

ISSN: 0067-2904

The Optimal Control Problem for Triple Nonlinear Parabolic Boundary Value Problem with State Vector Constraints

Jamil A. Ali Al-Hawasy, Thekaa M. Rasheed*
Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

Received: 6/5/2021
Accepted: 18/7/2021
Published: 30/5/2022

Abstract

In this paper, the classical continuous triple optimal control problem (CCTOCP) for the triple nonlinear parabolic boundary value problem (TNLPBVP) with state vector constraints (SVCs) is studied. The solvability theorem for the classical continuous triple optimal control vector CCTOCV with the SVCs is stated and proved. This is done under suitable conditions. The mathematical formulation of the adjoint triple boundary value problem (ATHBVP) associated with TNLPBVP is discovered. The Fréchet derivative of the Hamiltonian is derived. Under suitable conditions, theorems of necessary and sufficient conditions for the optimality of the TNLPBVP with the SVCs are stated and proved.

Keywords: Classical Continuous Optimal Control, Nonlinear Triple Parabolic Boundary Value Problem, Fréchet Derivative, Necessary and Sufficient Optimality Conditions
مسألة اللسيطرة الامثلية لمسألة القيم الحدودويـة المكافئة غير الخطية الثلاثية مـع قيود الحالة

```
الخلاصة
في هذا البحث مسالة السيطرة الامثلية المسترة الثتليدية لمسالة القيم الحدودية المكائة غير الخطية
الثلاثية بوجود قيود متجه الحالة .تم ذكر نص وبرهان مبرهنة قابلية الحل لـتجه سيطرة امتلية مسترة تقليدية
مع قيود متجه الحالتو قل تم ذلك بوجود شروط مناسبة. تم ايجاد الصياغة الرياضية لمسالة القيم الابتائئة
الثلاثية الصصاحبة والمرتبطة بمسالة القيم الحوودية الدكافئة غير الخطية . تم اشتقاق مشتقة فريشيه لالة
الهاملتون بوجود شروط مناسبة تصت نكر نص وبرهان مبرهنتي الشروط الامتلية الضرورية والكافية لكسالة
القيم الحدودية المكافئة غير الخطية الثلاثية مع قيود متجه الحالة .
```


1. Introduction

The subject of optimal control problem is divided into two types, namely the relaxed and the classical optimal control problems. The first type is mostly studied in the last century, while the second one began to study at the beginning of this century. On other hand, both of them are studied for systems that are controlled by ordinary or partial differential equations. The optimal control problems play an important role in many fields of real-world problems,

[^0]various examples of applications of these problems are investigated in economic growth [1], electric power [2], aircraft [3], medicine [4], and many other fields.

This role motivates many investigators in the recent years to be interest in studying the classical optimal control problems (COCTPs) that are controlled by nonlinear ordinary differential equations [5], or controlled by different types of nonlinear parabolic PDEs like " single" nonlinear parabolic PDEs (NLPPDEs) [6], or couple NLPPDEs (CNLPPDEs) [7], or triple linear PPDEs (TLPPDEs) [8]. Other researchers are interested to study the CCTOCP for CNLPPDEs and TLPPDEs, which involve the Neumann boundary conditions (NBCs) for more details see [9] and [10], respectively, while authors [11] dealt with the CCTOCP controlling by the TNLPBVP without SVCs.

All these investigations encourage us to seek about the CCTOCP that is controlled by the TNLPBVP with the SVCs. The solvability theorem for a CCTOCV with the SVCs is stated and proved under suitable conditions. The mathematical formulation for the ATHBVP associated with TNLPBVP is discovered. The Fréchet Derivative of the Hamiltonian is discussed. Under suitable conditions, the theorems of the necessary and sufficient conditions for the optimality of the TNLPBVP with the SVCs are stated and proved.

2. Problem Description

Let $I=(0, T), T<\infty$, and $\Omega \subset \mathbb{R}^{3}$ be a bounded open region with Lipschitz boundary $\Gamma=\partial \Omega, Q=\Omega \times I, \Sigma=\Gamma \times I$ The CCTOCP consists of the TNPPDEs which represents by the following boundary value problem of the triple state vector equations TSVEs:

$$
\begin{array}{ll}
y_{1 t}-\Delta y_{1}+y_{1}-y_{2}-y_{3}=f_{1}\left(x, t, y_{1}, u_{1}\right) & \text { in } Q \\
y_{2 t}-\Delta y_{2}+y_{2}+y_{3}+y_{1}=f_{2}\left(x, t, y_{2}, u_{2}\right) & \text { in } Q \\
y_{3 t}-\Delta y_{3}+y_{3}+y_{1}-y_{2}=f_{3}\left(x, t, y_{3}, u_{3}\right) & \text { in } Q \\
y_{1}(x, t)=0 & \text { on } \Sigma \\
y_{1}(x, 0)=y_{1}^{0}(x) & \text { on } \Omega \\
y_{2}(x, t)=0 & \text { on } \Sigma \\
y_{2}(x, 0)=y_{2}^{0}(x) & \text { on } \Omega \\
y_{3}(x, t)=0 & \text { on } \Sigma \tag{8}
\end{array}
$$

$$
\begin{equation*}
y_{3}(x, 0)=y_{3}^{0}(x), \quad \text { on } \Omega \tag{9}
\end{equation*}
$$

Where $x=\left(x_{1}, x_{2}\right), \vec{y}=\left(y_{1}, y_{2}, y_{3}\right)=\left(y_{1}(x, t), y_{2}(x, t), y_{3}(x, t)\right) \in\left(H_{2}(Q)\right)^{3}$ is the triple state vector (TSVS) that corresponds to the CCTCV $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$, $=\left(u_{1}(x, t), u_{2}(x, t), u_{3}(x, t)\right) \in\left(L^{2}(Q)\right)^{3}$ and $\left(f_{1}, f_{2}, f_{3}\right) \in\left(L^{2}(Q)\right)^{3},\left(f_{i}=f_{i}\left(x, t, y_{i}, u_{i}\right)\right)$ is vector of given function defined on $\left(Q \times \mathbb{R} \times U_{1}\right) \times\left(Q \times \mathbb{R} \times U_{2}\right) \times\left(Q \times \mathbb{R} \times U_{3}\right)$ with $\mathrm{U}_{1} \times \mathrm{U}_{2} \times \mathrm{U}_{3}=\vec{U} \subset \mathbb{R}^{3}$, and let $\overrightarrow{\mathrm{W}}=\mathrm{W}_{1} \times \mathrm{W}_{2} \times \mathrm{W}_{3}, \mathrm{~W}_{\mathrm{i}} \subset \mathrm{L}^{2}(\mathrm{Q}), \mathrm{i}=1,2,3$, s.t. $\vec{W}=\left\{\vec{w} \in\left(L^{2}(Q)\right)^{3} \mid \vec{w} \in \vec{U}\right.$ a.e.in $\left.Q\right\}$ with \vec{U} is convex set.
The cost function is

$$
\begin{equation*}
G_{0}(\vec{u})=\sum_{i=1}^{3} \int_{Q} g_{0 i}\left(x, t, y_{i}, u_{i}\right) d x d t \tag{10}
\end{equation*}
$$

The SVCs on the TSV and the CCTCV are

$$
\begin{align*}
& G_{1}(\vec{u})=\sum_{i=1}^{3} \int_{Q} g_{1 i}\left(x, t, y_{i}, u_{i}\right) d x d t=0, \tag{11}\\
& G_{2}(\vec{u})=\sum_{i=1}^{3} \int_{Q} g_{2 i}\left(x, t, y_{i}, u_{i}\right) d x d t \leq 0, \tag{12}
\end{align*}
$$

The set of admissible CCTCV (ADCCTCV) is
$\vec{W}_{A}=\left\{\vec{u} \in \vec{W} \mid G_{1}(\vec{u})=0, G_{2}(\vec{u}) \leq 0\right\}$
The CCTOCV is to find $\vec{u} \in \vec{W}_{A}$ s.t. $G_{0}(\vec{u})=\min _{\vec{w} \in \vec{W}_{A}} G_{0}(\vec{w})$.
Let $\vec{V}=V_{1} \times V_{2} \times V_{3}=\left\{\vec{v} \in\left(H^{1}(\Omega)\right)^{3}\right.$ with $v_{1}=v_{2}=v_{3}=0$ on $\left.\partial \Omega\right\}$.
The notations (\vec{v}, \vec{v}) and $\|\vec{v}\|_{0}$ are referred to the inner product and the norm in $\left(L^{2}(\Omega)\right)^{3}$. The notation $\|\vec{v}\|_{0}$ is the inner product in $\left(L^{2}(Q)\right)^{3}$, and $(\vec{v}, \vec{v})_{1}=\left(v_{1}, v_{1}\right)_{1}+\left(v_{2}, v_{2}\right)_{1}+\left(v_{3}, v_{3}\right)_{1}$
represents the inner product in \vec{V}, while \vec{V}^{*} is the dual of \vec{V}.
The weak form of the TSVEs (1-9) when $\left.\vec{y} \in H_{0}^{1}(\Omega)\right)^{3}$ is given by

$$
\begin{align*}
& \left\langle y_{1 t}, v_{1}\right\rangle+\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)-\left(y_{2}, v_{1}\right)-\left(y_{3}, v_{1}\right)=\left(f_{1}, v_{1}\right) \tag{13a}\\
& \left(y_{1}^{0}, v_{1}\right)=\left(y_{1}(0), v_{1}\right), \quad \forall v_{1} \in V \tag{13b}\\
& \left\langle y_{2 t}, v_{2}\right\rangle+\left(\nabla y_{2}, \nabla v_{2}\right)+\left(y_{2}, v_{1}\right)+\left(y_{3}, v_{2}\right)+\left(y_{1}, v_{2}\right)=\left(f_{2}, v_{2}\right) \tag{14a}\\
& \left(y_{2}^{0}, v_{2}\right)=\left(y_{2}(0), v_{2}\right), \forall v_{2} \in V \tag{14b}\\
& \left\langle y_{33}, v_{3}\right\rangle+\left(\nabla y_{3}, \nabla v_{3}\right)+\left(y_{3}, v_{3}\right)+\left(y_{1}, v_{3}\right)-\left(y_{2}, v_{3}\right)=\left(f_{3}, v_{3}\right) \tag{15a}\\
& \left(y_{2}^{0}, v_{3}\right)=\left(y_{3}(0), v_{3}\right), \quad \forall v_{3} \in V \tag{15b}
\end{align*}
$$

To study the existence of a CCTOCV, we need the following assumptions, theorem and lemma.
Assumptions (A):
(i)Let f_{i} be Carathéodory type (CAT) on $\mathrm{Q} \times(\mathbb{R} \times \mathbb{R})$ that satisfies

$$
\left|f_{i}\left(x, t, y_{i}, u_{i}\right)\right| \leq \eta_{i}(x, t)+c_{i}\left|y_{i}\right|+\dot{c}_{i}\left|u_{i}\right|
$$

where $(x, t) \in Q, y_{i}, u_{i} \in \mathbb{R}, c_{i}, \dot{c}_{i}>0$ and $\eta_{i} \in L^{2}(Q) \forall i=1,2,3$
(ii) f_{i} is Lip w.r.t. y_{i}, i.e. $\left|f_{i}\left(x, t, y_{i}, u_{i}\right)-f_{i}\left(x, t, \bar{y}_{i}, u_{i}\right)\right| \leq L_{i}\left|y_{i}-\bar{y}_{i}\right|$,
where $(x, t) \in Q, y_{i}, \bar{y}_{i}, u_{i} \in \mathbb{R}$ and $L_{i}>0, \forall i=1,2,3$.
Theorem (2.1)[11]: Existence and Uniqueness Of The Weak Form: With Assumptions (A) for each $\vec{u} \in\left(L^{2}(\Omega)\right)^{3}$, the weak form of TSVEs (13-15) has a unique solution $\vec{y}=$ $\left(y_{1}, y_{2}, y_{3}\right), \vec{y} \in\left(L^{2}(I, V)\right)^{3}$, s.t $\vec{y}_{t}=\left(y_{1 t}, y_{2 t}, y_{3 t}\right) \in\left(L^{2}\left(I, V^{*}\right)\right)^{3}$.
Assumptions (B): Consider $g_{l i}(\forall i=1,2,3, \forall l=0,1,2)$ is of CAT on $Q \times(\mathbb{R} \times \mathbb{R})$ with: $\left|g_{l i}\left(x, t, y_{i}, u_{i}\right)\right| \leq \eta_{l i}(x, t)+c_{l i 1}\left(y_{i}\right)^{2}+c_{l i 2}\left(u_{i}\right)^{2}$, where $y_{i}, u_{i} \in \mathbb{R}$ with $\eta_{l i} \in L^{1}(Q)$
Lemma (2.1): If Assumptions (B) are held, then $\vec{u} \mapsto G_{l}(\vec{u})$ for all $l=0,1,2$ is continuous functional on $\left(L^{2}(Q)\right)^{3}$.
Proof: The requirement result is obtained $(\forall l=0,1,2)$ directly from the assumptions(B) and Lemma 4.1 in [11].
Theorem (2.2)[11]: Consider the set $\overrightarrow{\mathrm{W}}_{\mathrm{A}} \neq \emptyset$, the functions f_{i}, for all $i=1,2,3$, has the form $f_{i}\left(x, t, y_{i}, u_{i}\right)=f_{i 1}\left(x, t, y_{i}\right)+f_{i 2}(x, t) u_{i}$
With $\left|f_{i 1}\left(x, t, y_{i}\right)\right| \leq \eta_{i}(x, t)+c_{i}\left|y_{i}\right|$, where $\eta_{i} \in L^{2}(Q)$ and $\left|f_{i 2}(x, t)\right| \leq k_{i}$,
If for all $i=1,2,3, g_{0 i}$ is convex w.r.t. u_{i} for fixed $\left(x, t, y_{i}\right)$. Then there exists a CCTOCV.
Assumptions (C): $g_{l_{i} y_{i}}$ and $g_{l_{i} u_{i}}$ are of CAT on $Q \times \mathbb{R} \times \mathbb{R} \quad$ for $l=0,1,2$, and $i=1,2,3$ and satisfy

$$
\begin{aligned}
& \left|g_{l_{i} y_{i}}\left(x, t, y_{i}, u_{i}\right)\right| \leq \eta_{l_{i 5}}(x, t)+c_{l_{i 5}}\left|y_{i}\right|+c_{l_{l 5}}^{\prime}\left|u_{i}\right|, \text { for }(x, t) \in Q, y_{i}, u_{i} \in \mathbb{R}, \eta_{l_{i 5}} \in L^{2}(Q) \\
& \left|g_{l_{i} u_{i}}\left(x, t, y_{i}, u_{i}\right)\right| \leq \mathrm{n}_{l_{i 6}}(x, t)+c_{l_{6} \mid}\left|y_{i}\right|+c_{l_{l 6}}^{\prime}\left|u_{i}\right| \text {, for }(x, t) \in Q, y_{i}, u_{i} \in \mathbb{R}, \mathrm{n}_{l_{i 6}} \in L^{2}(Q) .
\end{aligned}
$$

Theorem (2.3)[11]: In addition to assumptions (A), if \vec{y} and $\vec{y}+\overrightarrow{\delta y}$ are the TSVS corresponding to the CCTCV $\vec{u}, \vec{u}+\overrightarrow{\delta u} \in\left(L^{2}(Q)\right)^{3}$, respectively. Then

$$
\|\overrightarrow{\delta y}\|_{L^{\infty}\left(I, L^{2}(\Omega)\right.} \leq \mathrm{M}\|\overrightarrow{\delta u}\|_{Q},\|\overrightarrow{\delta y}\|_{L^{2}(Q)} \leq \mathrm{M}\|\overrightarrow{\delta u}\|_{Q},\|\overrightarrow{\delta y}\|_{L^{2}(I, V)} \leq \mathrm{M}\|\overrightarrow{\delta u}\|_{Q} .
$$

Theorem (2.4) (The TKL Theorem) [7]:

Let U be a nonempty convex subset of a vector space $X, \quad K$ be nonempty convex positive cone in a normed space Z, and $W=\left\{u \in U \mid G_{1}(u)=0, G_{1}(u) \in-K\right\}$.
The functional $G_{0}: U \rightarrow \mathbb{R}, G_{1}: U \rightarrow \mathbb{R}^{m}, G_{2}: U \rightarrow Z$ are $(m+1)$ - locally continuous at $u \in U$, and have $(m+1)$ - derivatives at u where $m \neq 0$. If $m=0$, then we assume that $D G_{l}(u), l=0,1,2$, are K-linear at the point u. If $G_{0}(u)$ has a minimum at u in W, then it satisfies the following KUTULA conditions for all $w \in W$:
There exists $\lambda_{0} \in \mathbb{R}, \lambda_{1} \in \mathbb{R}^{m}, \lambda_{2} \in \mathbb{Z}^{*}$, with $\lambda_{0} \geq 0, \lambda_{2} \geq 0, \sum_{l=0}^{2}\left|\lambda_{l}\right|=1$ such that
$\lambda_{0} D G_{0}(u, w-u)+\lambda_{1}^{T} D G_{1}(u, w-u)+\left\langle\lambda_{2}, D G_{2}(u, w-u)\right\rangle \geq 0$
$\left\langle\lambda_{2}, G_{2}(u)\right\rangle=0$.

Main Results

3. Existence of the CCTOCV and the Fréchet Derivative

This section deals with the existence of the CCTOCV and the derivation of the Fréchet Derivative under some suitable Assumptions after the TAHBVP is defined.
Theorem (3.1): Consider the set $\overrightarrow{\mathrm{W}}_{\mathrm{A}} \neq \emptyset$, the functions f_{i} for all $i=1,2,3$, has the form

$$
f_{i}\left(x, t, y_{i}, u_{i}\right)=f_{i 1}\left(x, t, y_{i}\right)+f_{i 2}(x, t) u_{i}
$$

With $\left|f_{i 1}\left(x, t, y_{i}\right)\right| \leq \eta_{i}(x, t)+c_{i}\left|y_{i}\right|$ and $\left|f_{i 2}(x, t)\right| \leq k_{i}$,
where $\eta_{i} \in L^{2}(Q)$. If for all $=1,2,3, g_{1 i}$ is independent of $u_{i}, g_{0 i}$ and $g_{2 i}$ are convex w.r.t. u_{i} for fixed $\left(x, t, y_{i}\right)$. Then there exists a CCTOCV.
Proof: From the assumptions on W_{i} and $g_{1 i}$ for all $i=1,2,3$ with using lemma 2.1and theorem 2.2, one can get that there exists a CCTOCV with the SVCs.
Theorem (3.2): Neglecting the indicator l in g_{l} and G_{l}. In addition to assumptions A,B and C , if the TAHBVP associated with the TNLHBVP (1-9) are defined as:

$$
\begin{align*}
& -z_{1 t}-\Delta z_{1}+z_{1}+z_{2}+z_{3}=z_{1} f_{y_{1}}\left(x, t, y_{1}, u_{1}\right)+g_{1_{y_{1}}}\left(x, t, y_{1}, u_{1}\right) \tag{16}\\
& -z_{2 t}-\Delta z_{2}+z_{2}-z_{1}-z_{3}=z_{2} f_{2 y_{2}}\left(x, t, y_{2}, u_{2}\right)+g_{2_{y_{2}}}\left(x, t, y_{2}, u_{2}\right) \tag{17}\\
& -z_{3 t}-\Delta z_{3}+z_{3}-z_{1}+z_{2}=z_{3} f_{y_{y_{3}}}\left(x, t, y_{3}, u_{3}\right)+g_{3_{3}}\left(x, t, y_{3}, u_{3}\right) \tag{18}\\
& z_{1}(x, t)=0, z_{2}(x, t)=0, \quad \text { and } \quad z_{3}(x, t)=0 \text { on } \Sigma, \tag{19}\\
& z_{1}(T)=0, z_{2}(T)=0, \text { and } z_{3}(T)=0, \quad \text { on } \Gamma \tag{20}
\end{align*}
$$

Then the Hamiltonian which is defined by: $H(x, t, \vec{y}, \vec{z}, \vec{u})=\sum_{i=1}^{3} z_{i} f_{i}\left(x, t, y_{i}, u_{i}\right)+$ $g_{i}\left(x, t, y_{i}, u_{i}\right)$ has the following Fréchet Derivative,
$\dot{G}(\vec{u}) \overrightarrow{\delta u}=\int_{Q}\left(\begin{array}{l}z_{1} f_{1 u_{1}}+g_{1 u_{1}} \\ z_{2} f_{2 u_{2}}+g_{2 u_{2}} \\ z_{3} f_{3 u_{3}}+g_{3 u_{3}}\end{array}\right) \cdot\left(\begin{array}{l}\delta u_{1} \\ \delta u_{2} \\ \delta u_{3}\end{array}\right) d x$
Proof: Let \vec{u} is a CCTCV, and \vec{y} be its TSVS, and $G(\vec{u})=\int_{Q} g_{1}\left(x, t, y_{1}, u_{1}\right) d x d t+\int_{Q} g_{2}\left(x, t, y_{2}, u_{2}\right) d x d t+\int_{Q} g_{3}\left(x, t, y_{3}, u_{3}\right) d x d t$.
From the Assumptions on $g_{l}(l=1,2,3)$, the definition of the Fréchet Derivative, the result of Theorem 2.3, and then using the inequality of Minkowiski (INMK), we have

$$
\begin{align*}
& G(\vec{u}+\overrightarrow{\delta u})-G(\bar{u})=\int_{Q}\left(g_{1_{y_{1}}} \delta y_{1}+g_{1_{u_{1}}} \delta u_{1}\right) d x d t+\int_{Q}\left(g_{2_{y_{2}}} \delta y_{2}+g_{2_{u_{2}}} \delta u_{2}\right) d x d t \\
&+\int_{Q}\left(g_{3_{y_{3}}} \delta y_{3}+g_{3_{u_{3}}} \delta u_{3}\right) d x d t++\varepsilon_{1}(\overrightarrow{\delta u})\|\overrightarrow{\delta u}\|_{0} \tag{21}
\end{align*}
$$

where $\varepsilon_{1}(\overrightarrow{\delta u}) \rightarrow 0$, and $\|\overrightarrow{\delta u}\|_{0} \rightarrow 0$ as $\overrightarrow{\delta u} \rightarrow 0$.
On the other hand, the weak form of the TAHBVP (with $v_{1}, v_{2}, v_{3} \in V$) is

$$
\begin{align*}
& -\left\langle z_{1 t}, v_{1}\right\rangle+\left(\nabla z_{1}, \nabla v_{1}\right)+\left(z_{1}, v_{1}\right)+\left(z_{2}, v_{1}\right)+\left(z_{3}, v_{1}\right)=\left(z_{1} f_{y_{y_{1}}}, v_{1}\right)+\left(g_{1_{y_{1}}}, v_{1}\right) \tag{22}\\
& -\left\langle z_{2 t}, v_{2}\right\rangle+\left(\nabla z_{2}, \nabla v_{2}\right)+\left(z_{2}, v_{2}\right)-\left(z_{1}, v_{2}\right)-\left(z_{3}, v_{2}\right)=\left(z_{2} f_{2_{2}}, v_{2}\right)+\left(g_{2_{y_{2}}}, v_{2}\right) \tag{23}\\
& -\left\langle z_{3 t}, v_{3}\right\rangle+\left(\nabla z_{3}, \nabla v_{3}\right)+\left(z_{3}, v_{3}\right)-\left(z_{1}, v_{3}\right)+\left(z_{2}, v_{3}\right)=\left(z_{3} f_{3_{y_{3}}}, v_{3}\right)+\left(g_{3_{y_{3}}}, v_{3}\right) \tag{24}
\end{align*}
$$

Substituting $v_{i}=\delta y_{i}, \forall i=1,2,3$ in (22-24) respectively, integrating from 0 to T. Finally using integration by parts (IBPs) for each $1^{\text {st }}$ term to obtain
$\int_{0}^{T}\left\langle\delta y_{1 t}, z_{1}\right\rangle d t+\int_{0}^{T}\left[\left(\nabla z_{1}, \nabla \delta y_{1}\right)+\left(z_{1}, \delta y_{1}\right)+\left(z_{2}, \delta y_{1}\right)+\left(z_{3}, \delta y_{1}\right)\right] d t=$
$\int_{0}^{T}\left[\left(z_{1} f_{1_{y_{1}}}, \delta y_{1}\right)+\left(g_{1_{y_{1}}}, \delta y_{1}\right)\right] d t$
$\int_{0}^{T}\left\langle\delta y_{2 t}, z_{2}\right\rangle d t+\int_{0}^{T}\left[\left(\nabla z_{2}, \nabla \delta y_{2}\right)+\left(z_{2}, \delta y_{2}\right)-\left(z_{1}, \delta y_{2}\right)-\left(z_{3}, \delta y_{2}\right)\right] d t=$
$\int_{0}^{T}\left[\left(z_{2} f_{2 y_{2}}, \delta y_{2}\right)+\left(g_{2 y_{2}}, \delta y_{2}\right)\right] d t$
$\int_{0}^{T}\left\langle\delta y_{3 t}, z_{3}\right\rangle d t+\int_{0}^{T}\left[\left(\nabla z_{3}, \nabla \delta y_{3}\right)+\left(z_{3}, \delta y_{3}\right)-\left(z_{1}, \delta y_{3}\right)+\left(z_{2}, \delta y_{3}\right)\right] d t=$
$\int_{0}^{T}\left[\left(z_{3} f_{3 y_{3}}, \delta y_{3}\right)+\left(g_{3 y_{3}}, \delta y_{3}\right)\right] d t$
Now, substituting $y_{i}=\delta y_{i}$ and $v_{i}=z_{i} \quad(\forall i=1,2,3)$ in ((13)a-(15)a), IBS w.r.t. t from 0 to T, they become
$\int_{0}^{T}\left\langle\delta y_{1 t}, z_{1}\right\rangle d t+\int_{0}^{T}\left[\left(\nabla \delta y_{1}, \nabla z_{1}\right)+\left(\delta y_{1}, z_{1}\right)+\left(\delta y_{2}, z_{1}\right)+\left(\delta y_{3}, z_{1}\right)\right] d t=$
$\int_{0}^{T}\left(f_{1}\left(y_{1}+\delta y_{1}, u_{1}+\delta u_{1}\right), z_{1}\right) d t-\int_{0}^{T}\left(f_{1}\left(y_{1}, u_{1}\right), z_{1}\right) d t$
$\int_{0}^{T}\left\langle\delta y_{2 t}, z_{2}\right\rangle d t+\int_{0}^{T}\left[\left(\nabla \delta y_{2}, \nabla z_{2}\right)+\left(\delta y_{2}, z_{2}\right)-\left(\delta y_{1}, z_{2}\right)-\left(\delta y_{3}, z_{2}\right)\right] d t=$
$\int_{0}^{T}\left(f_{2}\left(y_{2}+\delta y_{2}, u_{2}+\delta u_{2}\right), z_{2}\right) d t-\int_{0}^{T}\left(f_{2}\left(y_{2}, u_{2}\right), z_{2}\right) d t$
$\int_{0}^{T}\left\langle\delta y_{3 t}, z_{3}\right\rangle d t+\int_{0}^{T}\left[\left(\nabla \delta y_{3}, \nabla z_{3}\right)+\left(\delta y_{3}, z_{3}\right)-\left(\delta y_{1}, z_{3}\right)+\left(\delta y_{2}, z_{3}\right)\right] d t=$
$\int_{0}^{T}\left(f_{3}\left(y_{3}+\delta y_{3}, u_{3}+\delta u_{3}\right), z_{3}\right) d t-\int_{0}^{T}\left(f_{3}\left(y_{3}, u_{3}\right), z_{3}\right) d t$
Using the assumptions on f_{i} (for $i=1,23$), the Fréchet Derivative of them are exist, then from the result of Theorem 3.2 in [11], and the INMK, the following are yielded
$\int_{0}^{T}\left\langle\delta y_{1 t}, z_{1}\right\rangle d t+\int_{0}^{T}\left[\left(\nabla \delta y_{1}, \nabla z_{1}\right)+\left(\delta y_{1}, z_{1}\right)-\left(\delta y_{2}, z_{1}\right)-\left(\delta y_{3}, z_{2}\right)\right] d t=$
$\int_{0}^{T}\left(f_{1 y_{1}} \delta y_{1}+f_{1 u_{1}} \delta u_{1}, z_{1}\right) d t+\varepsilon_{2}(\overrightarrow{\delta u})\|\overrightarrow{\delta u}\|_{Q}$
$\int_{0}^{T}\left\langle\delta y_{2 t}, z_{2}\right\rangle d t+\int_{0}^{T}\left[\left(\nabla \delta y_{2}, \nabla z_{2}\right)+\left(\delta y_{2}, z_{2}\right)-\left(\delta y_{1}, z_{2}\right)+\left(\delta y_{3}, z_{2}\right)\right] d t=$
$\int_{0}^{T}\left(f_{2 y_{2}} \delta y_{2}+f_{2 u_{2}} \delta u_{2}, z_{2}\right) d t+\varepsilon_{3}(\overrightarrow{\delta u})\|\overrightarrow{\delta u}\|_{Q}$
$\int_{0}^{T}\left\langle\delta y_{3 t}, z_{3}\right\rangle d t+\int_{0}^{T}\left[\left(\nabla \delta y_{3}, \nabla z_{3}\right)+\left(\delta y_{3}, z_{3}\right)-\left(\delta y_{1}, z_{3}\right)+\left(\delta y_{2}, z_{3}\right)\right] d t=$
$\int_{0}^{T}\left(f_{3 y_{3}} \delta y_{3}+f_{3 u_{3}} \delta u_{3}, z_{3}\right) d t+\varepsilon_{4}(\overrightarrow{\delta u})\|\overrightarrow{\delta u}\|_{Q}$
where $\varepsilon_{i}(\overrightarrow{\delta u}) \rightarrow 0,(i=2,3,4)$ and $\|\overrightarrow{\delta u}\|_{0} \rightarrow 0$ as $\overrightarrow{\delta u} \rightarrow 0$.
Subtracting ((31)-(33)) from ((28) - (30)) respectively, then add the obtained equations to get
$\int_{0}^{T}\left[\left(f_{1 u_{1}} \delta u_{1}, z_{1}\right)+\left(f_{2 u_{2}} \delta u_{2}, z_{2}\right)+\left(f_{3 u_{3}} \delta u_{2}, z_{2}\right)\right] d t+\varepsilon_{6}(\overrightarrow{\delta u})\|\overrightarrow{\delta u}\|_{Q}=$
$\int_{0}^{T}\left[\left(g_{1 u_{1}} \delta y_{1}\right)+\left(g_{2 u_{2}} \delta y_{2}\right)+\left(g_{3 u_{3}} \delta y_{3}\right)\right] d t$
where $\varepsilon_{5}(\overrightarrow{\delta u})=\varepsilon_{2}(\overrightarrow{\delta u})+\varepsilon_{3}(\overrightarrow{\delta u})+\varepsilon_{4}(\overrightarrow{\delta u}) \rightarrow 0$, as $\|\overrightarrow{\delta u}\|_{Q} \rightarrow 0$
Now, by substituting (34) in (21), one has

$$
\begin{align*}
G(\vec{u}+\overrightarrow{\delta u})-G(\vec{u})= & \int_{Q}\left[\left(z_{1} f_{1 u_{1}}+g_{1 u_{1}}\right) \delta u_{1}+\left(z_{2} f_{2 u_{2}}+g_{2 u_{2}}\right) \delta u_{2}\right] d x d t \\
& +\int_{Q}\left(z_{3} f_{3 u_{3}}+g_{3 u_{3}}\right) \delta u_{3} d x d t+\varepsilon_{6}(\overrightarrow{\delta u})\|\delta \overrightarrow{\delta u}\|_{Q} \tag{35}
\end{align*}
$$

Where $\varepsilon_{6}(\overrightarrow{\delta u})=\varepsilon_{1}(\overrightarrow{\delta u})+\varepsilon_{5}(\overrightarrow{\delta u}) \rightarrow 0$, as $\|\overrightarrow{\delta u}\|_{Q} \rightarrow 0$
Using the Fréchet Derivative of G and from (35), it yields to
$(\dot{G}(\vec{u}), \overrightarrow{\delta u})=\int_{Q}\left(\begin{array}{l}z_{1} f_{1 u_{1}}+g_{1 u_{1}} \\ z_{2} f_{2 u_{2}}+g_{2 u_{2}} \\ z_{3} f_{3 u_{3}}+g_{3 u_{3}}\end{array}\right) \cdot\left(\begin{array}{l}\delta u_{1} \\ \delta u_{2} \\ \delta u_{3}\end{array}\right) d x$.

4. The necessary and sufficient conditions:

In this section we state and prove of the necessary conditions theorem and sufficient conditions theorem under some additional assumptions.

Theorem (4.1): The necessary conditions:

(i) With Assumptions (A), (B),(C), if $\vec{u} \in \vec{W}_{A}$ is a CCTOCV, then there exist multipliers $\lambda_{l} \in \mathbb{R}, l=0,1,2$ with $\lambda_{0} \geq 0, \lambda_{2} \geq 0, \sum_{l=0}^{2}\left|\lambda_{l}\right|=1$ such that the following Kuhn-TuckerLagrange (TKL) conditions hold:
$\int_{Q} H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u}) \overrightarrow{\delta u} d x d t \geq 0, \forall \vec{w}, \overrightarrow{\delta u}=\vec{w}-\vec{u}$
where $g_{i}=\sum_{l=0}^{2} \lambda_{l} g_{l i}$ and $z_{i}=\sum_{l=0}^{2} \lambda_{l} z_{l i} \quad(\forall i=1,2,3)$ $\lambda_{2} G_{2}(\vec{u})=0$,
(ii) Minimum Weak form : (36a) is equivalent to the following minimum weak form:
$H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u}) \vec{u}(t)=\min _{\vec{w} \in \vec{U}} H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u}) \vec{w}$ a.e. on Q
Proof: (i) For each $l=0,1,2$, and from Lemma 2.1, the functional $G_{l}(\vec{u})$ is continuous and from theorem 3.2, the functional \dot{G}_{l} is continuous w.r.t. \vec{u} and linear in \vec{u}, then \dot{G}_{l} is M-differential for every M, hence by utilizing theorem (2.4), there exist multipliers $\lambda_{l} \in \mathbb{R}$, $l=0,1,2$ with $\lambda_{0} \geq 0, \lambda_{2} \geq 0, \sum_{l=0}^{2}\left|\lambda_{l}\right|=1$, such that (36 a and b) are held, by utilizing the result of theorem 3.2, then (36a) gives
$\sum_{i=1}^{3} \int_{Q}\left[\left(\lambda_{0} z_{0 i}+\lambda_{1} z_{1 i}+\lambda_{2} z_{2 i}\right) f_{i u_{i}}\right] \delta u_{i} d x d t$
$+\sum_{i=1}^{3} \int_{Q}\left[\left(\lambda_{0} g_{0 i u_{i}}+\lambda_{1} g_{1 i u_{i}}+\lambda_{2} g_{2 i u_{i}}\right)\right] \delta u_{i} d x d t \geq 0$
$\Rightarrow \sum_{i=1}^{3} \int_{Q}\left[\left(z_{i} f_{i u_{i}}+g_{i u_{i}}\right)\right] \delta u_{i} d x d t \geq 0$,
where $g_{i}=\sum_{l=0}^{2} \lambda_{l} g_{l i}$, and $z_{i}=\sum_{l=1}^{3} \lambda_{l} z_{l i}, \forall i=1,2,3$
ii) Now, let $\left\{\vec{w}_{k}\right\}$ be a dense sequence in \vec{W}, and $q \subset Q$ be a measurable set "with Lebesgue measure $\mu^{\prime \prime}$ s.t. $\vec{w}(x, t)=\left\{\begin{array}{l}\vec{w}_{k}(x, t), \text { if }(x, t) \in q \\ \vec{u}(x, t), \text { if }(x, t) \notin q\end{array}\right.$.
So (38) becomes

$$
\begin{equation*}
\int_{q} H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u})\left(\vec{w}_{k}-\vec{u}\right) \geq 0, \forall q \tag{39}
\end{equation*}
$$

Or becomes

$$
\begin{equation*}
H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u})\left(\vec{w}_{k}-\vec{u}\right) \geq 0 \text {, a.e.in } Q \tag{40}
\end{equation*}
$$

It means this inequality holds in $Q-Q_{k}$, with $\mu\left(Q_{K}\right)=0$, for all k, thus it holds in $Q / \cup_{k} Q_{k}$, with $\mu\left(\mathrm{U}_{k} Q_{k}\right)=0$. From the density of $\left\{\vec{w}_{k}\right\}$ in \vec{W}, there exists $\vec{w} \in \vec{W}$ such that $H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u})(\vec{w}-\vec{u}) \geq 0$, a.e. in Q
$\Rightarrow H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u}) \vec{u}=\min _{\vec{w} \in \vec{U}} H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u}) \vec{w}$, a.e. in Q.
Conversely, let
$H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u}) \vec{u}=\min _{\vec{w} \in \vec{u}} H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u}) \vec{w}$, a.e. in Q
$\Rightarrow H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u})(\vec{w}-\vec{u}) \geq 0, \forall \vec{w} \in \vec{W}$, a.e. in Q
$\Rightarrow \int_{Q} H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u}) \overrightarrow{\delta u} d x d t \geq 0, \forall \vec{w} \in \vec{W}$.

Theorem (4.2) : The Sufficient conditions:

Suppose that the Assumptions(A,B,C) are held, f_{i} and $g_{1 i}$ for each $i=1,2,3$ that are affine w.r.t. $\left(y_{i}, u_{i}\right)$ for each (x, t), and $g_{0 i}, g_{2 i}$ are convex w.r.t. $\left(y_{i}, u_{i}\right)$ for each (x, t). Then the NCOs in Theorem (4.1) with $\lambda_{0}>0$ are also SCOs.
Proof: Suppose $\vec{u} \in \vec{W}_{A}$ is satisfied the TKL condition, i.e.
$\int_{Q} H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u}) \overrightarrow{\delta u} d x d t \geq 0, \forall \vec{w} \in \vec{W}$.
$\lambda_{2} G_{2}(\vec{u})=0$
Let $G(\vec{u})=\sum_{l=0}^{2} \lambda_{l} G_{l}(\vec{u})$, then from theorem 3.2

$$
\begin{aligned}
\dot{G}(\vec{u}) \cdot \overrightarrow{\delta u}= & \sum_{l=0}^{2} \lambda_{l} \dot{G}_{l}(\vec{u}) \cdot \overrightarrow{\delta u} \\
= & \lambda_{0} \int_{Q} \sum_{i=1}^{3}\left(z_{0 i} f_{i u_{i}}+g_{0 i u_{i}}\right) \delta u_{i} d x d t+ \\
& \lambda_{1} \int_{Q} \sum_{i=1}^{3}\left(z_{1 i} f_{i u_{i}}+g_{1 i u_{i}}\right) \delta u_{i} d x d t+ \\
& \lambda_{2} \int_{Q} \sum_{i=1}^{3}\left(z_{2 i} f_{i u_{i}}+g_{2 i u_{i}}\right) \delta u_{i} d x d t \\
= & \int_{Q} H_{\vec{u}}(x, t, \vec{y}, \vec{z}, \vec{u}) \overrightarrow{\delta u} d x d t \geq 0
\end{aligned}
$$

Now, consider the first three functions in the R.H.S. of the TSVEs (1-3) are affine w.r.t. $\left(y_{i}, u_{i}\right), \forall(x, t) \in Q$, for $i=1,2,3$ resp., i.e.

$$
f_{i}\left(x, t, y_{i}, u_{i}\right)=f_{i 1}(x, t) y_{i}+f_{i 2}(x, t) u_{i}+f_{i 3}(x, t), \quad \forall i=1,2,3
$$

Let $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right) \& \overrightarrow{\vec{u}}=\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right)$ are two given CCTCVs and then by Theorem (2.1), $\vec{y}=\left(y_{u_{1}}, y_{u_{2}}, y_{u_{3}}\right)=\left(y_{1}, y_{2}, y_{3}\right) \& \overrightarrow{\bar{y}}=\left(\bar{y}_{\bar{u}_{1}}, \bar{y}_{\bar{u}_{2}}, \bar{y}_{\bar{u}_{3}}\right)=\left(\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}\right)$ are their corresponding
solutions, i.e. for the first components y_{1} and \bar{y}_{1}, we have
$y_{1 t}-\Delta y_{1}+y_{1}-y_{2}-y_{3}=f_{11}(x, t) y_{1}+f_{12}(x, t) u_{1}+f_{13}(x, t)$
$y_{1}(x, 0)=y_{1}^{0}(x)$
$\bar{y}_{1 t}-\Delta \bar{y}_{1}+\bar{y}_{1}-\bar{y}_{2}-\bar{y}_{3}=f_{11}(x, t) \bar{y}_{1}+f_{12}(x, t) \bar{u}_{1}+f_{13}(x, t)$
$\bar{y}_{1}(x, 0)=y_{1}^{0}(x)$
By multiplying the $1^{\text {st }}$ equation and its initial condition by $\alpha \in[0,1]$, and the $2^{\text {nd }}$ one and its initial condition by $(1-\alpha)$, then add the obtained equations and their initial conditions, yield to
$\left(\alpha y_{1}+(1-\alpha) \bar{y}_{1}\right)_{t}-\Delta\left(\alpha y_{1}+(1-\alpha) \bar{y}_{1}\right)+\left(\alpha y_{1}+(1-\alpha) \bar{y}_{1}\right)-\left(\alpha y_{2}+(1-\alpha) \bar{y}_{2}\right)-$
$\left(\alpha y_{3}+(1-\alpha) \bar{y}_{3}\right)=$
$f_{11}(x, t)\left(\alpha y_{1}+(1-\alpha) \bar{y}_{1}\right)+f_{12}(x, t)\left(\alpha u_{1}+(1-\alpha) \bar{u}_{1}\right)+f_{13}(x, t)$
$\left.\alpha y_{1}(x, 0)+(1-\alpha) \bar{y}_{1}\right)(x, 0)=y_{1}^{0}(x)$
Using the same steps for the other two components to obtain
$\left(\alpha y_{2}+(1-\alpha) \bar{y}_{2}\right)_{t}-\Delta\left(\alpha y_{2}+(1-\alpha) \bar{y}_{2}\right)+\left(\alpha y_{2}+(1-\alpha) \bar{y}_{2}\right)+\left(\alpha y_{3}+(1-\alpha) \bar{y}_{3}\right)+$
$\left(\alpha y_{1}+(1-\alpha) \bar{y}_{1}\right)=$
$f_{21}(x, t)\left(\alpha y_{2}+(1-\alpha) \bar{y}_{2}\right)+f_{22}(x, t)\left(\alpha u_{2}+(1-\alpha) \bar{u}_{2}\right)+f_{23}(x, t)$
$\left.\alpha y_{2}(x, 0)+(1-\alpha) \bar{y}_{2}\right)(x, 0)=y_{2}^{0}(x)$
$\left(\alpha y_{3}+(1-\alpha) \bar{y}_{3}\right)_{t}-\Delta\left(\alpha y_{3}+(1-\alpha) \bar{y}_{3}\right)+\left(\alpha y_{3}+(1-\alpha) \bar{y}_{3}\right)+\left(\alpha y_{1}+(1-\alpha) \bar{y}_{1}\right)-$
$\left(\alpha y_{2}+(1-\alpha) \bar{y}_{2}\right)=$
$f_{31}(x, t)\left(\alpha y_{3}+(1-\alpha) \bar{y}_{3}\right)+f_{32}(x, t)\left(\alpha u_{3}+(1-\alpha) \bar{u}_{3}\right)+f_{33}(x, t)$
$\left.\alpha y_{3}(x, 0)+(1-\alpha) \bar{y}_{3}\right)(x, 0)=y_{3}^{0}(x)$
From equations (41-43), we get that the CCTCV $\overrightarrow{\vec{u}}=\left(\tilde{u}_{1}, \tilde{u}_{2}, \tilde{u}_{3}\right)$, with $\overrightarrow{\tilde{u}}=\alpha \vec{u}+(1-\alpha) \overrightarrow{\vec{u}}$ has the corresponding solutions, $\overrightarrow{\tilde{y}}=\left(\tilde{y}_{1}, \tilde{y}_{2}, \tilde{y}_{3}\right), \overrightarrow{\tilde{y}}=\alpha \vec{y}+(1-\alpha) \overrightarrow{\tilde{y}}$, i.e.
$\tilde{y}_{1 t}-\Delta \tilde{y}_{1}+\tilde{y}_{1}-\tilde{y}_{2}-\tilde{y}_{3}=f_{11}(x, t) \tilde{y}_{1}+f_{12}(x, t) \tilde{u}_{1}+f_{13}(x, t)$
$\tilde{y}_{1}(x, 0)=y_{1}^{0}(x)$
$\tilde{y}_{2 t}-\Delta \tilde{y}_{2}+\tilde{y}_{2}+\tilde{y}_{3}+\tilde{y}_{1}=f_{21}(x, t) \tilde{y}_{2}+f_{22}(x, t) \tilde{u}_{2}+f_{23}(x, t)$
$\tilde{y}_{2}(x, 0)=y_{2}^{0}(x)$
$\tilde{y}_{3 t}-\Delta \tilde{y}_{3}+\tilde{y}_{3}+\tilde{y}_{1}-\tilde{y}_{2}=f_{31}(x, t) \tilde{y}_{3}+f_{32}(x, t) \tilde{u}_{3}+f_{33}(x, t)$
$\tilde{y}_{3}(x, 0)=y_{3}^{0}(x)$
Thus the operator $\vec{u} \mapsto \vec{y}_{\vec{u}}$ is convex - linear (CL) w.r.t (\vec{y}, \vec{u}) for each (x, t).
Also, since $g_{1 i}\left(x, t, y_{i}, u_{i}\right)$ is affine w.r.t. $\left(y_{i}, u_{i}\right)$ for each $i=1,2,3, \forall(x, t) \in Q$,i.e.
$g_{1 i}\left(x, t, y_{1}, u_{1}\right)=h_{1 i}(x, t) y_{i}+h_{2 i}(x, t) u_{i}+h_{3 i}(x, t)$
Since $\vec{u} \mapsto \vec{y}_{\vec{u}}$ is CL, then
$G_{1}(\vec{u}+(1-\alpha) \overrightarrow{\vec{u}})$
$=\sum_{i=1}^{3}\left[\int_{Q} g_{1 i}\left(x, t, y_{i\left(a u_{i}+(1-\alpha), \bar{u}_{i}\right)}, a u_{i}+(1-\alpha), \bar{u}_{i}\right) d x d t\right]$
$=\sum_{i=1}^{3} \int_{Q}\left\{h_{1 i}(x, t) y_{i\left(a u_{i}+(1-\alpha), \bar{u}_{i}\right)}+h_{2 i}(x, t)\left(a u_{i}+(1-\alpha), \bar{u}_{i}+h_{3 i}(x, t)\right\} d x d t\right.$
$=\sum_{i=1}^{3} \int_{Q}\left\{h_{1 i}(x, t)\left(a y_{i}+(1-\alpha), \bar{y}_{i}\right)+h_{2 i}(x, t)\left(a u_{i}+(1-\alpha), \bar{u}_{i}+h_{3 i}(x, t)\right\} d x d t\right.$
$=\alpha \sum_{i=1}^{3} \int_{Q}\left[h_{1 i}(x, t) y_{i}+h_{2 i}(x, t) u_{i}+h_{3 i}(x, t)\right] d x d t+$
$(1-\alpha) \sum_{i=1}^{3} \int_{Q}\left[h_{1 i}(x, t) \bar{y}_{i}+h_{2 i}(x, t) \bar{u}_{i}+h_{3 i}(x, t)\right] d x d t$
$=\alpha G_{1}(\vec{u})+(1-\alpha) G_{1}(\overrightarrow{\vec{u}})$
$G_{1}(\vec{u})$ is CL w.r.t $(\vec{y}, \vec{u}), \forall(x, t) \in Q$.
Since $g_{0 i} \& g_{2 i}$, are convex w.r.t. $\left(y_{i}, u_{i}\right), \forall(x, t) \in Q$, then $G_{0}(\vec{u}) \& G_{2}(\vec{u})$ are convex w.r.t. $(\vec{y}, \vec{u}), \forall(x, t) \in Q$ from the assumptions on the functions $g_{0 i}$ and $g_{2 i}$ and since the sum of integrals of convex function is also convex). Then $G(\vec{u})$ is convex w.r.t. $(\vec{y}, \vec{u}), \forall(x, t) \in Q$, in the convex set $\overrightarrow{\mathrm{W}}$, has a continuous Fréchet Derivative (by theorem 3.2) and satisfies $\dot{G}(\vec{u}) \overrightarrow{\delta u} \geq 0 \quad$ this implies it has a minimum at \vec{u}, i.e.
$G(\vec{u}) \leq G(\vec{W}), \forall \vec{w} \in \vec{W} \Rightarrow$
$\sum_{l=0}^{2} \lambda_{l} G_{l}(\vec{u}) \leq \sum_{l=0}^{2} \lambda_{l} G_{l}(\vec{w}),, \forall \vec{w} \in \vec{W}$
Let $\vec{w} \in \vec{W}_{A}$, with $\lambda_{2} \geq 0$, then from (36b), the above inequality led to
$\lambda_{0} G_{0}(\vec{u}) \leq \lambda_{0} G_{0}(\vec{w}),, \forall \vec{w} \in \vec{W} \Rightarrow G_{0}(\vec{u}) \leq G_{0}(\vec{w}),, \forall \vec{w} \in \vec{W}$. Therefore \vec{u} is a CCTOCV.
5. Conclusions: The CCTOCP controlling by the TNLPBVP with the SVCs is studied. The existence theorem for the CCTOCV with the SVCs is stated and proved under suitable conditions. The mathematical formulation of the ATHBVP associated with the TNLPBVP is discovered. The Fréchet Derivative of the Hamiltonian is derived. The theorem of the NCOs for OP and the theorem of the SCOs for the OP of the TNLPBVP with the SVCs under suitable conditions are stated and prove.

References

[1] A. V. Kryazhimskii, and A. M. Taras'ev, "Optimal control for proportional economic Growth," Proceedings of the Steklov Institute of Mathematics, vol. 293, no. 1,pp. 101-119,2016.
[2] Y. O. Aderinto, A. O. Afolabi, and I. T. Issa, "On optimal planning of electric power generation systems," Journal of Mathematics, vol. 50, no.1,pp. 89-95,2017.
[3] L. Kahina, P. Spiteri, F. Demim, A. Mohamed, A. Nemra, and F. Messine, " Application optimal control for a problem aircraft flight," Journal of Engineering Science and Technology Review, vol. 11, no.1, pp. 156-164, 2018.
[4] N. L. Grigorenko, È. V.Grigorieva, P. K., Roi, and E. N . Khailov, "Optimal control problems for a mathematical model of the treatment of psoriasis," Computational Mathimatics and Modeling, vol. 30, no.4, pp. 352-363, 2019.
[5] M. Afshar, F. Merriksh-Bayat, and M. R. Razvan, " Stepwise Solution for Optimal Control Problems,"Journal of Science and Engineering, vol. 13, no. 2, pp.024-037, 2016.
[6] I. Chrysoverghy, and J. Al-Hawasy, "The Continuous Classical Optimal Control Problem of Parabolic Equation," Scientific Journal of Kerbala University, Vol.8,no.3, pp.57-70, 2010.
[7] G. M. Kadhem, " The continuous classical optimal control problem of partial differential equations," M.Sc. Thesis, Department of Mathematics, College of Science, Mustansiriyah University, Iraq, 2015.
[8] J. Al-Hawasy, and M. Jaber, "The continuous classical optimal control governing by triple parabolic boundary value problem," Ibn Al-Haitham Jour. for Pure \& Appl. Sci.,, vol. 33, no.1, pp.129-142, 2020.
[9] J. Al-Hawasy, and A. Naeif, " The continuous classical boundary optimal control of A couple nonlinear parabolic partial differential equations," 1st Scientific international conference, College of Science, Al-Nahrain University, Special Issus: 123-136, 2017.
[10] J. Al-Hawasy, and M. Jaber," The continuous classical boundary optimal control vector governing by triple linear partial differential equations of parabolic type," Ibn Al-Haitham Jour. for Pure \& Appl. Sci., vol. 33, no.3, pp.113-126, 2020.
[11]J. Al-Hawasy and Thekka M. Rashed, "Continuous Classical Optimal Control of Triple Nonlinear Parabolic Partial Differential Equations", Accepted for publising in Iraqi Journal of Scineces, 2021.

[^0]: *Email: thekaa65368@yahoo.com

