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Abstract

In this paper, the classical continuous triple optimal control problem (CCTOCP)
for the triple nonlinear parabolic boundary value problem (TNLPBVP) with state
vector constraints (SVCs) is studied. The solvability theorem for the classical
continuous triple optimal control vector CCTOCV with the SVCs is stated and
proved. This is done under suitable conditions. The mathematical formulation of the
adjoint triple boundary value problem (ATHBVP) associated with TNLPBVP is
discovered. The Fréchet derivative of the Hamiltonian is derived. Under suitable
conditions, theorems of necessary and sufficient conditions for the optimality of the
TNLPBVP with the SVCs are stated and proved.
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1. Introduction
The subject of optimal control problem is divided into two types, namely the relaxed and
the classical optimal control problems. The first type is mostly studied in the last century,
while the second one began to study at the beginning of this century. On other hand, both of

them are studied for systems that are controlled by ordinary or partial differential equations.
The optimal control problems play an important role in many fields of real-world problems,
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various examples of applications of these problems are investigated in economic growth [1],
electric power [2], aircraft [3], medicine [4], and many other fields.

This role motivates many investigators in the recent years to be interest in studying the
classical optimal control problems (COCTPs) that are controlled by nonlinear ordinary
differential equations [5], or controlled by different types of nonlinear parabolic PDEs like “
single” nonlinear parabolic PDEs (NLPPDEs) [6], or couple NLPPDEs (CNLPPDES) [7], or
triple linear PPDEs (TLPPDEsS) [8]. Other researchers are interested to study the CCTOCP for
CNLPPDEs and TLPPDEs, which involve the Neumann boundary conditions (NBCs) for
more details see [9] and [10], respectively, while authors [11] dealt with the CCTOCP
controlling by the TNLPBVP without SVCs.

All these investigations encourage us to seek about the CCTOCP that is controlled by the
TNLPBVP with the SVCs. The solvability theorem for a CCTOCV with the SVCs is stated
and proved under suitable conditions. The mathematical formulation for the ATHBVP
associated with TNLPBVP is discovered. The Fréchet Derivative of the Hamiltonian is
discussed. Under suitable conditions, the theorems of the necessary and sufficient conditions
for the optimality of the TNLPBVP with the SVCs are stated and proved.

2. Problem Description

Let 1=(0,T), T <o,and 2 c R3 be a bounded open region with Lipschitz boundary
' =00,Q0=0x1,Y=TxIThe CCTOCP consists of the TNPPDEs which represents by
the following boundary value problem of the triple state vector equations TSVEs:

Vie —Ayi +y1— Y2 —y3 = ity ) _in Q 1)
Yar — Ay, + ¥y, + ¥z + y1 = fo(x, t,y2,uz) In Q 2
Y3t —Ays +ys +y1 — ¥, = fa(x, t,ys,uz) in Q 3)
yi(x,t) =0 on X (4)
y1(x,0) = y?(x) on Q (5)
yo(x,t) =0 on X (6)
y2(x,0) = y9(x) on Q (7)
y3(x,t) =0 on X (8)
yg(x,O) = y??(x)l on 'Q (9)

= 3. .
Where x = (x1,%2), Yy = (¥, ¥2,V3) = (y1(x, t), y2(x, t),y3(x,t)) € (HZ(Q)) is the triple
state vector (TSVS) that corresponds to the CCTCV U = (uy, Uy, us),

= (w1 (1), up (x, £), u3(x, t)) € (L2(Q))* and (fy, fo, f3) € (LP(Q)*(fi = filx, t, yi,wi))
is vector of given function defined on (Q X R X U;) X (Q X Rx U,) X (Q X R x U3) with

Uy xU,xUs=0UcR3andlet W=W, xW, xW;, W; c12(Q),i=123, st
W = {W € (L2 (Q))3|W elUaeinQ } with U is convex set.
The cost function is

Go() =X, fQ Joi (x, t,y;,u;)dxdt (10)
The SVCs on the TSV and the CCTCV are

G =Y, fQ g1 (x, t,y,u)dxdt =0, (11)

G, (W) = X, fQ 92i (x, t,y;, u)dxdt < 0, (12)

The set of admissible CCTCV (ADCCTCV) is

W, = {d e W|G,(@) =0,6,@) <0 }

The CCTOCV is to find & € W s.t. Go(d) = mingcz, Go (W).

Let V=V, xV,xV; ={B € H(2))>withv, = v, = v; =00ndQ}.

The notations (¥, ¥) and ||¥||, are referred to the inner product and the norm in (L?(2))3. The
notation ||¥||, is the inner product in (L2(Q))3, and (¥, 7)1= (v1, v1)1+ W2, v2)1 + (V3,V3)1
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represents the inner product in VV ,while V" is the dual of V.
The weak form of the TSVEs (1-9) when y € H}(2))3 is given by

(Y1, v1) + (Vy, Vo) + (71, v1) — (72, v1) — (v, v10) = (f, 1) (13a)
(i v1) = (11(0),v4), Vv, €V (13b)
(V26 V2) + (Vy2, Vu3) + (¥2,v1) + (¥3,v2) + (Y1, v2) = (f2,12) (14q)
(y2,v2) = (72(0),v,), Vv, €V (14b)
(V36 v3) + (Vy3, Vus) + (y3,v3) + (Y1, v3) — (V2. v3) = (f3,v3) (15a)
(v3,v3) = (y3(0),v3), Vvz €V (15b)

To study the existence of a CCTOCV, we need the following assumptions, theorem and
lemma.
Assumptions (A):
(i)Let f; be Carathéodory type (CAT) on Q X (R X R) that satisfies
Ifi(x, &y ud| < milx, )+ ¢yl + ¢lugl
where (x, t) € Q, Vi, Ui € ]R, Ci, éi > 0 and 1; € LZ(Q) Vi :1,2,3
(") fl is Llp w.r.t. Yis i.e. |fi(x' t;yi;ui) - fi(x' t'}_/i'ui)l < Lilyi - yila
where (x,t) €Q,y;,y; ,u; € RandL; >0,V i =1,2,3.

Theorem (2.1)[11]: Existence and Uniqueness Of The Weak Form: With Assumptions (A)
for each i € (L2(R))3 , the weak form of TSVEs (13-15) has a unique solution y =
Y2, ¥3), ¥ € (P V)3, 5.t e = V16 Yor, ¥ae) € (L2 V).
Assumptions (B): Consider g;; (Vi = 1,2,3,vl = 0,1,2) isof CAT on Q@ X (R X R) with:
lgu (ot yuud| <M, £) + () + cup(u)? , where y;, u; € R with ny; € L*(Q)
Lemma (2.1): If Assumptions (B) are held, then u© = G;(1) for all [ = 0,1,2 is continuous
functional on (L2(Q))3.
Proof: The requirement result is obtained (VI = 0,1,2) directly from the assumptions(B) and
Lemma4.lin [11].
Theorem (2.2)[11]: Consider the set WA + @, the functions f;,for all i = 1,2, 3, has the form
fi(x' ¢, yi'ui) = fil(xl L, yl) + fiZ(xl t)ui

With |fi; (x,t,y)] < ni(x,t) + ¢l y;l , where n; € L*(Q) and |fi, (x, t)| < Kk,
If forall i =1,2,3, go; isconvex w.r.t. u; for fixed (x, t, y;). Then there exists a CCTOCV.
Assumptions (C): g;,,, and g;,,,, are of CAT on @ X RX R forl=0,1,2,and i =123
and satisfy

|gliyi(xr L, yirui)l <y (6 t) + eyl + ¢ Jwl, for (x,t) € Q,y;,u; € Ry, € L*(Q)

|91, (6t v u)| < my,, G, ) + ey lyil + g, for (x,8) € Q,y;,u; € Ry, € L2(Q).
Theorem (2.3)[11]: In addition to assumptions (A), if y and y + @ are the TSVS

corresponding to the CCTCV %, % + 6u € (L2(Q))3, respectively. Then

”é‘y”LOO(I,LZ(_Q) =M ”611”0, ||6y||L2(Q) =M ”611”0 ! ”6}7”1’2(“/) =M ||5u||Q
Theorem (2.4) (The TKL Theorem) [7]:
Let U be a nonempty convex subset of a vector space X, K be nonempty convex positive
cone in a normed space Z, and W = {u € U|G,(u) = 0,G,(u) € —K}.
The functional G,:U - R,G:U - R™,G,:U - Z are (m+ 1) — locally continuous at
u € U, and have (m + 1) — derivatives at u where m # 0. If m = 0 , then we assume that
DG;(u),l =0,1,2, are K -linear at the point u. If G,(u)has a minimum atu in W, then it
satisfies the following KUTULA conditions for all w € W
There exists A, € R,A; € R™, A, € Z*, with 1, = 0,1, = 0,Y? ,|4;| = 1 such that
AoDGoy(u,w —u) + AIDG, (u,w — u) + (1, DG, (u,w —u)) = 0
(/12! Gz(“)) = 0.
Main Results
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3. Existence of the CCTOCYV and the Fréchet Derivative
This section deals with the existence of the CCTOCV and the derivation of the Fréchet
Derivative under some suitable Assumptions after the TAHBVP is defined.
Theorem (3.1): Consider the set WA #+ @, the functions f; for all i = 1,2, 3, has the form
fiGotypu) = fiu (ot y) + fia(x, Ouy

With |fiy (6, 6yl < ni(x, 8) + ¢l yil and |fio(x, O] < K,
where n; € L2(Q). If for all = 1,2,3, g4; is independent of u;, go; and g,; are convex w.r.t.
u; for fixed (x, t, y;). Then there exists a CCTOCV.
Proof: From the assumptions on W; and g,; for alli = 1,2,3 with using lemma 2.1and
theorem 2.2, one can get that there exists a CCTOCV with the SVCs.
Theorem (3.2): Neglecting the indicator [ in g; and G;. In addition to assumptions A,B and C
, if the TAHBVP associated with the TNLHBVP (1-9) are defined as:

—Z1e =Dz + 21 + 2, + 23 = z1f1, (6 YL U) + gy, (8 Y1, Ur) (16)
~Zp = B2y + 2, — 21 — 23 = 2[5, (6,1,Y2,Uz) + g2y, (X, 8,72, Uz) (17)
—Z3t —Az3 + 23 — 21 + 2, = Z3f3,, (%, 1, Y3, U3) + g3, (X, £, Y3, Us) (18)
z(x,t) =0, z,(x,t) =0, and z3(x,t) =00n X, (19)

z:(T)=0,2z,(T)=0, and z3(T)=0, onrl (20)

=

Then the Hamiltonian which is defined by:H(x,t,9,2Z,14) = Yo,z fi(x, t,vi, w) +

gi(x, t,y;,u;) has the following Fréchet Derivative,
Zlf1u1 + J1u, duq
G’(ﬁ)@)ZfQ Zafou, T 92u, .<6u2> dx
Z3f3u, + G3u, Sus
Proof: Let 1 isa CCTCV, and y be its TSVS, and
G) = fQ g1(x, t, vy, uy)dxdt + fQ g2(x, t,y,,uy)dxdt + fQ gs (x, t,y3,u3) dxdt.

From the Assumptions on g; (I = 1,2,3), the definition of the Fréchet Derivative, the result of
Theorem 2.3, and then using the inequality of Minkowiski (INMK), we have

G+ 6u) = G@ = [ (g1, 61 + g1, Sw) dxdt + [ (92, 8Y2 + g2, Suz) dxdt
+J,(93,, Y5 + ga,,, 6uz) dxdt + +e, (6u)|[ull, (21)
where & (8u) — 0, and ||5ul|, — 0 as 5u — 0.
On the other hand, the weak form of the TAHBVP (with v, v,,v3 €V ) is
—(216,v1) + (Vz1,Vvy) + (2, v1) + (22, v1) + (23,71) = (Z1f1y1'v1) + (913,1;”1) (22)
=226, V2) + (V25, V5) + (25, v5) — (21, v2) — (23, v2) = (22f2,,,V2) *+ (92, V2) (23)
—(231,v3) + (Vz3,Vv3) + (23, v3) — (21, v3) + (22, V3) =(23f3,,,v3) + (g3, v3) (24)

Substituting v; = 8y; , Vi = 1,2,3 in (22-24) respectively, integrating from 0 to T . Finally
using integration by parts (IBPs) for each 15¢ term to obtain

T T
Jo (6y1pz1)dt + [ [(Vzy,V8y,) + (21, 8y1) + (22, 8y1) + (23, y1)]dt =

Iy [@fy,, 890 + (g, 8y1)] dt (25)
fOT(‘SYZt’ zp)dt + f(,T[(VZZ,V5J’2) + (22,6y,) — (21,6y2) — (23,6y,)]dt =
Iy [Z2f2y,, 692) + (923, 672)]dt (26)
fOT(S)’% zz)dt + fOT[(VZ3'V5Y3) + (23,6y3) — (21,6y3) + (22, 6y3) |dt =
Jo [(Zfsy: 6Y5) + (935, 6y3)]dt (27)

Now, substituting y; = 8y; and v; = z; (Vi = 1,2,3) in ((13)a-(15)a), IBS w.r.t. t from 0 to
T, they become
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fOT(53’1t»Z1)dt + fOT[(V53’1’VZ1) + (8y1,21) + (8y2,21) + (6y3,21)]dt =

Jo (i + 8ys,u + 8ur), z0)dt = [ (fi(ys,w), 2)de (28)
fOT(ath' zy)dt + fOT[(V53’2» Vzy) + (6y2,22) — (8y1,22) — (63, 22)]dt =

Jy (o2 + 82,15 + 812), 22)dt = [ (fo (2, u2), 22)dt (29)
fOT(5Y3t»23)dt + fOT[(V5Y3» Vz3) + (6y3,23) — (8y1,23) + (62, 23)]dt =

fOT(fs (¥3 + 6y3,uz + Sus) , z3)dt — fOT(f3 (V3,u3), z3)dt (30)

Using the assumptions on f; (for i = 1,23) , the Fréchet Derivative of them are exist, then
from the result of Theorem 3.2 in [11], and the INMK, the following are yielded

fOT(53’1t»Z1)dt + f()T[(V5Y1» Vz1) + (6y1,21) — (8Y2,21) — (83, 25)]dt =
I} (Fiy, 81 + fru, Otta, 2) dt + e(8u)|[8u]|, (31)
1820 2)dt + [ [(V6Y2,V2,) + (875, 2,) — (8¥1,2,) + (8Y3,2)]dt =
[} (F29,82 + fou,0Uz, 2,) dt + e3(8u)|[8uf|, (32)
fOT(53’3t' z3)dt + fOT[(V5y3» Vz3) + (6y3,23) — (8y1,23) + (62, 23)]dt =
Jy (Fsy,8ys + fruyStts, 75) dt + e4(S0) |||, (33)
where &;(6u) — 0, (i = 2,3,4) and [|5ul|, — 0 as 6u — 0.
Subtracting ((31)-(33)) from ((28) - (30)) respectively, then add the obtained equations to get
f;[(f1u16u1121) + (f2u25u2'22) + (f3u35u2'22)]dt + 86(5) ”EHQ =
13 1(910,81) + (G20,672) + (Gau, Sy ]dt (34)
where 85(@)) = sz(a) + 53(@’) + e&ﬁ) - 0,as ||ﬁ||Q -0
Now, by substituting (34) in (21), one has
G(l7 + ﬁ) -G = fQ[(Z1f1u1 + G1u,) 0 + (Z2f2u, + 92u2)5u2]dxdt
+J o @ fsu, + G3u,)Susdxdt + e6(Su) |6 (35)
Where &5(6u) = & (6u) + e5(6u) - 0,as ||@>||Q -0
Using the Fréchet Derivative of G and from (35), it yields to
Z1 f1u, + 91u, Suy
(G’(TI),Q) = fQ Zafou, T 92u, .<5u2> dx .
Z3f3u, + G3u, Susz
4. The necessary and sufficient conditions:
In this section we state and prove of the necessary conditions theorem and sufficient

conditions theorem under some additional assumptions.
Theorem (4.1): The necessary conditions:

(i) With Assumptions (A), (B),(C), if u € V_I/Ais a CCTOCV, then there exist multipliers
AMER,1=0,12 with 1, > 0,4, >0, 22] |4;] = 1 such that the following Kuhn-Tucker-
Lagrange (TKL) cmditions hold: . =

fQ Hy(x,t,y,Z,d)6udxdt = 0,,Vw,6u=w —u (36a)
where g; = Y2, A4,gi;and z; = lzzjoillzli (Vi =1,2,3)

(it) Minimum Weak form : (36a) is equivalent to the following minimum weak form:
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-

Hy(x,t,y,Z,0)u(t) = mingHy(x, t,y,Z, U)W a.e.on Q (37)

Proof: (i) For each [ =0,1,2, and from Lemma 2.1, the functional G,(%) is continuous and

from theorem 3.2, the functional G, is continuous w.r.t. i and linear in , then G, is
M —differential for every M, hence by utilizing theorem (2.4), there exist multipliers 4; € R,
2

[=0,12with 1, =>0,4, >0, Y [4;] =1, such that (36 a and b) are held, by utilizing the
result of theorem 3.2, then (36a) ég_isles

i1 fQ[(AOZOi + Azq; + /12Z2i)fiui] Su;dxdt
+ X7 fQ[(AOQOiui + 11910, T Azgzmi)] Su;dxdt = 0
= 2% Jl@ifiu; + g Suidxdt 2 0, (38)
where g; = Y2 o Agy, and z; = Y5 iz, Vi=1,2,3
ii) Now, let {w,} be a dense sequence in W, and q < Q be a measurable set "with Lebesgue
Wi (x,t) ,if (x,t) € q

measure " st. W(x,t) = {ﬁ(x t), if(x,t) & q"

So (38) becomes

fq Hy(x,t,9,2Z,1) (W, —U) = 0,Vq (39)
Or becomes
Hy(x,t,y,Z,0)(W, —u) =20, a.e.in Q (40)

It means this inequality holds in Q — Qy, with u(Qx) =0, for all k, thus it holds in

Q/Uy, O, With (Uy Qi) = 0. From the density of {w, } in W , there exists w € W such that
Hz(x, t,y,Z,u)(w—u) = 0,ae.in Q
= Hy(x,t,y,Z, W)U = ming;Hy(x,t,y,Z,0)w , ae.in Q.
Conversely, let
Hy(x, t,y,Z,0)d = ming.gHy(x, t,y,Z,0)w, ae. in Q
= Hz(x,t,7,Z0)(W—1u) = 0,vw € W ,ae.in Q
> [, Ha(x,t,3,7, ) 6u dxdt > 0, vw € W.
Theorem (4.2) : The Sufficient conditions:
Suppose that the Assumptions(A,B,C) are held, f;and g,; for each i = 1,2,3 that are affine
w.r.t. (y;, u;)for each (x,t), and go; , go; are convex w.r.t. (y;, u;) for each (x,t). Then the
NCOs in Theorem (4.1) with 1, > 0 are also SCOs.

Proof: Suppose i € WA is satisfied the TKL condition, i.e.
J,Ha(x, 9.7, W)éu dxdt = 0,vw € W .
A,G,(U) =0
Let G (%) = Y7, 4,G, (&), then from theorem 3.2
G@).8u = Y2, 1,6, (). du
= )lon Z?=1(20ifiui + Joiy;) Suidxdt +
/11fQ 213=1(Z1ifiui + gliui) Su;dxdt +
AzfQ Zi3=1(zzifiui + 92iy,;) Suydxdt
= [, Ha(x,t,3,7 W)du dxdt >0
Now, consider the first three functions in the R.H.S. of the TSVEs (1-3) are affine w.r.t.
(yi,up), V(x,t) € Q,fori = 1,2,3 resp., i.e.
fitoty,w) = fil(x:_)t)yi + fio(x, Du; + fis(x, 1), Vi=123.
Let 4 = (uqy, uy, u3)& u = (1y, Uy, i3) are two given CCTCVs and then by Theorem (2.1),
Y = Yy Yup Yus) = 01, Y2, ¥3)& =y, Vi ¥z,) = (1,72, 75) are their corresponding
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solutions, i.e. for the first components y,and y,, we have
YVie— Ayi+ y1— Y2 —y3 = fuu(x, )y + fia(x, Dug + fi3(x, 0)
Yie = Ay + Vi — V2 — V3 = fu1 (6 D)1 + fr2(x, Uy + fi3(x, )
y1(x,0) = y7(x)
By multiplying the 15t equation and its initial condition by o € [0,1] , and the 2™¢ one and its
initial condition by(1 — a), then add the obtained equations and their initial conditions, yield
to
(ay1 + A —a)y)e — Alay, + (1 —a)y) + (ay; + (1 — a)y) — (ay, + (1 — @)y,) —
(ay; + (1 — a)ys) =
fi1(x, ) (ay; + (1 — a)yy) + fiz(x, ) (auy + (1 — a)uy) + fi3(x, t) (41q)
ay1(x,0) + (1 — a)y;)(x,0) = y?(X) (41b)
Using the same steps for the other two components to obtain
(ay; + (1 — @)y2)e — Alay; + (1 — @)y,) + (ay; + (1 — a)y,) + (ays + (1 —a)y3) +
(ay; + (1 —a)y,) =
fo1(x, ) (@y, + (1 — a)y,) + foo (x, t) (au, + (1 — a)uy) + foz(x, t) (42a)
ayz(x,0) + (1 — a)y2)(x,0) = y3 (x) (42b)
(ay; + (1= a)y3); — Alays + (1 — a)y3) + (ays + (1 — a)ys) + (ay, + (1 — @)yy) —
(ay, + 1 —a)y,) =
fa1(x, ) (ays + (1 — @)y3) + foo(x, ) (aus + (1 — @)uz) + f33(x, 1) (43a)
ays(x,0) + (1 — a)y3)(x,0) = y3(x) (43b)
From equations (41-43), we get that the CCTCV 7= (T, Ty, Tiz), With T=ai+(1—-a)i
has the corresponding solutions, 3’3 = (91, V2, V3), 53 =ay+(1- a)f/ Ji.e.
Vie — AV + F1 — T2 — T3 = fr1 (6, )1 + fr2(x, )Ty + f13(x, t)
y1(x,0) = y7(x)
Vor — AYo + Yo+ F3 + 1 = f0(x, D)2 + for(x, )T, + fo3(x, £)
Vae — AY3 + Y3+ 51 — J2 = f31(x, )3 + fa2(x, )z + fa3(x, 8)
Thus the operator i — Yy is convex — linear (CL) w.r.t (y,u) for each (x, t).
Also, since gq;(x, t,y;, u;) is affine w.r.t. (y;,u;) foreachi = 1,2,3,V(x,t) € Q ,i.e.
91, t,y1,u1) = hy (3, O)y; + hyi (x, Ouy + hg(x, £)
Since i » yz is CL, then
G(@+ (1 — a)t)
=Y [fQ 91 (% & Vicaup+ -y atts + (1 — @), %;) dxdt]
=i fQ{hu’(x: B)Yitau+ (- + hai(x ) (au; + (1 — @), & + hy(x, t)} dxdt
= Vi fQ{hu‘(x; t)(ay; + (1 — ), 7)) + hyi(x, t) (au; + (1 — @), U; + hz;i(x, t)} dxdt
=a Z?=1 fQ[hli(x! t)yl + hZi(xﬂ t)ui + h3i(xﬂ t)] dxdt +

1-a)Xi, fQ[hu(x» 0)y; + hyi(x, O)u; + hai(x, t)] dxdt

= aG;(@) + (1 — a)G, (1)
G,(W) isCLw.rt (y,u),V(x,t) € Q.
Since go; &g,;.are convex wW.r.t. (y;,u;),V(x,t) € Q, then G,(1)& G,(u) are convex w.r.t.

(y,1),V(x,t) € Q from the assumptions on the functions g,; and g,; and since the sum of
integrals of convex function is also convex). Then G(i) is convex w.r.t. (y,u1),V(x,t) € Q, in

the convex set W, has a continuous Fréchet Derivative (by theorem 3.2) and satisfies
G(@)Su = 0 this implies it has a minimum at , i.e.
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G@) <G(W)vweWw =

oG @) < To WG (W), VW € W

Letw € WA, with 1, > 0, then from (36b), the above inequality led to

0Go(@) < Gy (W), , VW €W = Go(@) < Go(W),,vw € W . Therefore % isa CCTOCV.
5. Conclusions: The CCTOCP controlling by the TNLPBVP with the SVCs is studied. The
existence theorem for the CCTOCV with the SVCs is stated and proved under suitable
conditions. The mathematical formulation of the ATHBVP associated with the TNLPBVP is
discovered. The Fréchet Derivative of the Hamiltonian is derived. The theorem of the NCOs
for OP and the theorem of the SCOs for the OP of the TNLPBVP with the SVCs under
suitable conditions are stated and prove.
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