Quasi-Radical Semiprime Submodules

Omar M Al-Ragab, Nuhad S. Al-Mothafar
Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq

Received: 25/4/2021 Accepted: 27/7/2021 Published: 30/5/2022

Abstract
In this paper, we introduce the concept of a quasi-radical semi prime submodule. Throughout this work, we assume that is a commutative ring with identity and is a left unitary module. A proper submodule of is called a quasi-radical semi prime submodule (for short Q-rad-semiprime), if , where is the intersection of all prime submodules of .

Keywords: Semi prime submodule, Quasi-semi prime submodule, Radical semi prime submodule, Quasi-radical semi prime submodule.

1. Introduction
A quasi-prime submodule was introduced and studied in 1999 by Abdul-Razak, M. H. in [1], which is generalization of a prime submodule. A proper submodule of an -module is called prime if whenever then either or . Several generalizations of prime submodules have been introduced such as Semi prime, nearly prime, and nearly quasi-prime submodules [3,4,5]. In this paper, we give another generalization of a prime submodule, where a proper submodule of is called a quasi-radical semi prime submodule (for short Q-rad-semiprime), if whenever , then . Where is the intersection of all prime submodules of .

2. Basic Properties of Quasi-Radical Semiprime Submodules
In this section, we introduce the concept of the quasi-radical semiprime submodule, we also give some examples, some basic properties, and characterizations of this concept.
Definition (2.1): A proper submodule B of an R-module D is said to be quasi-radical semi prime if whenever $a^2 by \in B + rad(D)$ for $a, b \in R$, $y \in D$ and $k \in Z^+$, then $aby \in B$. It is denoted by Q-rad-semiprime.

Theorem (2.2): A submodule B of an R-module D is Q-rad-semiprime if and only if $a^2 by \in B + rad(D)$ for $a, b \in R$, $y \in D$ implies that $aby \in B$.

Proof: Since B is Q-rad-semiprime, then by definition (2.1) we have this direction. For the converse, we suppose that for $a, b \in R$, $y \in D, k \in Z^+$ such that $a^2 by \in B + rad(D)$. Now $a^2 b(a^{k-2} y) \in B + rad(D)$. This implies that $a^{k-1} by \in B$. After a finite number of steps, we get that $aby \in B$. This implies that B is Q-rad-semi prime submodule of D.

Proposition (2.3): Let B be a proper submodule of an R-module D, with $rad(D) \subseteq B$. Then B is Q-rad-semiprime submodule if and only if $[B + rad(D): y]$ is a semiprime ideal of a ring R for each $y \in D$.

Proof: Let B be Q-rad-semiprime. To prove $[B + rad(D): (y)]$ is a semiprime ideal of R, it is enough to show

$$\sqrt{[B + rad(D): (y)]} \subseteq [B + rad(D): (y)].$$

Now, let $a \in \sqrt{[B + rad(D): (y)]}$, then $a^k \in [B + rad(D): (y)]$ for some $k \in Z$, so that $a^k.1.y \in B + rad(D)$. But B is Q-rad-semiprime, this implies $a^k.y \in B$. Since $rad(D) \subseteq B$, then $ay \in B + rad(D)$, which implies that $a \in [B + rad(D): (y)]$, so that $\sqrt{[B + rad(D): (y)]} \subseteq [B + rad(D): (y)]$ which means that $[B + rad(D): (y)]$ is a semiprime ideal of R.

Suppose that $[B + rad(D): (y)]$ is a semiprime ideal of R, let $a^kby \in B + rad(D)$ for $a, b \in R$, $y \in D$, and $k \in Z^+$, this implies that $a^k \in [B + rad(D): (y)]$. But $[B + rad(D): (y)]$ is a semiprime ideal, this implies that $ab \in [B + rad(D): (y)]$, hence $aby \in B + rad(D)$. Thus $aby \in B$, which implies that B is Q-rad-semiprime submodule of D.

Corollary (2.4): A proper submodule B is Q-rad-semiprime submodule of an R-module D with $rad(D) \subseteq B$ if and only if $[B + rad(D): (y)]$ is a semiprime ideal of R for each $y \in D$.

Remark and Examples (2.5):

1- Every prime submodule is Q-rad-semiprime submodule.

Proof: Let B be a prime submodule of D, then $[B: D]$ is prime ideal of R [6]. Let $a, b \in R$, $y \in D$ such that $a^2 by \in B + rad(D)$, since B be a prime submodule of D and $rad(D)$ is the intersection of prime submodule, then $a^2 by \in B$. Primness of B implies that either $aby \in B$ or $a^2 \in [B + rad(D): D]$. Thus $a \in [B + rad(D): D]$ and $aby \in B$.

The next example shows that the converse of (1) is not true.

Example: Let $B = 10Z$ be a submodule of Z as Z-module, and B is Q-rad-semiprime, since $[10Z + rad(Z): y] = [10Z + 0: y] = [10Z: y] = 10Z$, then it is semiprime ideal of Z. However, it is not prime submodule.

2- Every Q-rad-semiprime submodule is semi prime submodule.

Proof: Let $a^2 y \in B$ such that $a \in R$, and $y \in D$, then $a^2 y \in B + rad(D)$ by definition (2.1), so that we have $ay \in B$. Hence B is a semi prime submodule of D.

The following example proves that the converse of (2) is not true.

Example: Let $D = Z_2 \oplus Z_4$ as Z-module and $B = Z_2 \oplus 0$ is a submodule of D. $B + rad(D) = \{(0,0), (1,0), (0,2), (1,2)\}$, then B is not Q-rad-semiprime submodule of, since $9 \times
1(1, 2) = 3^2 \times 1(1, 2) \subseteq B + \text{rad}(D)$, but $3 \times 1(1, 2) \not\subseteq B$, where $B = \{(0,0), (1,0)\}$, \text{rad}(D) = \text{rad}(Z_2) \oplus \text{rad}(Z_4) = \{(0,0), (0,2)\}[2]$. Therefore B is a semi prime submodule.

3- Every maximal submodule of an R-module D is a Q-rad-semiprime submodule. Since every maximal submodule of D is prime, then by (1) it is Q-rad-semiprime.

4- Every quasi-prime submodule B of an R-module D with $\text{rad}(D) \subseteq B$ is Q-rad-semiprime submodule.

Proof: Let B be a quasi-prime submodule of an R-module D, by [1]. $[B : \{y\}]$ is a prime ideal of R for each $y \in D$, hence $[B : \{y\}]$ is a semi prime ideal of R for each $y \in D$. But $\text{rad}(D) \subseteq B$ so $B + \text{rad}(D) = B$ implies $[B + \text{rad}(D) : \{y\}]$ is a semi prime ideal of R for each $y \in D$. Thus B is Q-rad-semiprime, by Corollary (2.4).

The converse is not true in general for example:

Let $D = Z_{12}$ as a Z-module and $= <\tilde{6}>$. B is Q-rad-semiprime submodule of D since $[<\tilde{6}> + \text{rad}(Z_{12}) : \{y\}] = [<\tilde{6}> + <\tilde{6}> : \{y\}] = 6Z$, which is a semi prime ideal of R. But $B = <\tilde{6}>$ is not quasi-prime submodule of Z_{12}, since $[<\tilde{6}> : <\tilde{1}>] = 6Z$ is not a prime ideal of a ring Z.

5- A submodule of Q-rad-semiprime needs not to be Q-rad semi prime. Example: $<\tilde{2}>$ in Z_{12} as a Z-module is Q-rad-semiprime submodule, since $<\tilde{2}>$ is a prime. But $<\tilde{4}>$ is a submodule of $<\tilde{2}>$, which is not Q-rad-semiprime of Z_{12}, since $2^2 \times 1 \times \tilde{1} \not\subseteq <\tilde{4}> + \text{rad}(Z_{12})$ but $2 \times 1 \times \tilde{1} \not\subseteq <\tilde{4}>$.

6- In the Z-module $D = Z$ the submodule $B = nZ$ is Q-rad-semiprime if n is a prime number.

7- It is clear that every semi-prime submodule is Q-rad-semiprime submodule.

Proposition (2.6): Let D be an R-module and B be a proper submodule of D. Then B is Q-rad-semiprime submodule of D if and only if $I^kJC \subseteq B + \text{rad}(D)$ for some ideals $I, J \in R, k \in Z^+$ and C some submodule of D implies $IJC \subseteq B$.

Proof:

\rightarrow) Assume that B is a Q-rad-semiprime submodule of D, and $I^kJC \subseteq B + \text{rad}(D)$ for some ideal I, J of R and some submodule C of D and $k \in Z^+$, we have to show that $IJC \subseteq B$. Let $x \in IJC$, then $x = r_1s_1x_1 + r_2s_2x_2 + \cdots + r_ns_nx_n$ where $r_i \in I, s_i \in J, x_i \in C, i = 1, 2, \ldots, n$, thus $r_is_ix_i \in IJC$ for each $i = 1, 2, \ldots, n$, then $r_is_ix_i \in I^kJC \subseteq B + \text{rad}(D)$, but B is Q-rad-semiprime submodule of D, therefore $r_is_ix_i \in B$ for each $i = 1, 2, \ldots, n$, thus $x \in B$, which implies that $IJC \subseteq B$.

\leftarrow) Suppose $r^ksy \in B + \text{rad}(D), where r, s \in R, y \in D, and k \in Z^+$ implies $r^kys > < r^ks > < y > \subseteq B + \text{rad}(D)$, by hypothesis $< r^ks > < y > \subseteq B$, hence $rsy \in B$. Thus B is rad-semiprime submodule in D.

Corollary (2.7):

B is Q-rad-semiprime submodule of D if and only if $< a >^k < b > C \subseteq B + \text{rad}(D)$, where $k \in Z^+$ and C some submodule of D implies $< a > < b > C \subseteq B$.

Corollary (2.8):

B is Q-rad-semiprime submodule of D if and only if $a^kbc \subseteq B + \text{rad}(D)$, where $k \in Z^+$ and C some submodule of D implies $abc \subseteq B$.

Recall that a proper submodule B of an R-module D is said to be quasi-semi prime for short (Q-semi prime) if whenever $a^kby \in B$ where $a, b \in R, y \in D$ and $k \in Z^+$ implies that $aby \in B$ [8].

Remark (2.9):

If B is Q-rad-semiprime submodule of an R-module D. Then $[B : D]$ is a Q-semi prime ideal of R.

Proof: Let $a^2bt \in [B : D], where a, b, and t \in R$, which implies $a^2b(tD) \subseteq B \subseteq B + \text{rad}(D)$, since B is Q-rad-semiprime submodule of D, then by Corollary
(2.8), we have \(ab(tD) \subseteq B \). Hence \(abt \in [B:D] \). Therefore \([B:D]\) is a Q-semi prime ideal of \(R \).

Remark (2.10):
Let \(B \) be a submodule of an \(R \)-module \(D \), if \([B:D]\) is Q-rad-semiprime ideal of \(R \), then \(B \) cannot be Q rad-semi prime in general. For example: Let \(D = \mathbb{Z} \oplus \mathbb{Z} \) be a \(\mathbb{Z} \)-module and \(B = \langle 18 \rangle + \langle 0 \rangle \) then \([B:D] = \langle 0 \rangle \) is Q-rad-semiprime ideal of \(\mathbb{Z} \) but \(B \) is not Q-rad-semiprime submodule of \(D \), since \(3^2 \times 2 \times (1,0) \in B + rad(D) \), but \(3 \times 2 \times (1,0) \notin B \).

Proposition (2.11):
Let \(D \) be an \(R \)-module. \(B \), \(K \) are submodules of \(D \) and \(K \) is semi prime submodule with \(rad(D) \subseteq K \). Then \(B \cap K \) is Q-rad-semiprime of \(D \).

Proof: Let \(a^nby \in (B \cap K) + rad(D) \) for \(a, b \in R \), \(y \in D \) and \(n \in \mathbb{Z}^+ \), from the modular law, we have \(a^nby \in (B + rad(D)) \cap K \), then \(a^nby \in B + rad(D) \) and \(a^nby \in K \) is Q-rad-semiprime submodule of \(D \) and \(K \) is semi prime submodule, this implies that \(aby \in B \) and \(aby \in K \). Hence \(aby \in B \cap K \), which implies that \(B \cap K \) is Q-rad-semiprime in \(D \).

Corollary (2.12):
If \(B, K \) are Q-rad-semiprime submodule of an \(R \)-module \(D \) with \(rad(D) \subseteq K \), then \(B \cap K \) is a Q-rad-semiprime submodule of \(D \).

Proposition (2.13):
Let \(B, K \) be the submodules of an \(R \)-module \(D \) with \(rad(K) = rad(D) \cap K \) such that \(B \) is a Q-rad-semiprime submodule of \(D \) and \(K \) is not contained in \(B \). Then \(B \cap K \) is a Q-rad-semiprime submodule of \(K \).

Proof: Since \(K \not\subseteq B \), we get \(B \cap K \) is a proper submodule of \(K \). Let \(a, s \in R \), and \(y \in K \), such that \(a^2s y \in (B \cap K) + rad(K) \). Since \(rad(K) = rad(D) \cap K \), then \(a^2s y \in (B + rad(D)) \cap K \), this implies \(a^2s y \in (B + rad(D)) \cap K \) so that \(a^2s y \in B + rad(D) \) and \(a^2s y \in K \). Because of \(B \) is a Q-rad-semiprime submodule of \(D \) and by definition (2.1), we have \(a s y \in B \). Since \(y \in K \) implies that \(a s y \in K \cap B \). Hence \(K \cap B \) is a Q-rad-semiprime submodule of \(K \).

Proposition (2.14):
Let \(D \) and \(D' \) be \(R \)-modules and let \(\Phi : D \rightarrow D' \) be \(R \)-homomorphism. If \(B \) is a Q-rad-semiprime submodule of \(D' \), then \(\Phi^{-1}(B) \) is Q-rad-semi prime submodule of \(D \).

Proof: Let \(a, b \in R \) and \(y \in D \), such that \(a^2b \Phi(y) \in B + \Phi(rad(D)) \), then \(a^2b \Phi(y) \in B + \Phi(rad(D')) \), since \(\Phi(rad(D)) = \Phi(rad(D')) \) [2]. But \(B \) is a Q-rad-semiprime submodule of \(D' \), hence \(ab \Phi(y) \in B \). Thus \(aby \in \Phi^{-1}(B) \). Therefore \(\Phi^{-1}(B) \) is Q-rad-semi prime submodule of \(D' \).

Proposition (2.15):
Let \(D \) and \(D' \) be \(R \)-modules and let \(\Phi : D \rightarrow D' \) be an epimorphism. If \(B \) is a Q-rad-semiprime submodule of \(D \) with \(Ker\Phi \subseteq D \), then \(\Phi(B) \) is Q-rad-semiprime submodule of \(D' \).

Proof: Assume that \(\Phi(B) \) is not proper submodule of \(D' \), so that \(\Phi(B) = D' \), let \(y \in D \), then \(\Phi(y) \in D' = \Phi(B) \), which implies that \(\Phi(y) = \Phi(b) \) for some \(b \in B \), so that \(\Phi(y - b) = 0 \), so \(y - b \in Ker\Phi \subseteq B + rad(D) \), hence \(y \in B \), that means \(B = D \), we get a contradiction. Because of \(Ker\Phi \subseteq B \) this implies \(Ker\Phi \subseteq B + rad(D) \), therefore \(\Phi(B) \) is a proper submodule of \(D' \). Now let \(a, b \in R \) and \(y' \in D' \), such that \(a^2s y' \in \Phi(B) + \Phi(rad(D')) \), since \(\Phi \) is epimorphism, then \(\Phi(y) = y' \) for some \(y \in D \), so \(a^2s \Phi(y) \in \Phi(B) + \Phi(rad(D')) \) this implies that \(a^2s \Phi(y) \in \Phi(B) + \Phi(rad(D)) \) [2], it follows that \(a^2s \Phi(y) = \Phi(x) + \Phi(s) \) for some \(x \in B, s \in rad(D) \) that is \(\Phi(a^2s - x - s) = 0 \), so \(a^2s - x - s \in Ker\Phi \subseteq B + rad(D) \), which implies that \(a^2s y \in B + rad(D) \). But \(B \) is a Q-rad-semiprime submodule of \(D \), so \(asy \in B \), it follows that \(asy' \in \Phi(B) \). Hence \(asy' \in \Phi(B) \). Thus \(\Phi(B) \) is Q rad-semi prime submodule of \(D' \).

2151
Proposition (2.16):
Let \(D = D_1 \oplus D_2 \) where \(D_1 \) and \(D_2 \) be \(R \)-modules. If \(B + \text{rad}(D) = (B_1 + \text{rad}(D_1)) \oplus (B_2 + \text{rad}(D_2)) \) is \(Q \)-rad-semiprime submodule of \(D \) with \(B \subseteq \text{rad}(D) \) then \(B_1 \) and \(B_2 \) are \(Q \)-rad-semiprime of \(D_1 \) and \(D_2 \), respectively.

Proof: To prove that \(B_1 \) is \(Q \)-rad-semiprime of \(D_1 \). Let \(a, s \in R \), and \(\gamma_1 \in D_1 \) such that \(a^2s \gamma_1 \in B_1 + \text{rad}(D_1) \), and \((a^2s \gamma_1, 0) \in (B_1 + \text{rad}(D_1)) \oplus (B_2 + \text{rad}(D_2)) \), so that \(a^2s (\gamma_1, 0) \in (B_1 + \text{rad}(D_1)) \oplus (B_2 + \text{rad}(D_2)) = B + \text{rad}(D) \), and we have \(a^2s (\gamma_1, 0) \in (B_1 \oplus B_2) + (\text{rad}(D_1) \oplus \text{rad}(D_2)) = B + \text{rad}(D) \). But \(B \) is \(Q \)-rad-semiprime submodule of \(D \), so \(a \in B_1 \) for some ideal \(\gamma_1 \in B_1 \). Therefore \(B_1 \) is \(Q \)-rad-semiprime submodule of \(D_1 \). By similar way we can prove that \(B_2 \) is \(Q \)-rad-semiprime of \(D_2 \).

3. Quasi Radical-Semiprime Submodules in Multiplication modules

Remark (3.1):
If \(B \) is a \(Q \)-rad-semiprime submodule of an \(R \)-module \(D \), then \(B \) need not to be \(Q \)-rad-semiprime ideal of \(R \).

Proposition (3.2):
Let \(a \) submodule of an \(R \)-module \(D \). If \(B \) is a \(Q \)-rad-semiprime submodule of \(D \) with \(\text{rad}(R) \subseteq [B: D] \), then \([B: D] \) is \(Q \)-rad-semiprime ideal of \(R \).

Proof: Let \(a^2bt \in [B: D] + \text{rad}(R) \) where \(a, b, t \in R \), we have to show that \(aby \in [B: D] \).
Since \(\text{rad}(R) \subseteq [B: D] \), which implies \([B: D] + \text{rad}(R) = [B: D] \). Hence \(a^2bt \in [B: D] \), this implies that \(a^2b(tD) \subseteq B \subseteq B + \text{rad}(D) \), but \(B \) is \(Q \)-rad-semi prime submodule of \(D \), then by Corollary (2.7) \(ab(tD) \subseteq B \). Hence \(aby \in [B: D] \). Therefore \([B: D] \) is \(Q \)-rad-semiprime ideal of \(R \).

Recall an \(R \)-module \(D \) is called a multiplication submodule if for each submodule \(B \) of \(D \) there exists an ideal \(I \) of \(R \) such that \(B = ID \). In fact \(D \) is called a multiplication module if \([B: D]D = B \) for each submodule \(B \) of \(D \).

Proposition (3.3):
Let \(D \) be a finitely generated multiplication faithful \(R \)-module with \(\text{rad}(D) = \text{rad}(R) \). If \([B: D] \) is a \(Q \)-rad-semiprime ideal of \(R \), then \(B \) is a \(Q \)-rad-semiprime submodule of \(D \).

Proof: Let \(a^2by \in B + \text{rad}(D) \) for \(a, b \in R \), and \(\gamma \in D \), then \(a^2b(y) \subseteq B + \text{rad}(D) \). Since \(D \) is multiplication \(R \)-module, then \((y) = ID \) for some ideal \(I \) of \(R \) and \(B \subseteq [B: D]D \), hence \(a^2bID \subseteq [B: D]D + \text{rad}(D)D \) where \(\text{rad}(D) = \text{rad}(R)D \).
But \(D \) is finitely generated multiplication faithful \(R \)-module, so \(a^2bI \subseteq [B: D] + \text{rad}(R) \), since \([B: D] \) is a \(Q \)-rad-semiprime ideal of \(R \), then \(abI \subseteq [B: D] \), hence \(abID \subseteq [B: D]D \), then \(abID \subseteq B \), so \(ab(y) \subseteq B \), implies \(aby \in B \). Thus \(B \) is a \(Q \)-rad-semi prime submodule of \(D \).

Proposition (3.4):
Let \(D \) be a finitely generated multiplication faithful \(R \)-module with \(\text{rad}(D) = \text{rad}(R) \). If \(I \) is a \(Q \)-rad-semiprime ideal of \(R \), then \(ID \) is a \(Q \)-rad-semi prime submodule of \(D \).

Proof: Let \(a^2by \in ID + \text{rad}(D) \) for \(a, b \in R \), and \(\gamma \in D \), then \(a^2b(y) \subseteq ID + \text{rad}(D) \). Since \(D \) is multiplication \(R \)-module, then \((y) = JD \) for some ideal \(J \) of \(R \) and since \(\text{rad}(D) = \text{rad}(R)D \), then \(a^2bJD \subseteq ID + \text{rad}(R)D \), then \(a^2bJD \subseteq (I + \text{rad}(R))D \). Since \(D \) is a finitely generated multiplication faithful \(R \)-module, then \(a^2bJ \subseteq I + \text{rad}(R) \). But \(I \) is \(Q \)-rad-semi prime ideal of \(R \), then \(ab \subseteq I \), so \(abJD \subseteq ID \). Hence \(ab < y > \subseteq ID \), which implies that \(aby \in ID \). Thus \(ID \) is \(Q \)-rad-semi prime submodule of \(D \).

Proposition (3.5):
Let \(D \) be a faithful finitely generated multiplication \(R \)-module, and \(B \) be a proper submodule of \(D \) with \(\text{rad}(D) = \text{rad}(R)D \) and \(\text{rad}(R) \subseteq [B: D] \). then the following statements are equivalent:
1- \(B \) is \(Q \)-rad-semiprime submodule of \(D \).
2- \([B:D]\) is Q-rad-semiprime ideal of \(R\).

3- \(B = ID\) for some Q rad-semi prime ideal \(I\) of \(R\).

Proof:

1→2) It is clear by Proposition (3.2).

2→1) It is clear by Proposition (2.11).

2→3) Since \([B:D]\) is Q-rad-semiprime ideal of \(R\) and \(B = [B:D]D\). It follows that \(B = ID\) and \(I = [B:D]\) an Q-rad-semiprime ideal of \(R\).

3→2) Assume that \(B = ID\) and \(I = [B:D]\) an Q-rad-semiprime ideal of \(R\). But \(D\) be multiplication we have \(B = [B:D]D = ID\), since \(D\) be a faithful finitely generated multiplication, then \(I = [B:D]\), implies that \([B:D]\) is Q-rad-semiprime ideal of \(R\).

Proposition (3.4):

If \(B\) is a proper submodule of an \(R\)-module \(D\). Then \(B\) is a Q-rad-semiprime submodule of \(D\) if and only if \([B:D]\) is a Q-rad-semiprime submodule of \(D\) for every ideal \(J\) of \(R\) where \(\text{rad}(D).J \subseteq B\).

Proof:

→) Let \(a^2by \in [B:D] + \text{rad}(D)\) for \(a,b \in R\), and \(y \in D\), since \(\text{rad}(D).J \subseteq B\), then \(\text{rad}(D) \subseteq [B:D]J\), which implies that \([B:D] + \text{rad}(D) = [B:D]\), that is \(a^2by \in [B:D]\), so \(a^2by \subseteq B\) and \(a^2by \subseteq B\) for each \(t \in J\), since \(B\) is a Q-rad-semiprime submodule of \(D\), hence \(aby \in B\) for each \(t \in J\), so \(aby \subseteq B\), thus \(aby \in [B:D]\), which implies that \([B:D]\) is a Q-rad-semiprime submodule of \(D\).

←) Suppose that \([B:D]\) is a Q-rad-semiprime for each ideal \(J\) of \(R\). If \(J = R\), this implies that \([B:R] = B\) is a \(Q\)-rad-semi prime submodule of \(D\).

Proposition (3.5):

Let \(D\) be a multiplication \(R\)-module and \(B\) be proper submodule of \(D\), then \(B\) is a Q-rad-semiprime submodule of \(D\) if and only if \(A^2Cy \subseteq B + \text{rad}(D)\) implies that \(ACy \subseteq B\) for each submodules \(A\) and \(C\) of \(D\) and \(y \in D\).

Proof:

→) Assume that \(A^2Cy \subseteq B + \text{rad}(D)\) where \(A\), \(B\), and \(C\) are submodule of \(D\) with \(y \in D\). Since \(D\) is a multiplication \(R\)-module. Then \(A = ID\) and \(C = JD\) for som ideal \(I, J\) of \(R\). Hence \(A^2Cy = (ID)^2(JD)y = I^2Jy \subseteq B + \text{rad}(D)\). But \(B\) is a Q-rad-semiprime submodule of \(D\), which implies that by corollary(2.7) \(I^2Jy \subseteq B\). Hence \(ACy \subseteq B\).

←) Suppose that \(I^2Jy \subseteq B + \text{rad}(D)\) where \(I\) and \(J\) are ideal in \(R\) and \(y \in D\). But \(D\) is a multiplication \(R\)-module, so that \(A^2Cy \subseteq B + \text{rad}(D)\) where \(A^2 = (ID)^2 = I^2D\) and \(C = JD\).

By assumption, we have \(ACy \subseteq B\), so that \(I^2Jy \subseteq B\). Hence by corollary (2.7) \(B\) is a Q-rad-semi prime submodule of \(D\).

Proposition (3.6):

Let \(B\) be a proper submodule of a multiplication \(R\)-module \(D\). Then \(B\) is a Q-rad-semiprime submodule of \(D\) if and only if \(A^2CK \subseteq B + \text{rad}(D)\) where \(A,C,\) and \(K\) are submodules of \(D\), then \(ACK \subseteq B\).

Proof:

→) Assume that \(A^2CK \subseteq B + \text{rad}(D)\) where \(A, C,\) and \(K\) are submodule of \(D\). Since \(D\) is a multiplication \(R\)-module. Then \(A = ID\) and \(C = JD\) for som ideal \(I, J\) of \(R\). Hence \(A^2CK = I^2JK \subseteq B + \text{rad}(D)\). But \(B\) is a Q-rad-semiprime submodule of \(D\). From Corollary(2.7), we have \(IJK \subseteq B\). Hence \(ACK \subseteq B\).

←) Suppose that \(I^2JK \subseteq B + \text{rad}(D)\) where \(I, J\) are ideal in \(R\). Since \(D\) is a multiplication \(R\)-module, then \(I^2JK = A^2CK \subseteq B + \text{rad}(D)\) where \(A^2 = (ID)^2 = I^2D\) and \(C = JD\). By assumption, we have \(ACK \subseteq B\), which implies \(IJK \subseteq B\). By Corollary (2.7), we get \(B\) is a Q rad-semi prime submodule of \(D\).

Recall that a proper submodule \(B\) of an \(R\)-module \(D\) is called a primary submodule if for
each $a \in R$, $y \in D$ such that $ay \in B$, then either $a \in B$ or $a^k \in [B : D]$ for some $k \in \mathbb{Z}^+[9]$.

Proposition (3.7):

Let B be a primary submodule of an R-module D with $\text{rad}(D) \subseteq B$. Then the following statements are equivalent:

1. B is a quasi-prime submodule of D.
2. B is a Q-rad-semi prime of D.
3. B is semi prime submodule of D.

Proof:

(1) \implies (2) by Remark and Example (2.5,4) every quasi-prime submodule is Q rad-semi prime submodule.

(2) \implies (3) is a semiprime submodule of D by Remark and Example (2.5, 2).

(3) \implies (1) Let $a, b \in R$ and $y \in D$, such that $a \cdot b \cdot y \in B$, we have to show that $a \cdot y \in B$ or $b \cdot y \in B$, let $b \notin B$, since B is a primary submodules of D, then $a^k \in [B : D]$ and we get $a \in \sqrt{[B : D]}$. But B is a semiprime of D, then $[B : D]$ is semiprime ideal by [6], so $a \in [B : D]$. Therefore $a \cdot y \in B$ for all $y \in D$. Which implies that B is a quasi-prime submodule of D.

Proposition (3.8):

If B is a proper submodule of multiplication R-module D with $\text{rad}(D) \subseteq B$ and $[B : D]$ is a primary ideal of R. Then the following statements are equivalent:

1. B is a quasi-prime submodule of D.
2. B is a Q-rad-semi prime submodule of D.
3. B is Q-semi prime submodule of D.

Proof:

1\implies2) Since $a \cdot d(D) \subseteq B$ then by Remark and Example (2.5,4) B is Q-rad-semi prime submodule.

2\implies3) It follows from Remark (2.9) B is Q-semi prime submodule of D.

3\implies1) Since B is a Q-semi prime submodule of then $[B : D]$ is semi prime ideal of R by [7]. From assumption $[B : D]$ is a primary ideal of R, we get $[B : D]$ is a prime ideal. Since D is multiplication R-module then B is a quasi-prime submodule of D [1, proposition (2.1.9)].

3\implies1) Since $\text{rad}(D) \subseteq B$ implies that B is rad-semi prime. Then B is a Q-rad-semiprime submodule of D by Remark and Example (2.5, 7).

References:

