

ISSN: 0067-2904

Application of Two Rowed Weyl Module in the Case of Partition (6, 6)/(1,U) when $U=0,1$

Alaa Abbas Mansour ${ }^{1}$, Haytham R. Hassan ${ }^{2}$
${ }^{1}$ The Ministry of Education, Directorate General of Education in Wasit
${ }^{2}$ Department of Mathematics, College of Science, Mustansiriyah University

Received:27/12/2020
Accepted: 23/5/2021

Abstract

The main aim of this paper is to study the application of Weyl module resolution in the case of two rows, which will be specified in the skew- partition $(6,6) /(1,1)$ and $(6,6) /(1,0)$, by using the homological Weyl (i.e. the contracting homotopy and place polarization).

Keywords: Divided power algebra, resolution of Weyl module, place polarization, mapping Cone.

$$
\text { تطبيق مقاس وايل لصفين في حالة التجزئة (6,6)/(U ,1) عندما U = 0, } 1
$$

$$
\begin{aligned}
& \text { الاء عباس منصور ¹ , هيث رزوقي حسن } 2 \\
& \text { 1' }{ }^{1} \text { الارة التربية،مديرية التربية العامة في واسط، واسط، العرا } \\
& \text { 2ق }{ }^{2}
\end{aligned}
$$

الخلاصة:
الغرض من هذا البحث هو دراسة تطبيق تحلل مقاس وايل في حالة الصغين والتي ستكون محددة في شبه
التجزئة) 1,1(/)6, 6(و)1,0(/)6,6(وذلك باستخدام طرق همولوجية) أي التوافق الهوموتوبي ودالة الدكان.

1. Introduction

Let R be a commutative ring with identity F and let it be a free R-module. Let $D{ }_{b} F$ be the divided power of degree b.

Consider the figure below, which is associated with the resolution of the two-rowed Weyl module
$K \lambda / \mu F=\operatorname{Im}\left(d^{d^{\prime}}{ }_{\lambda / \mu}\right)$ where ${ }^{d_{\lambda / \mu}^{\prime}}$ is the Weyl map that is described in [1] as follows: $\lambda / \mu=$

We have:

$$
\begin{equation*}
\sum D_{p+k} \otimes D_{q-k} \xrightarrow{\square} D_{p} \otimes D_{q} \xrightarrow{d^{\prime} \lambda / \mu} K_{\lambda / \mu} \rightarrow 0 \tag{1}
\end{equation*}
$$

And by using letter place, the maps will be explained now as follows:

[^0]
$\left(\begin{array}{c|c}w \\ w^{\prime} & 1^{(p+k)} \\ 2^{(q-k)}\end{array}\right) \xrightarrow{\partial_{21}^{(\mathrm{k})}}\left(\begin{array}{c}w \\ \left.w^{\prime} \left\lvert\, \begin{array}{c}(p) \\ 2^{(q-k)}\end{array}\right.\right) \rightarrow\end{array}\right.$
 $\sum_{w}\left(\begin{array}{c}w_{(1)} \\ w^{\prime} w_{(2)}\end{array} \left\lvert\, \begin{array}{c}(t+1)^{\prime}(t+2)^{\prime} \ldots(p+t)^{\prime} \\ 1^{\prime} 2^{\prime} 3^{\prime} \ldots q^{\prime}\end{array}\right.\right)$

where

$$
w \otimes w^{\prime} \in D_{p+k} \otimes D_{q-k} \quad, \quad \square=\sum_{k=t+1}^{q} \partial_{21}^{(k)}
$$

and

$$
d_{\lambda / \mu}^{\prime}=\partial_{q^{\prime} 2} \ldots \partial_{1,2} \partial_{(p+\mathrm{t}), 1} \ldots \partial_{(t+1), 1}
$$

is the composition of place polarization, from positive places $\{1,2\}$ to negative places $\left\{1^{\prime}, 2^{\prime}\right.$, $\ldots,(\mathrm{p}+\mathrm{t})$ ' $\}$.
Also, as shown in [2], \square delivers a component $x \otimes y$ of $D_{p+k} \otimes D_{q-k}$ to $\sum x_{p} \otimes x_{k}{ }_{k} y$, where $\sum x_{p} \otimes x^{\prime}{ }_{k}$ is the element of the diagonal of x in $D_{p} \otimes D_{k}$.

Let Z_{21} be the free generator of the divided power algebra $D\left(Z_{21}\right)$ in one generator, then the divided power component $\mathrm{Z}_{21}^{(k)}$ of degree k of the free generator Z_{21} acts on $D_{p+k \otimes} D_{q-k}$ by place polarization of degree k from place 1 to place 2 .

Particularly, the graded algebra with identity $A=D\left(\mathrm{Z}_{21}\right)$ acts on the graded module $M=\sum D_{p+k} \otimes D_{q-k}=\sum M_{q-k}$, where the degree of the $2^{\text {nd }}$ factor dictates the grading[3-5].

Therefore, M is a graded left A-module, where for $w=\mathrm{Z}_{21}^{(k)} \in A$ and $v \in D_{\beta_{1}} \otimes D_{\beta_{2}}$, by definition, we have:

$$
\begin{equation*}
w(v)=\mathrm{Z}_{21}^{(k)}(v)=\partial_{21}^{(k)}(v) \tag{4}
\end{equation*}
$$

And if we have $\left(t^{+}\right)$, which is the graded strand of degree q

$$
\begin{equation*}
M_{.}: 0 \rightarrow M_{q-t} \xrightarrow{\partial_{s}} \ldots \rightarrow M_{l} \xrightarrow{\partial_{s}} \ldots M_{1} \xrightarrow{\partial_{s}} M_{0} \tag{5}
\end{equation*}
$$

of the normalized bar complex $\operatorname{Bar}(M, A ; \mathrm{S}, \bullet)$, and $\mathrm{S}=\{\mathrm{x}\}$.
By definition, M_{0} is the complex:

$$
\begin{align*}
& \sum_{k_{1} \geq 0} \mathrm{Z}_{21}^{\left(t+k_{1}\right)} x \mathrm{Z}_{21}^{\left(k_{2}\right)} x \ldots x \mathrm{Z}_{21}^{\left(k_{l}\right)} x D_{p+t+|k|} \otimes \mathrm{D}_{q-t-|k|} \xrightarrow{d_{l}} \\
& \sum_{k_{1} \geq 0} \mathrm{Z}_{21}^{\left(t+k_{1}\right)} x \mathrm{Z}_{21}^{\left(k_{2}\right)} x \ldots x \mathrm{Z}_{21}^{\left(k_{l}-1\right)} x \mathrm{D}_{P+t+|k|} \otimes D_{q-t-|k|} \xrightarrow{d_{l-1}} \\
& \ldots \xrightarrow{d_{1}} \sum_{k_{i} \geq 0} \mathrm{Z}_{21}^{(t+k)} x D_{p+t+|k|} \otimes D_{q-t-k} \xrightarrow{d_{0}} D_{p} \otimes D_{q} \tag{6}
\end{align*}
$$

where $|k|=\sum k_{i}$ and d_{l} is the boundary operator ∂_{\varkappa}. Notice that (6) illustrates a left complex $\left(\partial_{\varkappa}^{2}=0\right)$ over the Weyl module in terms of bar complex and letter-place algebra. Furthermore, when, in (6), the separator x disappears between $\mathrm{Z}_{a b}^{(t)}$ and the components in the tensor product of the divided powers, this means that $\partial_{a b}^{(t)}$ is applied to the tensor product [1, 6].
The authors in earlier works $[4,5]$ exhibited the terms and the exactness of the Weyl module resolution in the cases of partition $(8,7)$ and skew-shape $(8,6) /(2,1)$. In this work, we locate the terms and the exactness of the Weyl module resolution in the cases of skewpartition $(6,6) /(1,1)$ and $(6,6) /(1,0)$.
2. Application of Weyl Module Resolution in the Case of Partition (6,6)/(1,1)
2.1 The Terms of Weyl Module Resolution in the Case of Partition $(\mathbf{6}, 6) /(1,1)$

In this section, we find the term for the resolution of Weyl module in the case of the Partition $(6,6) /(1,1)$.

$M_{0}=\mathrm{D}_{5} \otimes \mathrm{D}_{5}$
$M_{1}=\mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{6} \otimes \mathrm{D}_{4} \quad \oplus \quad \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{7} \otimes \mathrm{D}_{3} \oplus \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{8} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(4)} \mathcal{H} \mathrm{D}_{9} \otimes \mathrm{D}_{1}$ $\oplus \mathrm{Z}_{21}^{(5)} \nsim \mathrm{D}_{10} \otimes \mathrm{D}_{0}$
$M_{2}=\mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{7} \otimes \mathrm{D}_{3} \oplus \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{8} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21} \mathcal{K} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{8} \otimes \mathrm{D}_{2}$

$\oplus \mathrm{Z}_{21}^{(4)} \mathcal{\mu} \mathrm{Z}_{21} \mathcal{\mu} \mathrm{D}_{10} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} \mathcal{\mu} \mathrm{Z}_{21}^{(4)} \mathcal{H} \mathrm{D}_{10} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} 火 \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{10} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{10} \otimes \mathrm{D}_{0}$

$\oplus \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{10} \otimes \mathrm{D}_{0}$

$\oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{10} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{10} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} \mathcal{K} \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{10} \otimes \mathrm{D}_{0}$
$M_{5}=\mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{10} \otimes \mathrm{D}_{0}$

2.2 The Exactness of Weyl Resolution in the Case of Partition $(\mathbf{6}, 6) /(\mathbf{1 , 1})$

The contracting homotopies $\left\{S_{i}\right\}$, where $\mathrm{i}=1,2, \ldots, 4$, are:
$S_{0}: D_{5} \otimes D_{5} \rightarrow \sum_{k>0} \mathrm{Z}_{21}^{(k+1)} \mathcal{\varkappa} \mathrm{D}_{5+k} \otimes \mathrm{D}_{5-k}$, such that:
$S_{0}\left(\left(\begin{array}{c|c}w & 1^{(5)} 2^{(k)} \\ w^{\prime} & 2^{(5-k)}\end{array}\right)\right) \quad=\left\{\begin{array}{c}\mathrm{Z}_{21}^{(k)} \mathcal{\varkappa}\left(\begin{array}{c}w \\ \left.w^{\prime} \left\lvert\, \begin{array}{l}1^{(5+\mathrm{k})} \\ 0\end{array}\right.\right)\end{array} 2^{(5-\mathrm{k})}\right.\end{array}\right)$
; if $k>0$
;if $k=0$
$S_{1}: \sum_{k>0} \mathrm{Z}_{21}^{(k)} \mathcal{\varkappa} \mathrm{D}_{5+k} \otimes \mathrm{D}_{5-k} \rightarrow \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{\varkappa} \mathrm{D}_{5+k} \otimes \mathrm{D}_{5-k}$, such that:

$S_{2}: \sum_{k_{i}>0} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{D}_{5+|k|} \otimes \mathrm{D}_{5-|k|} \rightarrow \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{D}_{5+|k|} \otimes \mathrm{D}_{5-|k|}$, such that:
$S_{2}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa\left(\begin{array}{c|c}w & 1^{(5+|m|)} 2^{(m)} \\ w^{\prime} & 2^{(5-|k|-m)}\end{array}\right)\right)=$
$\left\{\begin{array}{ll}\mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{X Z} \\ 0 & \text { (k2)} \mathcal{k _ { 2 1 }} \mathrm{Z}_{21}^{(m)} \mathcal{H}\left(\begin{array}{l}w \\ \left.w^{\prime} \left\lvert\, \begin{array}{l}1^{(5+|k|+m)} \\ 2^{(5-|k|-m)}\end{array}\right.\right)\end{array} ; \text { if } m=1,2,\right. \\ \text {; if } m=0\end{array} \quad\right.$; where $|k|=k_{1}+k_{2}$
$S_{3}: \sum_{k_{i}>0} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{\varkappa} \quad \mathrm{D}_{5+|k|} \otimes \mathrm{D}_{5-|k|} \quad \rightarrow \quad \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{\varkappa}$ $\mathrm{D}_{5+|k|} \otimes \mathrm{D}_{5-|k|}$, such that:

$$
\begin{aligned}
& S_{3}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H}\left(\begin{array}{c}
w \\
w^{\prime} \mid \\
2^{(5+|k|)} 2^{(m)} \\
2^{(5-|k|-m)}
\end{array}\right)\right) \\
& =\left\{\begin{array}{ll}
\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\binom{w}{w^{\prime}| |_{2^{(5-|k|-m)}}^{(5+|k|+m)}} & ; \text { if } m=1 \\
0 & ; \text { if } m=0
\end{array} ;\right.
\end{aligned}
$$

where $|k|=k_{1}+k_{2}+k_{3}$
$S_{4}: \sum_{k_{i}>0} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \quad \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{\varkappa} \mathrm{D}_{5+|k|} \otimes \mathrm{D}_{5-|k|} \rightarrow \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \quad \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{\varkappa}$ $\mathrm{Z}_{21}^{\left(k_{5}\right)} \mathcal{K} \mathrm{D}_{5+|k|} \otimes \mathrm{D}_{5-|k|}$
$S_{4}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{X}\left(\begin{array}{c|c}w & 1^{(5+|k|)} 2^{(m)} \\ w^{\prime} \mid \\ 2^{(5-|k|-m)}\end{array}\right)\right)$
$= \begin{cases}\mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{X} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \mathcal{H}\left(\begin{array}{c}w \\ \left.w^{\prime} \left\lvert\, \begin{array}{l}1^{(5+|k|+m)} \\ 2^{(5-|k|-m)}\end{array}\right.\right)\end{array}\right. & \text {;if } m=1 \\ & \text { if } m=0\end{cases}$
where $|k|=k_{1}+k_{2}+k_{3}+k_{4}$
$S_{0} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{(k)} \varkappa\left(\begin{array}{c}w \\ w^{\prime}\end{array} 1_{2^{(5+k)} 2^{(m)}}^{2^{(5-k-m)}}\right) ~\right) ~=S_{0} \partial_{21}^{(k)}\left(\begin{array}{c|c}w & 1^{(5+k)} 2^{(m)} \\ w^{\prime} & 2^{(5-k-m)}\end{array}\right)$
$=\binom{k+m}{m} \mathrm{Z}_{21}^{(k+m)} \varkappa\left(\left.\begin{array}{c}w \\ w^{\prime}\end{array}\right|_{2^{(5-k-m)}} ^{(5+k+m)}\right)$
and

$$
\begin{aligned}
& =-\binom{k+m}{m} \mathrm{Z}_{21}^{(k+m)} \varkappa\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(5+k+m)} \\
2^{(5-k-m)}
\end{array}\right.\right)+\mathrm{Z}_{21}^{(k)} \varkappa\left(\begin{array}{c|c}
w \\
\left.w^{\prime} \left\lvert\, \begin{array}{c}
1^{(5+k)} 2^{(m)} \\
2^{(5-k-m)}
\end{array}\right.\right) .
\end{array}\right.
\end{aligned}
$$

It is clear that $\quad S_{0} \partial_{\varkappa}+\partial_{\varkappa} S_{1}=i d_{M_{1}}$.

$=-\binom{|k|+k_{2}}{k_{2}} \mathrm{Z}_{21}^{|k|} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c}w \\ w^{\prime} \\ 1^{(5+|k|+m)} \\ 2^{(5-|k|-m)}\end{array}\right)+$

and
where $|k|=k_{1}+k_{2}$.
It is clear that $\quad S_{1} \partial_{\mathcal{\varkappa}}+\partial_{\varkappa} S_{2}=i d_{M_{2}}$.

$$
\begin{aligned}
& =\quad \quad S_{2}\binom{\left(k_{1}+k_{2}\right.}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa\left(\begin{array}{c}
w \mid \\
\left.w^{\prime} \left\lvert\, \begin{array}{c}
1^{(5+|k|)} 2^{(m)} \\
2^{(5-|k|-m)}
\end{array}\right.\right)-~
\end{array}\right.
\end{aligned}
$$

It is clear that $\quad S_{0} \partial_{\varkappa}+\partial_{\varkappa} S_{1}=i d_{M_{1}}$.

$=-\binom{|k|+k_{2}}{k_{2}} \mathrm{Z}_{21}^{|k|} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c}w \\ w^{\prime}\end{array} 1_{2^{(5+|k|+m)}}^{1^{(5+|k|+m)}}\right)+$
$\binom{k_{2}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{X} \mathrm{Z}_{21}^{\left(k_{2}+m\right)} \mathcal{H}\left(\begin{array}{c}w \\ \left.w^{\prime} \left\lvert\, \begin{array}{c}1^{(5+|k|+m)} \\ 2^{(5-|k|-m)}\end{array}\right.\right), ~\end{array}\right.$
and

$$
\begin{aligned}
& =\binom{|k|}{k_{2}} Z_{21}^{|k|} \nsim Z_{21}^{(m)} \varkappa\left(\left.\begin{array}{c}
w \\
w^{\prime} \mid
\end{array}\right|_{2^{(5-|k|-m)}} ^{1^{(5+|k|+m)}}\right)- \\
& \binom{k_{2}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}+m\right)} \mathcal{\varkappa}\left(\begin{array}{c|c}
w \\
w^{\prime} & 1_{2^{(5+|k|+m)}}^{(5-|k|-m)}
\end{array}\right)+\mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)}\left(\begin{array}{c}
w \\
w^{\prime} \\
2^{(5+|k|-m)}
\end{array} 2^{(5+m)},\right.
\end{aligned}
$$

where $|k|=k_{1}+k_{2}$.
It is clear that $\quad S_{1} \partial_{\mathcal{\varkappa}}+\partial_{\mathcal{\varkappa}} S_{2}=i d_{M_{2}}$.

$$
\begin{aligned}
& =\quad S_{2}\left(\begin{array}{c}
\binom{k_{1}+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa\left(\begin{array}{c}
w \\
w^{\prime} \mid \\
2^{(5+|k|-m)}
\end{array} \mathbf{1}^{(5+|k|)} 2^{(m)}\right. \\
(5-
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \mathcal{H}\left(\begin{array}{c|c}
w \\
w^{\prime} & 1^{(5+|k|+m)} \\
2^{(5-|k|-m)}
\end{array}\right)- \\
& \binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{X} \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \mathcal{X} \mathrm{Z}_{21}^{(m)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{4}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{X} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{X Z} \mathrm{Z}_{21}^{\left(k_{4}+m\right)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{(5-|k|-m)}
\end{array}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \partial_{\mathcal{K}} S_{3}\left(\mathrm { Z } _ { 2 1 } ^ { (k _ { 1 }) } \mathcal { \varkappa } \mathrm { Z } _ { 2 1 } ^ { (k _ { 2 }) } \mathcal { Z } \mathrm { Z } _ { 2 1 } ^ { (k _ { 3 }) } \mathcal { \varkappa } \left(\begin{array}{c}
w \\
\left.\left.w^{\prime} \left\lvert\, \begin{array}{c}
1^{(5+|k|)} \\
2^{(5-|k|-m)}
\end{array}\right.\right)\right)=, ~=~
\end{array}\right.\right. \\
& \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{X} \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c}
w \mid \\
w^{\prime} \\
2^{(5+|k|+m)} \\
(5+m)
\end{array}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{3}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{X} \mathrm{Z}_{21}^{\left(k_{3}+m\right)} x\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \partial_{21}^{(m)}\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right) \\
& =-\binom{k_{1}+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} \left\lvert\, \begin{array}{|l}
1^{(5+|k|+m)} \\
2^{(5-|k|-m)}
\end{array}\right.\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{3}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}+m\right)} x\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(5+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right),
\end{aligned}
$$

where $|k|=k_{1}+k_{2}+k_{3}$.
It is clear that $\quad S_{2} \partial_{\mathcal{\varkappa}}+\partial_{\mathcal{\varkappa}} S_{3}=i d_{M_{3}}$.
and
where $|k|=k_{1}+k_{2}+k_{3}+k_{4}$.
It is clear that $\quad S_{3} \partial_{\varkappa}+\partial_{\varkappa} S_{4}=i d_{M_{4}}$.
From the above homotopies, we obtain that $\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}\right\}$ is a contracting homotopy [7], which means that the complex
$0 \rightarrow M_{4} \rightarrow M_{3} \rightarrow M_{2} \rightarrow M_{1} \rightarrow M_{0}$ is exact.

3. Application of Weyl Module Resolution in the Case of the skew- Partition $(6,6) /(1,0)$

3.1 The Terms of Weyl Module Resolution in the Case of the skew- Partition $(6,6) /(1,0)$

The resolution of Weyl Module associated to this case has the following terms.

$$
\begin{aligned}
& M_{0}=\mathrm{D}_{5} \otimes \mathrm{D}_{6} \\
& M_{1}=\mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{7} \otimes \mathrm{D}_{4} \oplus \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{8} \otimes \mathrm{D}_{3} \oplus \quad \mathrm{Z}_{21}^{(4)} \mathcal{H} \mathrm{D}_{9} \otimes \mathrm{D}_{2}
\end{aligned}
$$

$$
\oplus \mathrm{Z}_{21}^{(5)} \varkappa \mathrm{D}_{10} \otimes \mathrm{D}_{1} \oplus \quad \mathrm{Z}_{21}^{(6)} \varkappa \mathrm{D}_{11} \otimes \mathrm{D}_{0}
$$

$$
\begin{aligned}
& \partial_{\mathcal{H}} S_{4}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} x\left(\begin{array}{c|c}
w & 1^{(5+|k|)} 2^{(m)} \\
w^{\prime} \mid & 2^{(5-|k|-m)}
\end{array}\right)\right) \\
& =\partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{(m)} \mathcal{\varkappa}\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)\right) \\
& =\binom{k_{1}+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)- \\
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)- \\
& \binom{k_{4}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}+m\right)} \mathcal{\varkappa}\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \partial_{21}^{(m)}\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right) \\
& =\binom{k_{1}+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)- \\
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)- \\
& \binom{k_{4}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}+m\right)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(5+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(5+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right) \text {, }
\end{aligned}
$$


```
    \(\oplus \mathrm{Z}_{21}^{(5)} \varkappa \mathrm{Z}_{21} \mathcal{\mu} \mathrm{D}_{11} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21}^{(2)} \mathcal{\mathrm { D } _ { 1 1 }} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(4)} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{0}\)
    \(\oplus \mathrm{Z}_{21}^{(3)} \boldsymbol{\mu} \mathrm{Z}_{21}^{(3)} \boldsymbol{\mu} \mathrm{D}_{11} \otimes \mathrm{D}_{0}\)
\(M_{3}=\mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{9} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(3)} \mathcal{Z} \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{10} \otimes \mathrm{D}_{1}\)
    \(\oplus \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \mu \mathrm{D}_{10} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{D}_{10} \otimes \mathrm{D}_{1}\)
```



```
    \(\oplus \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{0}\)
```



```
    \(\oplus \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{D}_{11} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} 火 \mathrm{Z}_{21} \mu \mathrm{D}_{11} \otimes \mathrm{D}_{0}\)
    \(\oplus \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{Z}_{21} \mathcal{\mu} \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{0}\)
\(M_{5}=\mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \varkappa \mathrm{D}_{11} \otimes \mathrm{D}_{0}\)
```


3.2 The Exactness of Weyl Resolution in case of the skew-partition (6,6)/(1,0)

The contracting homotopies $\left\{S_{i}\right\}$, where $\mathrm{i}=1,2,3,4$, are
$S_{0}: D_{5} \otimes D_{6} \rightarrow \sum_{k>0} \mathrm{Z}_{21}^{(k+1)} \mathcal{H} \mathrm{D}_{5+k} \otimes \mathrm{D}_{6-k}$

$S_{1}: \sum_{k>0} \mathrm{Z}_{21}^{(k+1)} \mathcal{H} \mathrm{D}_{6+k} \otimes \mathrm{D}_{5-k} \rightarrow \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{K} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{D}_{6+k} \otimes \mathrm{D}_{5-k}$ such that:

where $|k|=k_{1}+k_{2}$
$S_{2}: \sum_{k_{i}>0} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{\varkappa} \mathrm{D}_{6+|k|} \otimes \mathrm{D}_{5-|k|} \rightarrow \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{D}_{6+|k|} \otimes \mathrm{D}_{5-|k|}$
$S_{3}: \sum_{k_{i}>0} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \quad \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \quad \mathrm{D}_{6+|k|} \otimes \mathrm{D}_{5-|k|} \rightarrow \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \quad \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \quad \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa$
$\mathrm{D}_{6+|k|} \otimes \mathrm{D}_{5-|k|}$
$S_{3}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa\binom{w}{\left.\left.w^{\prime} \left\lvert\, \begin{array}{c}1^{(6+|k|)} 2^{(m)} \\ 2^{(5-|k|-m)}\end{array}\right.\right)\right), ~\left(k^{(k)}\right), ~}\right.$
$= \begin{cases}\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \mathcal{H}\left(\begin{array}{c}w \\ w^{\prime} \left\lvert\, \begin{array}{l}1^{(6+|k|+m)} \\ 0\end{array}\right. \\ 2^{(5-|k|-m)}\end{array}\right) & ; \text { if } m=1 \\ \text {;if } m=0\end{cases}$
where $|k|=k_{1}+k_{2}+k_{3}$
Now, we have
$S_{0} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{(k+1)} \varkappa\left(\begin{array}{c|c}w & 1^{(6+k)} 2^{(m)} \\ w^{\prime} & 2^{(5-k-m)}\end{array}\right)\right)=S_{0} \partial_{21}^{(k+1)}\left(\begin{array}{c|c}w & 1^{(6)} 2^{(k+m)} \\ w^{\prime} & 2^{(5-k-m)}\end{array}\right)=$

It is clear that $\quad S_{0} \partial_{\mathcal{\varkappa}}+\partial_{\mathcal{K}} S_{1}=i d_{M_{1}}$.

$$
\begin{aligned}
& S_{1} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)\right) \\
& =S_{1}\left(-\binom{|k|+1}{k_{2}} Z_{21}^{|k|+1} \varkappa\left(\begin{array}{c|c|c}
w & 1^{(6+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+Z_{21}^{\left(k_{1}+1\right)} \varkappa \partial_{21}^{\left(k_{2}\right)}\left(\begin{array}{c|c}
w & 1^{(6+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-(|k| k+1) \mathrm{Z}|21 k|+1 \varkappa Z(21 m) \varkappa\left(w w^{\prime} \mid 21((65-+||k k||+-m m))\right)+ \\
& \binom{k_{2}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+m\right)} x\left(\begin{array}{c}
w \\
\left.w^{\prime} \left\lvert\, \begin{array}{c}
1^{(6+|k|+m)} \\
2^{(5-|k|-m)}
\end{array}\right.\right), ~
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& \binom{k_{2}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+m\right)} \varkappa\binom{w}{w^{\prime} \mid 1_{2^{(5-|k|-m)}}^{(6+|k|+m)}}+\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)}\left(\begin{array}{c}
w \\
\left.w^{\prime} \left\lvert\, \begin{array}{c}
1^{(6+|k|)} 2^{(m)} \\
2^{(5-|k|-m)}
\end{array}\right.\right), ~(, ~
\end{array}\right.
\end{aligned}
$$

where $|k|=k_{1}+k_{2}$.
It is clear that $\quad S_{1} \partial_{\varkappa}+\partial_{\varkappa} S_{2}=i d_{M_{2}}$.

$$
\begin{aligned}
& S_{2} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|)} 2^{(m)} \\
w^{\prime} \mid & 2^{(5-|k|-m)}
\end{array}\right)\right) \\
& =
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)}\binom{w}{\left.\left.w^{\prime} \left\lvert\, \begin{array}{c}
1^{(6+|k|)} 2^{(m)} \\
2^{(5-|k|-m)}
\end{array}\right.\right)\right), ~(6) ~}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \mathcal{Z} \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{3}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}+m\right)} \mathcal{H}\left(\begin{array}{c}
w \\
w^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(6+|k|+m)} \\
2^{(5-|k|-m)}
\end{array}\right.\right) \text {, }
\end{aligned}
$$

and

$$
\begin{aligned}
& S_{3} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa\binom{w}{\left.\left.w^{\prime} \left\lvert\, \begin{array}{c}
1^{(6+|k|)} \\
2^{(5-|k|-m)}
\end{array}\right.\right)\right), ~\left(x^{(m)}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{H Z} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{X Z} 2_{21}^{\left(k_{3}+k_{4}\right)} \mathcal{\varkappa}\left(\begin{array}{c|c}
w & 1^{(6+|k|)} 2^{(m)} \\
w^{(m-|k|-m)}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \partial_{21}^{\left(k_{4}\right)}\left(\begin{array}{c}
\left.w \left\lvert\, \begin{array}{c}
1^{(6+|k|)} \\
w^{\prime} \mid 2^{(m)} \\
2^{(5-|k|-m)}
\end{array}\right.\right) .
\end{array}\right. \\
& =-\binom{k_{1}+1+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+1+k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{Z} \mathrm{Z}_{21}^{(m)} \varkappa\left(\left.\begin{array}{c}
w \\
w^{\prime}
\end{array}\right|_{2^{(5-|k|-m)}} ^{1^{(6+|k|+m)}}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \quad \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)- \\
& \binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{(m)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{4}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(k_{4}+m\right)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right) \\
& \partial_{\chi} S_{3}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)\right)= \\
& \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)\right) \\
& =-\binom{k_{1}+1+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+1+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{2}+k_{3}}{\mathrm{~K}_{3}} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)- \\
& \binom{k_{3}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}+m\right)} \mathcal{H}\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(k_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)
\end{aligned}
$$

where $|k|=k_{1}+k_{2}+k_{3}$.
It is clear that $\quad S_{2} \partial_{\mathcal{H}}+\partial_{\mathcal{K}} S_{3}=i d_{M_{3}}$.
$S_{4}: \sum_{k_{i}>0} \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{\varkappa} \mathrm{D}_{6+|k|} \otimes \mathrm{D}_{5-|k|} \rightarrow \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{\varkappa} \quad \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{K} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{H}$ $\mathrm{Z}_{21}^{\left(k_{5}\right)} \mathcal{\varkappa} \mathrm{D}_{6+|k|} \otimes \mathrm{D}_{5-|k|}$
$S_{4}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa\left(\begin{array}{c|c}w & 1^{(6+|k|)} 2^{(m)} \\ w^{\prime} & 2^{(5-|k|-m)}\end{array}\right)\right)$

$$
= \begin{cases}\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} \mid 2^{(5-|k|-m)}
\end{array}\right) & \text {; if } m=1 \\
0 & \text {;if } m=0\end{cases}
$$

where $|k|=k_{1}+k_{2}+k_{3}+k_{4}$

$$
\begin{aligned}
& \partial_{\mathcal{H}} S_{4}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{\varkappa}\left(\begin{array}{c|c}
w & 1^{(6+|k|)} 2^{(m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)\right) \\
& =\partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)\right) \\
& =\binom{k_{1}+k_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(k_{1}+k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)- \\
& \binom{k_{2}+k_{3}}{k_{3}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}+k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \binom{k_{3}+k_{4}}{k_{4}} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}+k_{4}\right)} \varkappa \mathrm{Z}_{21}^{(m)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)- \\
& \binom{k_{4}+m}{m} \mathrm{Z}_{21}^{\left(k_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(k_{4}+m\right)} \varkappa\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(k_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(k_{4}\right)} \mathcal{\varkappa}\left(\begin{array}{c|c}
w & 1^{(6+|k|+m)} \\
w^{\prime} & 2^{(5-|k|-m)}
\end{array}\right)
\end{aligned}
$$

From the above homotopies, we have that $\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}\right\}$ is a contracting homotopy [7], which means that our complex is exact.

Acknowledgments

The authors thank Mustansiriyah University / College of Science / Department of Mathematics for supporting this work.

References

[1] David A. Buchsbaum and Gian C. Rota, "Projective Resolution of Weyl Modules", Natl. Acad. Sci. USA, vol. 90, pp.2448-2450, 1993.
[2] David A.Buchsbaum and Brian D.Taylor, "Homotopies for Resolution of Skew-Hook Shapes", Adv. In Applied Math. vol. 30, pp.26-43, 2003.
[3] David A. Buchsbaum, "A Characteristic Free Example of Lascoux Resolution, and Letter Place Methods for Intertwining Numbers", European Journal of Gombinatorics, vol. 25pp.1169-1179, 2004.
[4] Hassan H.R. and Jasim, N.S. "Application of Weyl Module in the Case of Two Rows", J. Phys.: Conf. Ser., vol. 1003 (012051), pp.1-15, 2018.
[5] Shaymaa N. Abd-Alridah, Haytham R. Hassan, "The Resolution of Weyl Module for Two Rows in Special Case of The Skew-Shape", Iraqi Journal of science, vol.61, no. 4, pp.824-830, 2020.
[6] Nubras Yasir Khudair, Haytham R. Hassan, "Application of the Two Rowed Weyl Module in the Case of Partitions $(7,7)$ and $(7,7) /(1,0) "$, Iraqi Journal of science, vol.61, no. 5, pp.1123-1135, 2020.
[7] Vermani L.R. An Elementary Approach to Homotopical algebra, Chapman and Hall/CRC, Monpgraphs and Surveys in pure and Applied Mathematics, 2003.

[^0]: *Email: sosoalamy @gmail.com

