}{\underset{H}{}} & \overset{O}{\underset{H}{}} \\ \overset{N}{\underset{H}{}} & \overset{O}{\underset{H}{}} \\ \overset{N}{\underset{H}{}} & \overset{O}{\underset{H}{}} \\ \overset{N}{\underset{H}{}} & \overset{O}{\underset{H}{}} \\ \overset{N}{\underset{H}{}} \\ \overset{N}{\underset{H}{} } \\ \overset{N}{\underset{H}{}} \\ \overset{N}{\underset{H}{} \\ \overset{N}{\underset{H}{}} \\ \overset{N}{\underset{H}{}} \\ \overset{N}{\underset{H}{}} \\ \overset{N}{\underset{H}{} } \\ \overset{N}{\underset{H}{} \\ \overset{N}{\underset{H}{}} \\ \overset{N}{\underset{H}{}} \\ \overset{N}{\underset{H}{} } \\ \overset{N}{\underset{H}{} \\ \overset{N}{\underset{H}{}} \\ \overset{N}{\underset{H}{}} \\ \overset{N}{\underset{H}{} } \\ \overset{N}{\underset{H}{} \\ \overset{N}{\underset{H}{}} \\ \overset{N}{\underset{H}{} } \underset{\overset{N}{} } \\ \overset{N}{\underset{H}{} } \underset{N}{} } \\ \overset{N}{\underset{H}{} } \\ \overset{N}{\underset{H}{} } \\ \overset{N}{\underset{H}{} } \\ \overset$ | 3226 | 3075 | 2921<br>2850 | 1713<br>1699 | 1622 | v(NO <sub>2</sub> )<br>Asym.<br>1542<br>Sym.<br>1336                                |
| 6 | $\begin{array}{c} O_2 N & O & O \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3224 | 3082 | 2923<br>2850 | 1721<br>1699 | 1625 | v(NO <sub>2</sub> )<br>Asym.<br>1519<br>Sym.<br>1340                                |

**Table 3-** <sup>1</sup>H-NMR spectral data ( $\delta$ , ppm) for compounds (3 and 4)

| Com.<br>No. | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>1</sup> HNMR Spectral data (δ, ppm)                                                                                                                                                                                                     |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3           | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$                                                                                                                                                                                                                                                                                              | 3.72 (m, 2H, $-C\underline{H}_{2}$ -); 4.23 (t, 4H, O=C- $C\underline{H}_{2}$ -);<br>4.99 (s, 2H, =N- $C\underline{H}_{2}$ -); 7.04-8.27 (m, 3H, Ar-<br><u>H</u> ); 8.29 (s, 1H, N-N- <u>H</u> ); 10.21 (s, 1H, N- <u>H</u><br>indole ring). |
| 4           | $\begin{array}{c c} & & & O & O \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$ | 3.62 (s, 2H, =N-C <u>H<sub>2</sub></u> -); 6.21 (t, 4H, -<br>C <u>H<sub>2</sub></u> =C <u>H<sub>2</sub></u> ); 7.01-8.23 (m, 3H, Ar- <u>H</u> ); 8.81 (s,1H, N-N- <u>H</u> ); 10.19 (s, 1H, N- <u>H</u> indole ring).                        |

| Table 4-13C-NMR | spectral data | $(\delta, ppm)$ for | compounds (3 | and 4) |
|-----------------|---------------|---------------------|--------------|--------|
|-----------------|---------------|---------------------|--------------|--------|

| Com.<br>No. | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>13</sup> CNMR Spectral data (δ, ppm)                                                                     |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 3           | $\begin{array}{c ccccc} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$                                   | 20 (C13); 36 (C12); 73 (C9); 111-138 (C2, 3,<br>4, 5, 6, 7); 146 (C8); 162 (C1); 165 (C10);<br>168 (C11, 14). |
| 4           | $\begin{array}{c} & & & & & & \\ & & & & & \\ 0_2N & 5 & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $ | 76 (C9); 111-123 (C2, 3, 4, 5, 6, 7); 136<br>(C12) 143 (C8); 160 (C1); 163 (C10); 170<br>(C11, 13).           |

| Com. | Molecular            |       | C <mark>alcul</mark> a | ted, (%) |   | <b>Found</b> , (%) |      |       |   |
|------|----------------------|-------|------------------------|----------|---|--------------------|------|-------|---|
| No.  | o. Formula           |       | Η                      | Ν        | S | С                  | Н    | Ν     | S |
| 3    | $C_{16}H_{14}N_4O_6$ | 53.63 | 3.94                   | 15.64    |   | 53.50              | 3.90 | 15.55 |   |

Table 5-The C.H.N.S analysis for compound (3)

## Quantum chemical calculations

The structural nature of the organic inhibitors and their inhibition mechanism were described by density functional theory (DFT). The inhibition efficiencies of compounds (2-6) were investigated by the theoretical corrosion inhibition parameters such as energy of the highest occupied molecular orbital ( $E_{HOMO}$ ) and energy of the lowest unoccupied molecular orbital ( $E_{LUMO}$ ), energy gap ( $\Delta E$ ) between  $E_{HOMO}$  and  $E_{LUMO}$ , dipole moment ( $\mu$ ), electronegativity ( $\chi$ ), electron affinity (A), global hardness ( $\eta$ ), softness ( $\sigma$ ), ionization energy (IE), global electrophilicity ( $\omega$ ), the fraction of electrons transferred ( $\Delta N$ ) and the total energy ( $E_{tot}$ ) [9].

#### Molecular geometry

The compounds were built using Chem Draw of Mopac program. Gaussian 09 package was used for calculating the equilibrium geometry [10]. The corresponding geometry in the vacuum phase was fully optimized using DFT (Density Functional Theory) which was carried out using basis set of (B3LYP) with a 6-311++G (2d, 2p) level of theory [11,12]. Also the equilibrium geometry was calculated in three solvent media (EtOH, DMSO and H<sub>2</sub>O). Figure-1 shows the numbering of atoms of compound (**3**).



Figure 1-The numbering of atoms for compound (3).

The computational structural parameters such as bond angles, bond distances and dihedral angles were studied. The longest bond length was observed for C22-C23 ( $1.539A^\circ$ ). The shortest bond length was observed for N19-H ( $1.017A^\circ$ ). The bond angles were getting between ( $105.242A^\circ$ ) for H2C15C16 and ( $131.308A^\circ$ ) for C3C8C4. The values of the dihedral angles (trans & cis) were proved that the compound was not planar [the cis dihedral angles are not of 0.0 degree and all of the trans dihedral angles are more or less than 180.0 degree], Table-6.

**Table 6-**Geometrical structure for compound (3) in the media of (vacuum, EtOH, DMSO, and  $H_2O$ ) as calculated by using DFT method

| Description<br>Bond length | Bond<br>length (Å) | Description<br>angle (deg) | Angle<br>(deg) | Description Dihedral<br>angle( deg) | Dihedral<br>angle<br>(deg) |
|----------------------------|--------------------|----------------------------|----------------|-------------------------------------|----------------------------|
| C3-C8                      | 1.466              | C4C5N10                    | 118.979        | N1C2C3C8                            | -3.681                     |
| C3-N14                     | 1.265              | C6C5N10                    | 118.743        | N1C2C3N14                           | 177.481                    |

| C4-C5   | 1.390 | C5C6C7    | 120.292 | HN1C2O13     | -19.347  |
|---------|-------|-----------|---------|--------------|----------|
| C4-C8   | 1.380 | C6C7C9    | 117.731 | C2C3C8C4     | -178.594 |
| C5-C6   | 1.391 | C3C8C9    | 107.856 | C2C3C8C9     | 0.703    |
| C5-N10  | 1.472 | C3C8C4    | 131.308 | C3C8C9C7     | -179.265 |
| C6-C7   | 1.391 | C7C9N1    | 128.583 | C3C8C9N1     | 2.586    |
| С7-С9   | 1.385 | C8C9N1    | 109.823 | C8C4C5C6     | -0.047   |
| C8-C9   | 1.402 | C5N10O11  | 117.839 | C8C4C5N10    | -179.946 |
| N10-O11 | 1.224 | C5N10O12  | 117.987 | C4C5C6C7     | 0.401    |
| N10-O12 | 1.226 | C3N14C15  | 121.621 | N10C5C6C7    | -179.698 |
| N14-C15 | 1.452 | N14C15C16 | 109.216 | C2C3N14C15   | -0.258   |
| С15-Н2  | 1.091 | N14C15H2  | 108.191 | C3N14C15C16  | 158.824  |
| C15-C16 | 1.523 | H2C15C16  | 105.242 | N14C15C16O17 | 71.532   |
| C16=O17 | 1.209 | C15C16O17 | 123.108 | N14C15C16N18 | -112.403 |
| C16-N18 | 1.392 | O17C16N18 | 120.826 | C15C16N18N19 | 176.239  |
| N17-N19 | 1.419 | C16N18N19 | 113.851 | C16N17N19C20 | 121.777  |
| N19-H   | 1.017 | N18N19H   | 109.229 | O17C16N18N19 | -7.599   |
| N19-C20 | 1.395 | N18N19C20 | 120.346 | C16N18N19H   | -11.503  |
| C20=O21 | 1.209 | N19C20O21 | 120.017 | N18N19C20O21 | 153.537  |
| C20-C22 | 1.510 | N19C20C22 | 115.697 | N18N19C20C22 | 32.185   |
| C22-C23 | 1.539 | C20C22C23 | 114.022 | N19C20C22C23 | 44.730   |
| C23-C24 | 1.538 | C22C23C24 | 115.057 | C20C22C23C24 | -81.674  |
| C24-C25 | 1.505 | C23C24C25 | 115.780 | C22C23C24C25 | 63.548   |
| C25=O26 | 1.197 | C24C25O26 | 124.880 | C23C24C25O26 | 132.794  |

#### **Global molecular reactivity:**

Frontier orbital theory is use in predicting adsorption centers of the inhibitor responsible of the reaction metal surface/ molecule [13]. The calculated quantum chemical parameters related to the inhibition efficiency of the studied molecule are collected in Tables- (7a, 7b). They are calculated according to the following equations:

| IP (Ionization potential) = $-E_{HOMO}$ | (1) |
|-----------------------------------------|-----|
| EA (Electron affinity) = $-E_{LUMO}$    | (2) |
| H (Hardness) = (IE - EA)/ $2$           | (3) |
| X (Electro negativity) = $(IE + EA)/2$  | (4) |

The Global softness (S) is the inverse of the global hardness.

S (global softness) =  $1/\eta$ 

The Global electrophilicity index ( $\omega$ ) introduced by Parr [14], using for calculating the electronegativity and chemical hardness parameters, Equation 6:

Global electro philicity index  $(\omega) = (-\chi)^2 / 2\eta = \mu 2 / 2\eta$  (6) The fraction of electrons transferred ( $\Delta N$ ) from an inhibitor to carbon steel surface was also calculated using theoretical  $\chi_{Fe}$  and  $\eta_{Fe}$  values for mild steel of 7.0 eV mol<sup>-1</sup> and 0.0 eV mol<sup>-1</sup>, respectively. The number of transferred electrons ( $\Delta N$ ) was also calculated [15] by using the Equation (7).

 $\Delta N \text{ (Electron transferred)} = (\chi_{Fe} - \chi_{\text{ inhib.}}) / [2 (\eta_{Fe} + \eta_{\text{ inhib.}})]$ (7)

(5)

The calculated quantum chemical parameters in the vaccum, EtOH, DMSO and  $H_2O$  had shown a good effect for increasing the efficiency inhibition for compound (3), Tables-(7a, 7b).

Figure-2 showed the geometry optimization of compound (3) in the vacuum including HOMO and LUMO density distributions. The HOMO mainly located on the diazine moiety, this would indicate that the preferred actives sites for an electrophilic attack are located within the region around the nitrogen atoms. Moreover, the electronic density of LUMO was distributed at the aromatic ring and around the ring of isatin moiety (which is the most planar region in the molecule), Figure-2.



**Figure 2-**A) The Frontier Molecular Orbital density distributions of the studying 5-Nitro isatin derivative using. B- The most planar region in the molecule. [Red color: negatively charged lobe; blue color: positive charge lobe].

| Table   | 7a-DFT   | calculations | for | some | physical | properties | of | the | inhibitor | molecules | (2-6) | at | the |
|---------|----------|--------------|-----|------|----------|------------|----|-----|-----------|-----------|-------|----|-----|
| equilib | rium geo | metry        |     |      |          |            |    |     |           |           |       |    |     |

| Inhib.<br>media  | <b>P. G.</b> | M. formula               | E <sub>HOMO</sub><br>(eV) | E <sub>LUMO</sub><br>(eV) | $\frac{\Delta E_{HOMO}}{LUMO} (eV)$ | μ<br>(Debye) | E <sub>total</sub> (eV) |  |  |
|------------------|--------------|--------------------------|---------------------------|---------------------------|-------------------------------------|--------------|-------------------------|--|--|
|                  | (2)          |                          |                           |                           |                                     |              |                         |  |  |
| Vacuum           | C1           |                          | -7.177                    | -3.344                    | 3.832                               | 7.642        | -34435.6                |  |  |
| EtOH             | C1           |                          | -7.093                    | -3.184                    | 3.909                               | 10.311       | -34436.5                |  |  |
| DMSO             | C1           | $C_{14}\Pi_{11}\Pi_5O_6$ | -7.088                    | -3.181                    | 3.907                               | 10.420       | -34436.5                |  |  |
| H <sub>2</sub> O | C1           |                          | -7.086                    | -3.180                    | 3.905                               | 10.472       | -34436.5                |  |  |
|                  | (3)          |                          |                           |                           |                                     |              |                         |  |  |
| Vacuum           | C1           |                          | -7.144                    | -3.302                    | 3.841                               | 9.735        | -35506.0                |  |  |
| EtOH             | C1           |                          | -7.102                    | -3.112                    | 3.989                               | 13.183       | -35506.8                |  |  |
| DMSO             | C1           | $C_{15}\Pi_{13}\Pi_5O_6$ | -7.095                    | -3.110                    | 3.985                               | 13.324       | -35506.8                |  |  |
| H <sub>2</sub> O | C1           |                          | -7.092                    | -3.109                    | 3.983                               | 13.390       | -35506.8                |  |  |
|                  |              |                          | (4                        | )                         |                                     |              |                         |  |  |
| Vacuum           | C1           |                          | -7.378                    | -3.578                    | 3.800                               | 7.145        | -34402.7                |  |  |
| EtOH             | C1           | CHNO                     | -7.154                    | -3.404                    | 3.750                               | 9.624        | -34402.7                |  |  |
| DMSO             | C1           | $C_{141191N5}O_6$        | -7.146                    | -3.402                    | 3.743                               | 9.713        | -34403.5                |  |  |
| H <sub>2</sub> O | C1           |                          | -7.142                    | -3.401                    | 3.740                               | 9.755        | -34403.5                |  |  |

| (5)              |     |                      |        |        |       |        |          |  |  |
|------------------|-----|----------------------|--------|--------|-------|--------|----------|--|--|
| Vacuum           | C1  |                      | -7.406 | -3.470 | 3.936 | 8.157  | -44150.9 |  |  |
| EtOH             | C1  | $C_{18}H_{10}N_6O_8$ | -7.126 | -3.176 | 3.950 | 10.946 | -44151.8 |  |  |
| DMSO             | C1  |                      | -7.117 | -3.170 | 3.947 | 11.060 | -44151.9 |  |  |
| H <sub>2</sub> O | C1  |                      | -7.113 | -3.167 | 3.945 | 11.114 | -44151.9 |  |  |
|                  | (6) |                      |        |        |       |        |          |  |  |
| Vacuum           | C1  | $C_{18}H_{10}N_5O_6$ | -7.172 | -3.292 | 3.879 | 8.341  | -38585.0 |  |  |
| EtOH             | C1  |                      | -7.092 | -3.158 | 3.933 | 11.216 | -38585.7 |  |  |
| DMSO             | C1  |                      | -7.087 | -3.157 | 3.930 | 11.330 | -38585.7 |  |  |
| H <sub>2</sub> O | C1  |                      | -7.085 | -3.156 | 3.928 | 11.383 | -38585.8 |  |  |

Table 7b-Quantum chemical parameters for inhibitor molecules (2-6) as calculated by using DFT method

| Inhib.<br>Media  | IE (eV) | EA (eV) | □ (eV) | □ (eV) | S (eV) | ω (eV) | $\Delta \mathbf{N}$ |  |  |
|------------------|---------|---------|--------|--------|--------|--------|---------------------|--|--|
| (2)              |         |         |        |        |        |        |                     |  |  |
| Vacuum           | 7.177   | 3.344   | 1.916  | 5.261  | 0.521  | 7.221  | 0.4536              |  |  |
| EtOH             | 7.093   | 3.184   | 1.954  | 5.138  | 0.511  | 6.754  | 0.4761              |  |  |
| DMSO             | 7.088   | 3.181   | 1.953  | 5.135  | 0.511  | 6.748  | 0.4773              |  |  |
| H <sub>2</sub> O | 7.086   | 3.180   | 1.952  | 5.133  | 0.512  | 6.746  | 0.4779              |  |  |
|                  |         |         |        | (3)    |        |        |                     |  |  |
| Vacuum           | 7.144   | 3.302   | 1.921  | 5.223  | 0.520  | 7.102  | 0.4622              |  |  |
| EtOH             | 7.102   | 3.112   | 1.994  | 5.107  | 0.501  | 6.539  | 0.4742              |  |  |
| DMSO             | 7.095   | 3.110   | 1.992  | 5.102  | 0.501  | 6.533  | 0.4760              |  |  |
| $H_2O$           | 7.092   | 3.109   | 1.991  | 5.100  | 0.502  | 6.531  | 0.4767              |  |  |
|                  | (4)     |         |        |        |        |        |                     |  |  |
| Vacuum           | 7.378   | 3.578   | 1.900  | 5.478  | 0.526  | 7.897  | 0.4004              |  |  |
| EtOH             | 7.154   | 3.404   | 1.875  | 5.279  | 0.533  | 7.432  | 0.4586              |  |  |
| DMSO             | 7.146   | 3.402   | 1.871  | 5.274  | 0.534  | 7.431  | 0.4609              |  |  |
| H <sub>2</sub> O | 7.142   | 3.401   | 1.870  | 5.272  | 0.534  | 7.431  | 0.4620              |  |  |
|                  | -       | -       | -      | (5)    |        |        |                     |  |  |
| Vacuum           | 7.406   | 3.470   | 1.968  | 5.438  | 0.508  | 7.513  | 0.3968              |  |  |
| EtOH             | 7.126   | 3.176   | 1.975  | 5.151  | 0.506  | 6.717  | 0.4680              |  |  |
| DMSO             | 7.117   | 3.170   | 1.973  | 5.143  | 0.506  | 6.703  | 0.4703              |  |  |
| H <sub>2</sub> O | 7.113   | 3.167   | 1.972  | 5.140  | 0.506  | 6.695  | 0.4713              |  |  |
| (6)              |         |         |        |        |        |        |                     |  |  |
| Vacuum           | 7.172   | 3.292   | 1.939  | 5.232  | 0.515  | 7.057  | 0.4556              |  |  |
| EtOH             | 7.092   | 3.158   | 1.967  | 5.125  | 0.508  | 6.678  | 0.4763              |  |  |
| DMSO             | 7.087   | 3.157   | 1.965  | 5.122  | 0.508  | 6.676  | 0.4777              |  |  |
| H <sub>2</sub> O | 7.085   | 3.156   | 1.964  | 5.120  | 0.509  | 6.674  | 0.4783              |  |  |

#### Active sites of the compound (3)

The inhibition of the investigated inhibitor was done through its reactive centers (nucleophilic and electrophilic centers) using the DFT Mulliken charges population analysis. Table-8 shows that the oxygen, nitrogen and some carbon atoms have the higher negative charge, whereas C2, C3, C8 and C20 atoms have the higher positive electron density. Destinations for nucleophilic reactive sites of compound (3) were be O13, O17, N19, O21, O26 and the carbon atoms which have negative charge could be considered to be as an active adsorption center towards the metal surface.

The nucleophilic and electrophilic electronic charge values of compound (3) are stronger in EtOH, DMSO and  $H_2O$  solutions than in vacuum.

Table-8 shows that the order of the nucleophihic reactive sites are N19< O26< C7< O13< O17< O21< C4, and the electrophihic reactive sites order are C3< C2< C20< C8.

| Atom       | Electronic<br>charge (ecu) | Atom     | Electronic<br>charge (ecu) | Atom | Electronic<br>charge (ecu) | Atom         | Electronic<br>charge (ecu) |
|------------|----------------------------|----------|----------------------------|------|----------------------------|--------------|----------------------------|
|            | -0.221V                    |          | 0.791V                     |      | 0.039V                     |              | -0.122V                    |
| N11        | -0.213E                    | <u> </u> | 0.808E                     | 015  | 0.054E                     | <b>C</b> 222 | -0.146E                    |
| NI         | -0.212D                    | Cð       | 0.809D                     | CIS  | 0.055D                     | C22          | -0.147D                    |
|            | -0.212W                    |          | 0.809W                     |      | 0.056W                     |              | -0.148W                    |
|            | 0.276V                     |          | -0.409V                    |      | 0.155V                     |              | -0.037V                    |
| <b>C</b> 2 | 0.343E                     | CO       | -0.460E                    | C16  | 0.188E                     | 000          | -0.029E                    |
| C2         | 0.346D                     | C9       | -0.462D                    | C10  | 0.189D                     | 023          | -0.028D                    |
|            | 0.347W                     |          | -0.463W                    |      | 0.190W                     |              | -0.028W                    |
|            | 0.310V                     |          | 0.025V                     |      | -0.429V                    |              | 0.005V                     |
| <b>C</b> 2 | 0.351E                     | N10      | 0.079E                     | 017  | -0.496E                    | C24          | 0.000E                     |
| C.S        | 0.353D                     | INIU     | 0.081D                     |      | -0.499D                    |              | 0.000D                     |
|            | 0.354W                     |          | 0.082W                     |      | -0.500W                    |              | 0.000W                     |
|            | -0.641V                    |          | -0.130V                    | N18  | 0.016V                     | C25          | -0.111V                    |
| C4         | -0.612E                    | 011      | -0.191E                    |      | 0.056E                     |              | -0.087E                    |
| C4         | -0.611D                    | 011      | -0.193D                    |      | 0.058D                     |              | -0.087D                    |
|            | -0.611W                    |          | -0.194W                    |      | 0.059W                     |              | -0.086W                    |
|            | 0.106V                     |          | -0.158V                    |      | -0.237V                    |              | -0.346V                    |
| C5         | 0.058E                     | 012      | -0.208E                    | N19  | -0.246E                    | O26          | -0.391E                    |
| C.S        | 0.056D                     | 012      | -0.210D                    |      | -0.246D                    |              | -0.393D                    |
|            | 0.055W                     |          | -0.210W                    |      | -0.246W                    |              | -0.393W                    |
|            | 0.158V                     |          | -0.442V                    |      | 0.332V                     |              |                            |
| C6         | 0.185E                     | 013      | -0.489E                    | C20  | 0.393E                     |              |                            |
| CO         | 0.186D                     | 015      | -0.490D                    | 0.20 | 0.395D                     |              |                            |
|            | 0.186W                     |          | -0.490W                    |      | 0.396W                     |              |                            |
|            | -0.442V                    |          | -0.079V                    |      | -0.434V                    |              |                            |
| C7         | -0.466E                    | N14      | -0.146E                    | 021  | -0.517E                    |              |                            |
| 07         | -0.467D                    | 1117     | -0.150D                    | 021  | -0.520D                    |              |                            |
|            | -0.467W                    |          | -0.151W                    |      | -0.521W                    |              |                            |

**Table 8-**DFT Mulliken charges population analysis for the calculated inhibitor molecule compound (3) in media (vacuum, EtOH, DMSO, and  $H_2O$ ).

V: vacuum phase, D: dimethyl sulfoxide (DMSO), W: water, ecu: electron control unit.

#### **Corrosion inhibition measurement**

#### Potentiodynamic polarization curves and corrosion kinetic

The electrochemical corrosion parameters are presented in Table 9 such as corrosion potential  $(E_{corr})$ , Tafel slopes (bc, ba) and corrosion current density  $(I_{corr})$  obtained by of cathodic and anodic regions of the Tafel lines. Figure-3 presents potentiodynamic polarization curves for C.S in sea water containing different conditions of compound (3). IE%,  $\Theta$ , can be measured using the following Equations:

$$\% \mathbf{IE} = (\mathbf{I}_{\text{corr (uninh)}} - \mathbf{I}_{\text{corr (inh)}} / \mathbf{I}_{\text{corr (uninh)}}) \times 100$$
(8)

 $\mathbf{\Theta} = (\mathbf{I}_{\text{corr (uninh)}} - \mathbf{I}_{\text{corr (inh)}} / \mathbf{I}_{\text{corr (uninh)}})$ 

(9)

Where  $I_{corr\ (inh)}$  is the inhibited corrosion current densities,  $I_{corr\ (uninh)}$  is the uninhibited current densities.

Table-9 shown the decreasing in IE% with the increasing temperature which may be indicating a physisorption inhibition process [16].

| Inhibitor<br>Conc. (mg/ L) | T/ K | E <sub>corr</sub> (mV) | I <sub>corr</sub><br>(μA cm <sup>-2</sup> ) | b <sub>c</sub><br>(mV dec <sup>-1</sup> ) | b <sub>a</sub><br>(mV dec <sup>-1</sup> ) | IE%    | θ        |
|----------------------------|------|------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------|--------|----------|
|                            | 298  | -621.0                 | 121.69                                      | -146.9                                    | 82.1                                      | -      |          |
| Blank                      | 308  | -785.7                 | 164.53                                      | -26.3                                     | 73.8                                      | -      | <b>-</b> |
|                            | 318  | -608.0                 | 191.16                                      | -102.0                                    | 315.2                                     | -      |          |
|                            |      |                        |                                             |                                           |                                           |        |          |
|                            | 298  | -537.3                 | 27.44                                       | -377                                      | 102.7                                     | 77.451 | 0.775    |
| 5                          | 308  | -530.0                 | 41.84                                       | -434.4                                    | 106.8                                     | 74.570 | 0.746    |
|                            | 318  | -622.9                 | 55.16                                       | -138.8                                    | 61.4                                      | 71.145 | 0.711    |
|                            |      |                        |                                             |                                           |                                           |        |          |
|                            | 298  | -562.9                 | 24.6                                        | -231.5                                    | 79.6                                      | 79.784 | 0.797    |
| 10                         | 308  | -491.3                 | 36.09                                       | -426.4                                    | 91.6                                      | 78.064 | 0.780    |
|                            | 318  | -631.9                 | 45.52                                       | -106.9                                    | 59.5                                      | 76.187 | 0.761    |
|                            | 1    | 1                      |                                             | 1                                         |                                           |        |          |
| 20                         | 298  | -483.1                 | 20.48                                       | -358.3                                    | 55.9                                      | 83.170 | 0.831    |
|                            | 308  | -498.1                 | 32.53                                       | -115.4                                    | 68.5                                      | 80.228 | 0.802    |
|                            | 318  | -598.0                 | 42.01                                       | -222.6                                    | 92.3                                      | 78.023 | 0.780    |

 Table 9-Electrochemical data of the C.S corrosion in sea water at different concentrations for compound (3).



**Figure 3-**Polarisation curve of C.S in sea water for different concentrations of compound (3) at temperature (a) 293K (b) 308K (c) 318 K.

#### Thermodynamic and activation parameters

The Arrenhius law presented as a straight line of the logarithm of the corrosion rate. The straight line plots between log  $I_{corr}$  and 1/ T are shown in Figure-4. The activation energy of the corrosion process (Ea), and the pre-exponential factor (A), are calculating from Equations 11 and 12.

 $Log(I_{corr}) = Log \dot{A} - Ea / 2.303 RT$ 

Log (I<sub>corr</sub>/ T) = Log (R/ N h) + ΔS\*/ 2.303R - ΔH\*/ 2.303RT (12) Where (I<sub>corr</sub>) is the corrosion current density, (R) is the universal gas constant (8.314 J. mol<sup>-1</sup>. K<sup>-1</sup>), (T) is temperature in K, (h) is the Plank's constant (6.626 x 10<sup>-34</sup> J s), (N) is the Avogadro's number (6.022 x 10<sup>23</sup> mol<sup>-1</sup>), ΔH is the enthalpy of activation and ΔS is the entropy of activation.

A plot of log ( $I_{corr}$ /T) against (1/T) gave linear relationship with a slope of ( $-\Delta H^*/2.303R$ ) and an intercept of [log(R/Nh) + ( $\Delta S^*/2.303R$ )] as shown in Figure-5, from which the activation thermodynamic parameters ( $\Delta H^*$  and  $\Delta S^*$ ) were calculated, Table-10.

The enthalpy changes ( $\Delta$ H\*) of the corrosion reaction in 3.5% NaCl at temperature range of (298-318) K have positive values indicating an endothermic nature for this reaction [17]. The lower negative values of entropy ( $\Delta$ S\*) for corrosion process meaning a decrease in the degree of freedom and a consequent restriction of the corrosion process [18]

The values of  $\Delta G$  for corrosion process were calculated from the following relation:

$$\Delta G^* = \Delta H^* - T \Delta S$$

**Table 10-**Corrosion kinetic parameters for carbon steel in sea water (3.5% NaCl) for blank and with various concentrations of the inhibitor.

| Conc.<br>(mg/ L) | $\Delta G/ kJ mol^{-1}$ |        |        | $\Delta H^*/$ $\Delta S^*/$ |                  | Ea / kJ .         | A<br>Mologulos am <sup>-2</sup> |  |
|------------------|-------------------------|--------|--------|-----------------------------|------------------|-------------------|---------------------------------|--|
|                  | 298K                    | 308K   | 318K   | mol <sup>-1</sup>           | .K <sup>-1</sup> | mol <sup>-1</sup> | S <sup>-1</sup>                 |  |
| Blank            | 61.037                  | 62.572 | 64.107 | 15.29<br>3                  | -0.154           | 17.853            | 1.006E+29                       |  |
| 5                | 65.469                  | 66.927 | 68.385 | 22.01<br>9                  | -0.146           | 27.553            | 2.53861E+29                     |  |
| 10               | 65.722                  | 67.143 | 68.564 | 23.37<br>9                  | -0.142           | 24.298            | 3.97737E+29                     |  |
| 20               | 66.107                  | 67.498 | 68.890 | 24.64<br>2                  | -0.139           | 28.376            | 5.65713E+29                     |  |



**Figure 4-**Plot of log  $I_{corr}$  vs (1/ T) for the corrosion for carbon steel in sea water (3.5% NaCl) containing different concentrations of the inhibitor



Figure 5-Plot for log (I<sub>corr</sub>/ T) vs (1/ T) of carbon steel in sea water for blank and in presence different concentrations of the inhibitor

#### **Adsorption isotherm**

The adsorption isotherms are useful to describe the reaction between the inhibitor molecules with carbon steel surface.

Langmuir adsorption isotherm can be represented by the following equation [19]. C/ E

$$\Theta = (1/K_{ads}) + C$$

(14)

Whereas C is the inhibitor concentration, Kads is the adsorption/ desorption equilibrium constant. A plot of C/ $\theta$  versus C, could be used to determine the equilibrium adsorption constant K<sub>ads</sub>, then the thermodynamic functions, Figure-6. For the adsorption process, these functions are  $(\Delta H_{ads}, \Delta S_{ads} and$  $\Delta G_{ads}$ ) represent in Table -11.  $\Delta G_{ads}$  was calculated using Equation 15 [20].

 $\Delta G_{ads} = -2.303 \text{ RT Log} (55.55 \text{ K}_{ads})$ (15) Whereas R is the gas constant (J K<sup>-1</sup> mol<sup>-1</sup>), T is the absolute temperature (K), and 55.5 is the molar concentration (mol L<sup>-1</sup>) of water in the solution. By plotting K<sub>ads</sub> versus (1/ T) the  $\Delta G^{\circ}_{ads}$  was extracted from the slope entropy and enthalpy adsorption values by using Equations 15, 16, Figure-7.

$$\Delta G^{\circ}_{ads} = -RT \ln K_{ads}$$
(16)  
$$\Delta G^{\circ}_{ads} = \Delta H^{\circ}_{ads} - T\Delta S^{\circ}_{ads}$$
(17)

Negative values of the  $\Delta G^{\circ}_{ads}$  reflect the spontaneous adsorption. In general, values of  $\Delta G^{\circ}_{ads}$  around or below (-40 kJ mol<sup>-1</sup>) are compatible with physisorption and those around or more negative than (-40 kJ mol<sup>-1</sup>) involve chemisorptions [21]. The calculated values for  $\Delta G^{\circ}_{ads}$  have been found in the range of (-11.815 to -12.672 kJ mol<sup>-1</sup>) at different temperatures (298-318 K). These values fall between the threshold values for the physisorption.

The entropy  $\Delta S^{\circ}_{ads}$  value was positive confirming that the corrosion process is entropically favorable [22]. The negative value of  $\Delta H^{\circ}_{ads}$  indicate the adsorption of inhibitory molecules on the C.S surface is an exothermic process. For compound (3)  $\Delta H^{\circ}_{ads}$  is equal to (-13.717 kJ mol<sup>-1</sup>) [23].

**Table 11-**Thermodynamic parameters for adsorption of compound (**3**) on C.S surface in 3.5% NaCl at various temperatures

| T/ K | K <sub>ads</sub> | ΔG<br>kJ mol <sup>-1</sup> | $\mathbf{R}^2$ | ΔH <sub>ads</sub><br>kJ mol <sup>-1</sup> | ΔS <sub>ads</sub><br>kJ mol <sup>-1</sup> K <sup>-1</sup> |
|------|------------------|----------------------------|----------------|-------------------------------------------|-----------------------------------------------------------|
| 298  | 2.994012         | -12.672                    | 0.999          | 10 515                                    | 0.0020                                                    |
| 308  | 2.247191         | -11.961                    | 1.000          | -13./1/                                   | 0.0038                                                    |
| 318  | 2.118644         | -11.815                    | 0.999          |                                           |                                                           |



**Figure 6-**Langmuir isotherms plot for the adsorption compound (**3**) on carbon steel at the temperature range of (298, 308 and 318) K



Figure 7-Plot of log  $K_{ads}$  vs (1/T) for compound (3)

## Scanning Electron Microscopy (SEM)

In Figure-8a, the badly damaged surface obtained when the metal was remained immersed in saline water. However, Figure-8b shown C.S surface in the presence of inhibitor (3) has respected smoothness as compared to Figure-8a, indicating reduction of the corrosion rate. This improvement in surface morphology is due to the formation of a protective film of compound (3) inhibitor on the C.S surface which is represent for inhibition of corrosion [24].



**Figure 8-SEM** images of carbon steel in a 3.5% NaCl solution at 318 K (a) without compound (3) inhibitor (b) in presence of compound (3) inhibitor.

## Atomic force microscopy

Surface morphology of carbon steel sample in a 3.5% NaCl solution in the absence and presence of inhibitor (**3**) was investigated by atomic force microscopy (AFM). The results are shown in Figure-9 (a–f). The average roughness is clearly shown in Figure-9 (a, b and c) that carbon steel sample is badly damaged due to the 3,5% NaCl salt attack on the surface. The average roughness value (Sa), root mean square value; Sm (mean roughness value (Sq), peak valley height (Sy) for the carbon steel surface 2.79 nm, 4.11 nm, and 42.8 nm, respectively. However, in the presence of an optimum concentration (20 ppm) of compound (**3**) as shown in Figure-9 (d, e and f) the average roughness was reduced that display the steel surface after immersion in 3.5% NaCl presence of inhibitor. The (Sa), (Sq), (Sy) for the carbon steel surface are 19.4 nm, 25.7 nm and 257 nm, respectively [25].



Figure 9-AFM of C.S surface (a, b, c) in a 3,5% NaCl solution, (d, e, f) in presence of 20 ppm compound (3).

## Conclusion

1. The new synthesized isatin diazine derivatives (2-6), were theoretically found to be good organic corrosion inhibitors for carbon steel. The best one was compound (3).

2. The inhibition efficiency obtained for compound (3) experimentally using potentiodynamic polarization measurements, reflected that the studied inhibitor could be classified as a mixed inhibitor in 3.5% NaCl.

3. The inhibition efficiency increased with increasing inhibitor concentration.

4. The adsorptions of the studied compound on C-steel follow the Langmuir adsorption isotherm model. The low  $K_{ads}$  values indicate a physical reaction between the inhibitor and the metal surface, and the ( $\Delta G^{\circ}_{ads}$ ) values suggested that the inhibition process may occur by physical adsorption process.

## References

- 1. Zhenzhen, X. Guangcheng, W. Jing, W. Ming, C. Yaping, P. Luyao, L. Bing, D. Shan, C. and Wenbiao, L. 2017. Synthesis, biological evaluation, and molecular docking studies of novel isatin-thiazole derivatives as α-glucosidase inhibitors. *Molecules*, 22 (659): 1-11.
- 2. Mohammad, A. 2017. Various chemical and biological activities of pyridazinone derivatives, *Central European Journal of Experimental Biology*, **5**(1): 1-19.
- **3.** El Bakri, Y. Boudalia, M. Echihi, S. Harmaoui, A. Sebhaoui, J. Elmsellem, H. Ramli, Y. Guenbour, A. Bellaouchou, A. and Essassi, E. **2017**. Performance and theoretical study on corrosion inhibition of new Triazolopyrimidine derivative for Carbon steel in hydrochloric acid. *Journal of materials and Environmental Sciences*, **8** (2): 378-388.
- 4. David, A. 2017. Predicting the performance of organic corrosion inhibitors. *Metals*, 7 (553): 1-8.
- **5.** Aouniti, A. Elmsellema, H. Tighadouini, S. Elazzouzi, M. Radi, S. Chetouani, A. Hammouti, B. and Zarrouk, A. **2016**. Schiff's base derived from 2-acetyl thiophene as corrosion inhibitor of steel in acidic medium. *Journal of Taibah University for Science*, **10**: 774-785.

- 6. Suaad, M. and Redhab, A. 2015. Synthesis and evaluation antimicrobial activity of some new S-substituted quinazolinone containing pentagonal, hexagonal heterocyclic ring. *Journal of Zankoi Sulaimani*, **17**(1): 33-48.
- Athraa, H. Suaad, M. and Rehab, M.K. 2018. Synthesis, identification, theoretical and experimental studies for carbon steel corrosion inhibition in sea water by some new schiff base derivatives linkage to 5-nitro isatin moiety, *Journal of Global Pharma Technology*, JGPT V(10) No. (9-10) September-October, Accepted for publishing.
- 8. Frolov, E. Lakner, F. and Khvat, A. 2004. An efficient synthesis of novel 1, 3- oxazolo [4,5d]pyridazinones. *Tetrahedron Letter*, 45: 4693-4696.
- **9.** Rajendran, M. Keerthika, K. Kowsalya, M. and Devapiriam, D. **2016**. Theoretical studies on corrosion inhibition efficiency of pyridine carbonyl derivatives using DFT method. *Der Pharma Chemica*, **8** (3): 71-79.
- Frisch, M. Trucks, W. Schlege, G. Scuseria, H. Robb, G. Cheeseman, M. Montgomery, J. Vreven, J. Kudin, T. Burant, K. Millam, J. Iyengar, J. Tomasi, S. Barone, J. Mennucci, V. Cossi, B. Scalmani, M. Rega, G. Petersson, N. Nakatsuji, G. Hada, H. Ehara, M. Toyota, M. Fukuda, K. Hasegawa, R. Ishida, J. Nakajima, M. Honda, T. Kitao, Y. Nakai, O. Klene, H. Li, M. Knox, X. Hratchian, J. Cross, H. Bakken, J. Adamo, V. Jaramillo, C. Gomperts, J. Stratmann, R. Yazyev, R. Austin, O. Cammi, A. Pomelli, R. Ochterski, C. Ayala, J. Morokuma, P. Voth, K. Salvador, G. Dannenberg, P. Zakrzewski, J. Dapprich, V. Daniels, S. Strain, A. Farkas, M. Malick, O. Rabuck, D. Raghavachari, A. Foresman, K. Ortiz, J. Cui, J. Baboul, Q. Clifford, A. Cioslowski, S. Stefanov, J. Liu, B. Liashenko, G. Piskorz, A. Komaromi, P. Martin, I. Fox, R. Keith, D. Al-Laham, T. Peng, M. Nanayakkara, C. Challacombe, A. Gill, M. Johnson, P. Chen, B. Wong, W. Gonzalez, M. and Pople, J. Gaussian 03, Gaussian. Inc. Pittsburgh PA, 2009.
- 11. Becke, A. 1993. Density-functional thermochemistry. III. The role of exact exchange. *Journal of Chemestry and Physical*, 98: 5648-5652.
- **12.** Ee, C. Yang, W. and Parr, R. **1988**. Development of the colle-salvetti correlation-energyformula into a functional of the electron density. *Physical Review*, **B 41**: 785-789.
- **13.** Rehab, M. and Mustafa, M. **2016**. Theoretical studies of corrosion inhibition efficiency of two new N-phenyl-ethylidene-5-bromo isatin derivatives. *Iraqi Journal of Science*, **57** (2B): 1041-1051.
- 14. Raafat, M. Mohamed, K. and Faten, M. 2008. Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils. *Applied Surface Science*, 255: 2433-2441.
- Henriquez-Román, J. Sancy, M. Páez, M. Padilla-Campos, L. Zagal, J. Rangel, C. and Thompson, G. 2005. The influence of aniline and its derivatives on the corrosion behaviour of copper in acid solution. *Journal of Solid State Electrochemistry*, 9 (7): 504-511.
- **16.** Rehab, M. and Fatten, K. **2015**. DFT, PM3, AM1, and MINDO/3 quantum mechanical calculations for some INHC Cs symmetry schiff bases as corrosion inhibitors for mild steel. *Iraqi Journal of Science*, **56**(1C): 602-621.
- 17. Ben Hmamou, D. Aouad, M. Salghi, R. Zarrouk, A. Assouag, M. Benali, O. Messali, M. Zarrok, H. and Hammouti, B. 2012. Inhibition of C38 steel corrosion in hydrochloric acid solution by 4,5-diphenyl-1H-imidazole-2-thiol:gravimetric and temperature effects treatments. *International Journal of Science and Research*, 4 (7): 3498-3504
- Abd-El-Naby, B. Abdullatef, O. Khamis, E. and El-Mahmody, W. 2016. Effect of cetyltrimethylammonium bromide surfactant as novel inhibitor for the corrosion of steel in 0.5 M H<sub>2</sub>SO<sub>4</sub>. *International Journal Electrochemstry and Science*, 11: 1271-1281.
- Uday, H. Suaad, M. and Khulood, A. 2013. Corrosion inhibition effects of some new synthesized N-Aroyl-N\-Aryl thiourea derivatives for carbon steel in sulfuric acid media. *Journal of Al-Nahrain University*, 16 (4): 80-93.
- **20.** Rehab, M. Dhuha, A. and Suaad, M. **2017**. Quantum mechanical and electrochemical study of new isatin derivative as corrosion inhibitor for carbon steel in 3.5 % NaCl. *International Journal of Science and Research*, **6** (7): 1656-1669.
- **21.** Hong, S. Chen, W. Luo, H. and Li, N. **2012**. Inhibition effect of 4-amino-antipyrine on the corrosion of copper in 3 wt. % NaCl solution. *Corrosion Science*, **57**: 270-278.

- Issa, R. El-Sonbati, A. El-Bindary, A. and Kera, H. 2002. Potentiometric and thermodynamic studies of 2-acrylamidosulfamethazine and its metalcomplexes. *Journal of Eurpan Polymar*, 38: 561.
- 23. El-Ouali, I. Hammouti, B. Aouniti, A. Ramli, Y. Azougagh, M. Essassi, E. and Bouachrine, M. 2010. Thermodynamic Characterisation of Steel Corrosion in HCl in the Presence of 2-Phenylthieno (3, 2-b) Quinoxaline. *Journal of Material and Environmental Science*, 1 (1): 1-8.
- 24. Mohamed, A. Khaled, Z. Hamdy, A. Abo-Elenien, O. and Olfat, E. 2015. Synthesis of novel schiff base silicon compound for employing as corrosion inhibitor for carbon steel in the 1 M HCL and 3.5% NaCl aqueous media. *International Journal of Chemical, Environmental & Biological Sciences*, **3**: 2320-4087
- **25.** Gowri, S. Sathiyabama, J. Prabhakar, P. and Rajendran, S. **2012**. Inhibition behaviour of carbon steel in sea water in the presence of tyrosine- Zn<sup>2+</sup> system. *International Journal of Research in Chemistry and Environment*, **3**: 156-162.