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Abstract 

      A food chain model in which the top predator growing logistically has been 

proposed and studied. Two types of Holling’s functional responses type IV and type 

II have been used in the first trophic level and second trophic level respectively, in 

addition to Leslie-Gower in the third level. The properties of the solution are 

discussed. Since the boundary dynamics are affecting the dynamical behavior of the 

whole dynamical system, the linearization technique is used to study the stability of 

the subsystem of the proposed model. The persistence conditions of the obtained 

subsystem of the food chain are established. Finally, the model is simulated 

numerically to understand the global dynamics of the food chain under study.  
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 لة الغذائية التي تنطوي على استجابات وظيفية مختلفةالديناميكيات المعقدة في السلس
 

    2، رائد كامل ناجي 1ناجي عطيوي  دويةع  ، 1*يصفاء جواد عل   
 السشرهر، الجامعة التقشية الهسطى، بغجاد، العخاق /لسعهج الطبي التقشي 1

 جامعة بغجاد، العخاق قدم الخياضيات، كمية العمهم، 2
 الخلاصة

اقتخاح ودراسة نسهذج الدمدمة الغحائية الحي يشسه فيه السفتخس العمهي لهجدتيًا. تم استخجام نهعين من تم      
الاستجابات الهظيفية لههليشج من الشهع الخابع والشهع الثاني في السدتهى الغحائي الأول والسدتهى الغحائي الثاني 

نعخًا لأن ي الثالث. تست مشاقذة خرائص الحل. جاور في السدتهى الغحائ-عمى التهالي بالاضافة الى ليدمي
ا لحا ديشاميكيات السدتهيات الحجودية في الفزاء الثلاثي تؤثخ عمى الدمهك الجيشاميكي لمشعام الجيشاميكي بأكسمه

ستخجمت التقشية الخطية لجراسة استقخارية الشعم الجدئية من الشسهذج السقتخح. تم تحجيج شخوط  أصخار الشعم 
من الدمدمة الغحائية. أخيخًا ، تست محاكاة الشسهذج عجديًا لفهم الجيشاميكية الكمية لمدمدمة الغحائية قيج الجدئية 
 .الجراسة

 

1. Introduction   

    In ecological modeling, many researchers and scientists supported this field of study with 

brand new ideas. May [1] with Hasting and Powell [2] put a new base to propose and describe 

the new generation of complex ecological models. The complex behaviors of various 
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ecological models involving different factors namely, predation, switching, and competition, 

is the most challenging task in such studies and thus it receives good attention from many 

scientists [3-10]. The functional response defined by Lotka and Volterra [11] for a predator-

prey model is linear and unbounded while studying the complexity in model ecosystems 

needs reasonable functional responses that should be nonlinear and bounded [12]. In 1959 

Holling [13] used a type II functional response. Collings [14] proposed a new function and 

called it Holling type IV response. This response function describes a situation in which the 

predator’s per capita rate of predation decreases at sufficiently high prey densities. Moreover, 

both Holling type IV [5-7] and Leslie-Gower [15,16] functional responses are relatively less 

studied in population ecology. In their experiments about the kinetics of phenol oxidation 

Sokol and Howell [17] suggested a simplified Holling type IV function and found that it is 

simpler and better than the original function of Holling type IV. In this paper, the three 

species food chain model proposed by Alaoui [16] is modified so that it contains three 

different types of functional responses. 

2. The Mathematical Model 

Consider a three-species food chain model consisting of the prey that denoted to their density 

at time t by x(t), the intermediate predator that denoted to their density at time t by y(t), and 

the top predator, which denoted to their density at time t by z(t). It is assumed that the 

intermediate predator preys at the lower level according to Holling type IV response, and the 

top predator preys upon the intermediate predator at the second level according to Holling 

type II and growing according to modified Leslie-Gower response. The dynamics of the 

above food chain model can be represented by the following  
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with  ( )     ( )     ( )   . Obviously, system (1) is continuous and have continuous 

partial derivatives on the positive octant   
  *(     )   ( )     ( )     ( )   +, and 

hence the solution of the system (1) exists and is unique. Here the positive constants 

;,,, jhdba  ,3,2,1,0j  and ;kw  ,3,2,1,0k  can be described as: a  is the growth rate of the 

prey x , b  represents the intraspecific competition of prey x , kw ’s are the maximum values 

attainable by each per capita rate,    measures the extent to which the environment provides 

protection to the prey   and   respectively,   represent the death rate of the intermediate 

predator. While    is the value of   at which the per capita removal rate of   becomes 
  

 
, the 

constant    represents the growth rate of   by sexual reproduction, however    represents the 

residual loss in   population due to serve scarcity of its favorite food  .  Moreover, it is easy 

to verify that model (1) is uniformly bounded. 

3. Analysis of the subsystem 

To study the dynamical behavior of the model (1), it is important to study their subsystem in 

the    plane. Many characteristics of the model (1) (such as persistence) depend on the 

dynamical behavior of their subsystem in the    plane, see [17,19]. Now in the absence of 

the top predator  , the system (1) reduces to the following subsystem. 
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Now, it is easy to verify that the next condition shows that the system (2) is a persistence 

Kolmogorov system  
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                                           (3) 

In addition to the above it is observed that, the Kolomogrov model (2) has the following 

nonnegative equilibrium points. The equilibrium points     (   ) and     (
 

 
  )  always 

exist. However, the positive equilibrium point, say     ( ̅  ̅) in the    (  
 ) of the 

   plane can be determined by solving the first two equations of the model (2), such that  

                                                                                               (4) 

which gives 

 ̅  
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and then it is obtain that 
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.                  (5b) 

Clearly,   ̅     provided that  ̅  
 

 
 . Therefore, there are many cases about the existence of 

the positive equilibrium point, these are given below. 

Case 1.   If   
         , then there is no positive roots for Eq.(4). This implies that the 

specialist predator goes extinct too, and the system (2) have just two equilibrium points 

    (   ) and     (
 

 
  ). 

Case 2. If   
         , then there is one positive root for Eq.(4), that is given by  ̅  

  

  
, 

and then substitute  ̅ in the first equation of the system (2) gives the positive equilibrium 

point, say     ( ̅  ̅) where 
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This  exists  provided that 
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Case 3.  If   
          , then there are two solutions 
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Therefore, if  ̅  
 

 
  or   ̅  

 

 
 , then model (2) has two positive equilibrium points that are 

represented by     ( ̅   ̅ ) and     ( ̅   ̅ ). 
 

 In addition to that, the system (2) has a unique positive equilibrium if  ̅  
 

 
  ̅ , so in 

addition to     (   ) and     (
 

 
  ), the model has three equilibrium points.  

   In this paper, it is assumed that the system (2) has at most three equilibrium points       
    and the positive equilibrium point     ( ̅  ̅)  Further, the stability analysis of the 

Kolmogorov model (2) is carried out and according to the following Jacobian’s matrices of 

    ,     and     ,respectively the following results are obtained: 
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Here the equilibrium points     (   ) is a saddle point, while     (
 

 
  ) is unstable 

saddle point if condition (3) holds, and it is a locally asymptotically stable if 
  

    
  ,                    (8) 

On the other hand, the positive planar equilibrium point     ( ̅  ̅) is a locally 

asymptotically stable in the    (  
 )  of the    plane if the following condition holds 

                                                         
  ̅(    ̅)

    ̅ 
                                                                        (9) 

while     is unstable saddle if the opposite of condition (9) holds. Moreover, the global 

stability of     ( ̅  ̅) is discussed in the following theorem. 

Theorem 1 If the unique positive planar equilibrium point     ( ̅  ̅) is a locally 

asymptotically stable in the    (  
 ) of the    plane, then it is a globally asymptotically 

stable.   

Proof. Let  

                          (   )  
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Obviously, the function  (   )    be    in the    (  
 ) of the    plane. Also we have 

that 
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   Clearly if condition (9) holds,  (   ) does not change sign and is not identically zero in the  

   (  
 ) of the    plane. Then by using Dulic-Bendixons criterion there is no closed curve 

in  the    (  
 ). Since the Kolmogorov model (2) has a unique equilibrium point     in the 

   (  
 ) of the    plane, hence according to Poincare-Bendixon theorem     ( ̅  ̅) is a 

globally asymptotically stable in the    (  
 )  of the    plane.                          

4. Persistence of the subsystem 
   In the next theorem the conditions of persistence of model (2) is established. 

Mathematically persistence of the model means that if all the variables are initially positive 

then the solution of the model does not have omega limit sets on the boundary planes for all 

the time. 

Theorem 2 The model (2) is uniformly persistence provided that condition (3) holds. 

Proof.  Consider the following function   (   )         , where    and    are undetermined 

positive constants. Obviously  (   ) is a positive function in the    (  
 )  and  (   )    if 

    or    . Now since 
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Recall that, since     ( ̅  ̅) is globally asymptotically stable in the    (  
 ) of the 

   plane. Therefore, there are no periodic orbits in this boundary plane. So to prove that   is 
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persistence function, in the sense of Gard [20], and hence model (2) is uniform persists, it is 

enough to show that there are no omega limit sets on the boundary planes of   
  or 

equivalently the following conditions should be satisfied:   

                                                      (   )            ,                                                      

                                                      (   )    *
   

     
  +                                                     

   Note that by choosing      sufficiently large value and keeping    fixed at small positive 

value then  (   )    holds. Also, due to the Kolmogorov condition (3) the inequality 

 (   )    is satisfied for any positive value of   . Therefore   represents persistence 

function and hence system (2) is uniformly persists. 

   Now, before go further, we have to mention that the function   will be an extinction 

function, in the sense of Gard [18], if condition (3) violated, then the solution of model (2) 

approaches to an omega limit point on the boundary planes of the   
  and hence model (2) 

does not persist.     

5. Numerical exploration 

    The food chain model (1) is simulated numerically to study the global dynamics of it by 

using six order Runge-Kutta method. For the following set of fixed parameters values 

 

                                              
                                                                                                       (10) 

                                                                                                   

       Figure 1-Bifurcation diagram of model (1) for data set (10) that shows the successive 
                            maxima of   as a function of    (         ) and          . 

 

Bifurcation diagram and the typical 3D attractors of model (1) are plotted with their time 

series. Our target here is to investigate the behavior of model (1) depending upon the 

parameters   and    with keeping other parameters of (10) fixed. 

   Now, the first case is by fixing           and varying the value of   in the range      
    . It is observed for the value         the dynamics of model (1) with data (10) is 

chaotic as shown in Fig.1 and Fig.2.  Decreasing the value of          change the behavior 

of model (1) to period-doubling as shown in Fig.3, and for the value          the model 

will be stable as shown in Fig.4. 



Ali et al.                                                   Iraqi Journal of Science, 2022, Vol. 63, No. 4, pp: 1747-1754 

           
 

1752 

   The second case by fixing         and varying the value of    in the range       
     .  It is observed for data (10) that model (1) behavior is chaotic as it is blotted in Fig.2 

and periodic with   approach to extinction as it is shown in Fig.5. Moreover, the stable case 

appears in model (1) for data (13) when         and        with   approach to 

extinction as it is shown in Fig.6.   

 

               

  

        Figure 2-a) 3D chaotic attractor of model (1) for data set (10) with         and 

         .  b) Time series of Fig.2a    
 

     
  

 

Figure 3- a) 3D of model (1) periodic attractor for data (10) with        , b) Time series of 

Fig.3a    
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Figure 4-a) 3D of model (1) stable attractor for data (10) with         b) Time series of 

Fig.4a. 

 

     
 

Figure 5- a) 3D of model (1) periodic attractor for data (10) with                   
                               with   approach to extinction   b) Time series of Fig.5a   

 

       
     

Figure 6- a) 3D of model (1) stable point for data (10) with                   
                              with   approach to extinction   b) Time series of Fig.6a   

      

Conclusions 
   A food chain model with different functional responses including Holling type IV and type 

II in additional to Leslie-Gower is proposed and studied. In order to explain the dynamical 

behavior of the proposed food chain model (1) is  local as well as global stability analyses are 

carried out for the subsystem. Persistence of the subsystem is discussed. Global stability for 

the food chain model (1) is analyzed numerically. According to our study above we obtained 

that the parameters   and    are controlling parameters and they are responsible about the 

chaotic, periodic and asymptotic stable of Leslie-Gower food chain model (1) with simplified 

Holling type IV functional response. 
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