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Abstract

In this research, we study the classical continuous Mixed optimal control vector
problem dominated by couple nonlinear elliptic PDEs. The existence theorem for the
unique state vector solution of the considered couple nonlinear elliptic PDEs for a
given continuous classical mixed control vector is stated and proved by applying the
Minty-Browder theorem under suitable conditions. Under suitable conditions, the
existence theorem of a classical continuous mixed optimal control vector associated
with the considered couple nonlinear elliptic PDEs is stated and proved.

Keywords: State Vector Solution, Mixed Optimal Control Vector, Couple
Nonlinear Elliptic Boundary Value Problem.
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1. Introduction

The subject of control theory has wide applications for many real life problems, in
particular in science and engineering, for example, robotics [1], electric power [2], civil
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engineering [3], Aeronautics and Astronautics [4], medicine [5], economic [6], heat
conduction [7] and biology [8].
In the field of mathematical sciences, optimal control problems are usually formulated in
general either as ODEs [9] or as PDEs [10]. In the last two decades, many authors are
interesting to investigate the continuous classical optimal control problems expended to deal
with more general types of PDEs as the studies of the coupled nonlinear of elliptic, parabolic
and hyperbolic PDEs [11-13]. While, others interested in studying these three kinds of PDEs,
which involve the boundary optimal control, see [14-16]. All these studies and the study of
the classical continuous mixed optimal control vector problem dominated by parabolic PDES
[17] encourage us to interest about such problem.
This work is concerned at first, with the proof of the existence and uniqueness theorem of the
state vector solution of the coupled nonlinear elliptic PDEs for a given control vector using
the Minty- Browder theorem under suitable conditions. Second, the continuity of the
Lipschitz operator between the state vector solutions and their corresponding control vector is
proved. Finally, the existence theorem of a mixed optimal control vector dominating for the
considered PDEs is developed and proved.
2. Description of the problem

Let O c R? be a bounded domain with Lipschitz boundary I' = Q. Then the problem is
considered as:
The state vector equations are assumed as follows:

Ary1 + ag(x)y; — b(x)y,; + fi(x, }?, W) =f; ({C: Uy), in Q 1)
Ayy, + bogx)J’Z +b(xX)y; + hy(x,¥) = hy(x), in Q (2)
2j=1aij%=0,inr (3)
3 .
Shj=1bij 32 =1y, inT 4)
. d 2 F) B
with Ay, = — ;fj=1a—m(aij(x) %) Ay, = — ?Fla—xj(bij(x) %) where ag(x), by (%),

b(x), a;j(x), bij(x) € C*(Q) and U = (uy,uy) = (uy (%), uy(x)) € L2(Q) x L*(T) is the
mixed control vector, y = (y;,y;) = (y1(x),y,(x)) € (H*(Q))?is its state vector solution
and (fy, hy) = (f1(x’ Y, up), hy (x, 37)) € (LZ(Q))Z , (f2 he) = (fz(x' u1),h2(x)) € (LZ(Q))Z
are a vector of given functions for all x € Q.
The set of admissible control W < L2(Q) x L%(T) is
W = {1 € L>(Q) x L2 (T)|i € U; x U, = U € R? a.e.in Q x T}, where U is a convex set.
The cost functional has to be minimized is given by
Go() = fo[901(x! y,uq)ldxidx; + f[‘[QOZ(x' uy)]dy (5)
The mixed optimal control vector problem is to minimize (5) subject to i € w.
Let V.=V xV = H'(Q) x H'(Q). We denote (v,1)q((v,v)r) and [|v]l .2y (Ivll 2r)) the
inner product and the norm in LZ(Q)(LZ(F)), respectively. The (v,v)and [[v]|z:(q are the
inner product and the norm in H1(Q), respectively. While, the inner product and the norm in
L2(Q) x L2(Q) are denoted by (3,9)q = Y7o (v, v) and (15l = et lvill 2oy
respectively. We also denote the inner product and the norm in V by (3,%) = Y& (v, )
and |9l (2 () = -1 llvill g, respectively.
3. Existence of the unique state vector solution:

The weak form of (1- 4) is obtained by multiplying both sides of (1- 2) by v;,v, €V,
integrating both sides and then using Green's theorem in Hilbert space for the terms which
have the second derivatives, once gets.

a1d(Y1;V1) + (aoy1,v1)a — (by2, v)o + (fi(V,ur), vi)g = (f2(W1), v1)q, Vv, EV; (6)
an
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a,(y2,v2) + (boY2, Vo) + (by1, v2)q + (hy (), v2)q = (hy, v2)q + (Up, v2)r, Vv, €V, (7)
We add these two equations to get the following

a(y,v) + (i, ur), vi)a + (h (), v2)q

= (fz (u1),v1)q t(ilz; v)a+ (U, v)r, V(vy,v,) € 17 (8)
where a(y,v) = a;(y1,v1) + (g1, v1)q — (by2, v1)q + a2 (Y2, v2) + (boy2, v2)q +
(by1,v2)q

n 0y, vy nop dy, 0vy

Wlth a1()’1; vl) = ij=1 a’ij a_xla_xj s az(}’z; ’[72) = ij=1
ai(Yi')’i) = Ci“)’i”ipm) ,WherECi > O, i = 1,2
la; i, v)| < Cillyill i lvill 2y, where ¢; > 0,0 = 1,2.

The following assumptions are useful to prove the existence theorem of a unique solution of
Assumptions (A):

ija_xl-'axj’

a(®y)
”5;”(1.[1(9))2
) [a(F, D) < L1117l (2215l ey €1 > 0, V5,5 € V.
c) The functions f;(x,¥,u;) and h,(x,y) are of Carathéodory type on Q x R? x U; and
Q x R? respectively. and the following conditions for ¢,, ¢, € L?(Q) and ¢;,¢;,¢, = 0 are
satisfied:

If1Ce Y, u)l < @1 (x) + Gyl + Cilugl,  Th(x, Y] < () + &Y.
d) fi(x,y¥,u;) and hy(x,y) are monotonic functions for all x € Q w.rt (y,u;) and y
respectively., with
fi(x,0,u;) =0,V(x,uy) € QX Uy, hy(x,0) =0,Vx € Q.

e) The functions f,(x,u;) and h,(x) are of “Carathéodory type” on QX U, and satisfy for
¢3, ¢y € L2(Q),and ¢; = 0

1f2(x, u)| < dps(x) + C1lugl, V(x, ug) € Q% Uy and |[hy ()| < ¢a(x), Vx € Q.
Proposition 3.1[16]: Let f: Q X R®™ — R™ is of “Carathéodory type “, let F be a functional
such that F(y) = fﬂf(x, y(x))dx, where Q is a measurable subset of R™, and suppose that

If Gl < (x) + n(x)llyllj, V(x,y) EQX R,y € L (Q X R™)
where { € L}(QA X R),n € LP-«(QA X R) and a € [1,P], if P € [1,0) andn =0, if P = oo,
then F is continuous on LP (Q x R™).
Theorem 3.1 (Minty-Browder) [15]: Let V be a reflexive Banach space, and A:V — V* be a
continuous nonlinear map such that
(Av, — Avy, v, —v,) > 0, Vv, v, €V, v, # v,and lim ———— =
||V||H1(_Q)_’°° ||v”Hl(.Q)

Then for all f € V* there exists a unique solution y € V of the equation Ay = f.
Theorem 3.2: In addition to assumptions A-(a and d). If one of the functions f; or h; in
assumptions A(d) is strictly a monotone function, Then for each given i € W, the (8) has a
unique solution y € V.
Proof: Let A: V — V*, then (8) can rewrite as follows:

(A3, D) = (F@), 7) (©)
erere (A, D) = a(y, D) + (fi(x,Y,u1),v1)q + (hi(x, Y, v2)q, and
(F(ﬁ): 17) = (20, uy),v1)q + (ha(x),v2)q + (uz, v2)r
i) From assumptions A-(a and d), A is coercive.
if) From assumptions A-(b and c) with applying Proposition 3.1, the mappingy — (A(¥), )
is continuous w.r.t. y.
iii) From assumptions A-(a and d) with applying part (i), A4 is strictly monotone w.r.t. y.

a) a(y, D) is coercive, i.e. > cllFll )z > 0, VI EV.

(Av,v)
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The uniqueness of the state vector solution y € V of (9) is obtained from applying Theorem
(3.1).
4. Existence of the continuous classical mixed control vector

This section deals with the state and proof of the existence theorem will be done under
suitable assumptions. The following lemmas and assumptions are necessary for the proof of
the existence theorem.
Lemma 4.1: In addition to the assumptions (A), if the functionsf, f, are Lipschitz w.r.t. u,
and  h, is Lipschitz w.r.t. y, the function h, is bounded. Then the operator u +— yy; from
W to L2(Q) x L2(T), is Lipschitz continuous, i.e.
1851l 2qpye = LNBUI 2 gy With L > 0.

Proof: Let %, %' € W are two given mixed control vectors, then by Theorem 3.1. y andy’ are
the state vector solutions of (8). Subtracting these two weak forms one from the other, setting
Ay =3' —jand Au = 4’ — @, with % = Ay, then adding the obtained equations to get
ai(Ayy, Ayq) + (aoldys, Ay + az(Ay,, Ay,) + (boAy,, Ay,)g

+(fi(x, ¥ + Ay, ug + Awy) — f1(x, ¥, u1), 8Y)q + (M (x, Y + AY) — hy(x, ), AY)q

= (fo(x, uy + Auy) — fo(x,uy), Ay1)q + (Aug, Ayz)r (10)

Applying assumptions A-(a, d) in (10), then taking the absolute value for both sides to get
—2

C||Ay||(H1(Q))2 < |(f2(x,uy + Auy) — fo(x,uq), Ays)al + |(Auy, Ay,)rl (11)

Using the Lipschitz property, the Cauchy-Schwartz inequality and then the trace operator to
get

— 2 — —_
C||Ay||(H1(Q))2 = 2C1||Au||L2(Q)><L2([‘)||Ay||(H1(Q))2

= ||Ay||(Hl(m)2 < cz||Au||L2(Q)XL2(F), where ¢, = % (12)
which gives the requirement result

||Ay||(Lz(m)2 < L||Au||L2(Q)XLZ(F), where L = cc, (13)
Assumptions (B):
Assume that go; and g, are of CAT on Q X R? x U; and Q X U,, respectively. And the
following conditions are satisfied for j € R2, @ € U With y41, Vo2 € L*(T) and cyq, Coq, Cop =
0:
1901 (%, ¥, u1)| < ¥o1(%) + co17? + Coruf and |goz (x, up)| < v (x) + copu3
Lemma 4.2: With assumptions (B), the functional i — G,() which is defined on L*(Q) X
L*(T) is continuous.
Proof: The functional [f,go1(x,¥, ui)dx;dx, and [ go,(x,u;)dy are continuous on
(L2(Q))? and (L?())?, respectively. (from Assumptions (B) and by using Proposition 3.1).
Hence,
Go(@) = [J 901(x, ¥, u)dxsdx, + [ .go2(x, uz)dy is continuous on L?(Q) x L*(I).
Theorem 4.1: In addition to assumptions (A), assume that W09, f1 andh, are independent
functions of u; and wu, , respectively. The functions f, and h, are bounded such
that f;(x,y,uy) = f1(x, ¥), fa(x, uy) = (),
i, P < p1(x) + & |y, where ¢, € L2(Q), 6 20
|hi(x, )| < o (x) + Clyl,  where ¢, € L2(Q), 6, =0
|f2(0)] < Ky, and [hy (x)] < K7,
If G, is coercive, then there exists a mixed optimal control vector.
Proof: Sincel is convex and bounded, then W is convex and bounded, and it is closed (from
Egorov’s theorem), hence W is weakly compact.
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Since W # @, then there exists w € W, and a minimum sequence {i,} = {(uyn, Usp)} € W
for each n, s. t.:

lim G,(2,) = inf Go(W).

n—-oo wWEW

But W is weakly compact, then there exists a subsequence of {u,,}, say again {u,} which
converges weakly to some point # in W, i.e. i, — # weakly in (L2(Q) x L2(I)).
Then from the proof of Theorem 3.2, corresponding to this sequence {u,,} there is a sequence
of solution {y,, }(with ”3771”(111(9))2 is bounded for alln), of the sequence:

a1 (Y1 V1) + (@oY1n, V1) — (bY2n, V1)a + a2 (Van, V2) + (boY2n, V2)a + (bY1n, V2)q
+(f106Y0), v + (hi (X, ¥0), v2) 0 = (f2(0)Urn, v1)g + (e (X), 1) + (Ugn, v2)r  (14)

Then by Alaoglu theorem, there exists a subsequence of {y,}, say again {y,} such that

¥, — 7 weakly in V.

To prove that (14) converges to
a1 (Y1, v1) + (@Y1, v1)o — (by2, v1)q + a2 (2, v2) + (boy2, v2)q + (byy, v2)q
+(f1(x, ¥),v)a + (hi (%, 1), v2)0 = (f2(0)ug, v1)g + (ha (%), v2)q + (Uz, v2)r (15)
Let (vy,v;) € (C(Q))?, and first for the left hand sides, we have y;,, — y; weakly in V;, i.e.

yin — y; Weakly in L2(Q), Vi = 1,2.

Then from the left hand sides of (14), (15) and by using Cauchy- Schwarz inequality, one has
lay (V1n, v1) + QoY1 V1) — (BY2n, Vo + @2 (Van, V2) + (BoYon, V2)a + (BY1n, V2)a
—a1(y1,v1) — (oY1, v1)a + (b2, v1)a — a2 (¥2, 2) = (boY2, Vo) — (by1, v2)ql
< cllyin = Yillgr@llvillai) + c2llyin — yallz@llvalliz) + csllyen = vallizgllvall iz
+callyan — yZ”Hl(Q)”UZHI-[l(Q) + csllyan — )’2||L2(Q)||U2||L2(Q)

+collyin — yl”LZ(Q)lle”LZ(Q) (16)

From assumptions (B), and Proposition 3.1, the functional ffﬂfl(x, y)v1dx;dx, and

JJ o1 (x, $)vodx; dx, are continuous W.rt. 3,. But 3, — ¥ weakly in (LZ(Q))Z, then by
using the compactness theorem in [16], to get 3, — ¥ strongly in (L2 (Q))z, then
(f1 (%, 3n), v)a + (B (2, 9), v2)0 — (F1 (2, 3), v1)a + (i (2, 3), v2)0, YV (11, 1) € (C(Q))?

i.e. the left hand side of (14) — the left hand side of (15) (17a)
Second, since uy,, — u,; weakly in L?(Q) and u,,, — u, weakly in L2(T"), then
(f2(0) (U1 — wy), V1) + (U — Up, V2)r — 0 (17Db)

From (17a) and (17b) give us that (14) converges to (15), and this convergence holds
V(vy,v;) €V (since (C(©2))? is dense in V) which gives the limit point j = j is a state
vector “ solution of the (15).

Now, from the assumptions on g¢;(x,y,u;) and Lemma 4.2, the integral
I 4901(x, ¥, uy)dxydx, is continuous w.rt (3,u;), and then [f go;(x,¥,us)dx dx, is
weakly lower semicontinuous w.r.t uy, (since go1(x, y,u,), is convex w.r.t u,), i.e.

ffggm(?c: Y, u)dxidx, < Tli_)_rgﬂﬂgm(x; Y, Uip)dx,dx;

= 1111_)_1210 ffﬂ[gm(x: Yo Uin) = Go1 (%, Y, Ugn)]dx1dox, + L_ngoﬂngm(x, Yo Urn)dx1dx;

= 1111_)_1210 ff9901(xJ Vs Urn)dxdix,

The same way can be used to get

f[‘gOZ (x,ux)dy < rlll_)_n;lo frgoz (%, uzp)dy,

Hence, G, (1) is weakly lower semicontinuous w.r.t (y,u),
Therefore, the mixed control vector is obtained from
n—o n—oo wWew
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Conclusions

In this work, the continuity of the operator between the mixed control vector and the
corresponding state vector solution is proved. Moreover, under suitable assumptions, the
existence theorem of a continuous classical mixed-optimal control vector dominated by the
considered PDEs is stated and proved. It is observed that, under suitable conditions, the
Minty-Browder theorem is appropriate to prove the existence of a unique state vector solution
of the coupled nonlinear elliptic PDEs, when the continuous classical mixed control vector is
known.
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