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Abstract 

      This paper is concerned with the controllability of a nonlinear impulsive 

fractional integro-differential nonlocal control system with state-dependent delay in 

a Banach space. At first, we introduce a mild solution for the control system by 

using fractional calculus and probability density function. Under sufficient 

conditions, the results are obtained by means of semigroup theory and the 

Krasnoselskii fixed point theorem. Finally, an example is given to illustrate the main 

results.  
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مع تأخير يعتطد على الحالة  تكاملي كدري متدارع غير محلي  –لظظام تفاضلي  الديطرةحهل إمكانية 
 في فضاء بظاخ

 

*الخالق عهيد مزعل , خضير عبيس حديننصيف جاسم الجهاري ,عبد   
 قدم الرياضات, كلية العلهم,الجامعة الطدتظصرية, بغداد ,العراق

 
 الخلاصة

 تكاملي كدري متدارع  غير خطي غير محلي  –يهتم هذا البحث بإمكانية الديطرة لظظام تحكم تفاضلي      
تقديم حلًا معتدلًا لظظام التحكم باستخدام حداب مع تأخير يعتطد على الحالة في فضاء باناخ. في البداية  تم 

التفاضل والتكامل الكدري ودالة كثافة الًحتطال , في حالة وجهد  شروط كافية  تم الحصهل على الظتائج عن 
طريق نظرية شبه الزمرة ونظرية الظقطة الصامدة لكراسظهسيلدكي. أخيراا ، تم إعطاء مثال لتهضيح الظتائج 

 .الرئيدية

1. Introduction 

 In 1695, fractional calculus was developed as an important mathematical field. The ideas of 

fractional calculus have recently been successfully applied to several fields, and researchers 

are increasingly finding that fractional calculus can accurately describe many events in the 

natural sciences and architecture. Rheology, fluid current, dispersion-like diffuse transport, 

and dynamic systems are among the most critical areas of fractional calculus today [1–5]. The 

fact that it provides an outstanding method for modelling diverse processes in many areas of 

physics, chemistry, economics, and other sciences. It is a clear impetus for further study into 

the fractional evolution equation. There are several kinds of fractional derivatives, like 

Riemann-Liouville, Caputo, Hadamard, Grunwald-Letnikov, and  Hilfer, for more details; see 
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[5–7]. In several areas of science and engineering, such as fluid mechanics, biological 

simulations, and chemical kinetics, integro-differential equations are used. In [8], the authors 

give a comprehensive analysis of integro-differential equations and their solutions using the 

Laplace transform procedure. Recently fractional integro-differential equations have been 

used to model a wide variety of physical processes, including heat conduction in memory 

objects, mixed conduction, convection, and radiation problems [3,9]. The existence of mild 

solutions for fractional integro-differential equations was investigated by using the fixed point 

theorem in many publications[10–15]. 

Control theory is an important field of mathematics that deals with the structure and study of 

control systems. Controllability is one of the basic principles of mathematical control theory 

that has a profound influence on control systems, where it is important in many control 

problems for deterministic and stochastic control theories. The principle of controllability, on 

the other hand, is well developed for control problems expressed as abstract differential 

equations and solved using numerous methods of infinite and infinite-dimensional spaces. In 

general, controllability refers to the ability to steer a control system from an arbitrary initial 

state to an arbitrary final state by using a set of admissible controls. Recently, many authors 

investigated the controllability of fractional differential equations by using various 

techniques. In papers [16–20], the researchers discussed the controllability of various 

nonlinear fractional differential equations with the help of semigroup theory and fixed point 

theorems, as for the papers [21–27], the authors used Mittag-Leffler function and fixed point 

theorems to investigate controllability for fractional differential equations. 

Delay differential equations with state-dependent delay arise normally from the modelling of 

infectious disease transmission, the modelling of immune response systems and the modelling 

of respiration, where the delay is due to the time required to accumulate an appropriate dosage 

of infection or antigen concentration[28]. On the other hand, delay differential equations are 

an abstract formulation of many mathematical models that can be used in various physical, 

chemical, and biological processes. It is mandatory to provide a delay in the simulation of 

many real-world problems, which is often based on the previous state of the unknown 

function. As a result, state-dependent delay differential equations emerge. The length of time 

to maturity, for example, is regarded as a continuous delay in a simple population dynamics 

model; see [29]. In [30], the author discovered that the time it takes for Antarctic whales and 

seals to reach adulthood changes depending on the population's health. Also, can be applied 

Differential equations with State-dependent delay on mathematical models to dynamics, 

control theory, and neural networks. The authors of [31] considered a population model with a 

state-dependent delay by 

 ( )  ∫   ( )   (   )
 

   ( ( ))

    

Where  ( ) and   ( ) represent immature individuals and mature individuals, respectively. 

 ( ( )) describes a threshold age, which is the maturation time for an immature individual 

that matures at a time    based on the overall population  ( )      )     ( )  The 

constants      refer to the rate of dies from individual  ( ) and the rate immature population 

produces, respectively. There are many papers on the controllability of the various fractional 

control systems with delay. For example, Ravichandran et al.[32] established controllability 

of nonlinear fractional integro-differential equations with state-dependent delay in Banach 

spaces by using Leray–Schauder alternative theorem and Krasnoselskii fixed point theorem 

with the resolvent operator. Aimene et al. [18] used the Drabo fixed point theorem and the 

properties of measures of noncompactness with semigroup theory to obtain the controllability 

of impulsive fractional differential equations with delay. Huang et al.[33] derived a set of 

sufficient conditions for the existence and controllability of mild solutions for a class of 
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second-order neutral impulsive stochastic evolution integro-differential equations with state-

dependent delay by using fixed point theorems. MA and LIU[17] discussed the exact 

controllability of fractional neutral integro-differential equations with state-dependent delay 

in Banach spaces with the help of fixed point theorems and fractional calculus. In this paper, 

our purpose is to study the controllability of a nonlinear impulsive fractional integro-

differential nonlocal control system with state-dependent delay in a Banach space. 

{
 
 
 

 
 
 
   , ( )   (    )-    ( )    ( )  ∫   ( )

 

   ( ( ))

       ,   - *             +      

  (  )    ( (  
 ))                 

  ( )   ( )  .∫ (    )

 

 

  /(  )          ,  ̂  -  ̂    

(  ) 

Where   (   )  the state   takes value in Banach space       is the Caputo fractional 

derivative of order  ,    ( )      is a generator of a strongly continuous semigroup 

* ( )    + on,       (,   -  )    is bounded linear operator and  ( ) is the control 

function takes its value in the space   with   as a Banach space.        is the jump 

operator,                          (  
 ) and  (  

 ) represent respectively the 

right and left limits of  ( ) at      with   (  
 )   (  )   (  )   (  

 )  
 (  

 )  represents the jump in the state   at time     The functions                  will be 

defined below.  

The outline of this paper is as follows. In the next section, we recall some necessary 

preliminaries related to fractional calculus, Krasnoselskii fixed point theorem, H ̈lder 

inequality and introduce the mild solution for system (  ). In Section 3, we study 

controllability for system (  ) under specific control    and sufficient conditions. In Section 

4, we give an example to illustrate our main result. 

2. Preliminaries 

In this section, we will mention definitions and lemmas necessary to present our main results. 

Throughout this paper, we assume that   invertible and    ( )      is the infinitesimal 

generator of a compact              * ( )    + of uniformly bounded linear operators 

in   [34], i.e.   

i- There exists     such that         ‖ ( )‖                                                                             

ii- for    ( )  ( )   ( ) and  ̇( )    ( )                .  
 

  
/                                               

  Let    (,  ̂  -  ) be the space of all continuous functions from ,  ̂  - into  , if   

is endowed with the norm ‖ ‖     ‖ ( )‖   for all       ,  ̂  - , then, obviously 
(  ‖ ‖ ) is Banach space. Once again, let the set functions   (,  ̂  -  )  *  ,  ̂  -  
     ((       -  )                               (  

 )      (  
 )       (  

 )  
 (  )                + be the space of piecewise continuous functions.  Cleary, 

(  (,  ̂  -  ) ‖ ‖  ) is a Banach space, where   ‖ ‖        ,  ̂  -‖ ( )‖.       

 ( ),     (,  ̂  -  )   , and           are given functions to be specified later. 

An initial function   belong to the space   and for any     defined on ,  ̂  - and any 

time      the function      define by   ( )   (   )   ,  ̂  - .The state-dependent 

delay      (,   -  )    is an increasing differentiable function. 

Next, we recall the following definitions related to fractional calculus.  

Definition (2.1) [6]. The Riemann-Liouville fractional integral of order     with the lower 

limit 0 for a function   ,   )    is defined by  

   ( )  
 

 ( )
∫ (   )   
 

 

 ( )            (   )      
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Where   is the Gamma function. 

Definition (2.2) [6]. For a function  ( )    ,   ) the expression  

    ( )  
 

 (   )
∫ (   )  
 

 

 ̇( )        ̇( )               

is called the Caputo derivative of order  . 

Remark (2.3) [6].  

1. For a constant       ( )    
2.       ( )   ( )   ( )           (   ) 

3.   ( ( )   ( ))     ( )     ( )           

4. For      the Laplace transform of    ( ) with parameter   is     ( ), where  ( ) 
is the Laplace transform of  ( ). 
Lemma (2.4). If  ( )    (,   -  ), then the following equality  

      ( )  {

 ( )   ( )                              ,    -

 ( )   ( )  ∑  (  )

 

   

          (       -
  

holds for any   (   )   
Proof. If   ,    -, then by Remark 2.3(2), we get 

      ( )   ( )   ( )  
If    (       - , then by Definitions (2.1) and (2.2) for    (   ), we have 

      ( )  
 

 ( )
∫ (   )   
 

 

    ̇( )   

  
 

 ( ) (   )
∫ (   )   
 

 

∫
 ̇( )

(   ) 

 

 

     

        
 

 ( ) (   )
∫  ̇( )  
 

 

∫ (   )   (   )  
 

 

   

Let     (   ) . Then  

∫ (   )   (   )  
 

 

   ∫ (   )   (   )   (   )      (   )
 

 

   

 ∫ (   )       
 

 

    (     )   ( ) (   ) 

Where   is the Beta function. Therefore   

      ( )  ∫  ̇( )  
 

 

 

By integration by parts for piecewise continuous functions, we have 

      ( )  , ( )-   
    ∑, ( )-     

    
 

 

   

  ( )   ( )  ∑  (  )

 

   

  

for   (       -            . The proof is completed.                                                                   

                   
Remark (2.5) [35] .Let 

  ( )  
 

 
∑(  )   
 

   

      
 (    )

  
   (   )               (   )  

be the one-sided stable probability density. Then, the Laplace transform of    ( ) given by 

 *  ( )+( )   
         (   )    .In addition, let   ( )  

 

 
    

 

   . 
  

 / be a 

probability density function defined on(   ).Then, for   ,   - 
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∫     ( )   
 

 

∫
 

   

 

 

  ( )   
 (   )

 (    )
   (   )   (   )  

Lemma (2.6). For        if  ( )    (,  ̂  -  ) and   is a solution of system (  ), 
then   satisfies the following equation. 

 ( )

 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
   ( ) 0 ( )  .∫ (    )

 

 

  / ( )   (    )1   (    )                                       

 ∫ (   )   
 

 

  (   ) 0  ( )  ∫   ( )  

 

   ( ( ))

1                       

 ∫ (   )    
 

 

  (   ) (    )           ,    -                                

  ( ) 0 ( )  .∫ (    )

 

 

  / ( )   (    )1   (    )                                       

 ∑  (  )  (    )

 

   

 ∫ (   )   
 

 

  (   ) 0  ( )  ∫   ( )  

 

   ( ( ))

1   

         ∫ (   )    
 

 

  (   ) (    )     (       -            

   

 

         ( )   ( )  .∫ (    )

 

 

  / (  )          ,  ̂  -  

           ( )  ∫   ( ) (  
 )  

 

 

       ( )

  ∫    ( ) (  
 )  

 

 

     ( )                   

mentioned in Remark (2.5) and    (   )   (   )    
Proof. It's easy to see that  ( ) can be decomposed   ( )    ( )  where    is a continuous 

mild solution for  

{
  
 

  
 
     ( )      (    )     ( )    ( )  ∫   ( )

 

   ( ( ))

                                       

      ( )   ( )  .∫ (    )

 

 

  /(  )          ,  ̂  -                                                    

         (  )  

and    is the                  for  

2

     ( )     ( )                          *          +                              

  (  )     (  
 )                                                                        

   ( )                                         ,  ̂  -                                            

                                                  (  ) 

Indeed, by adding together system (  ) with system (  ), it follows by system (  ). Since    is 

continuous, then   (  
 )    (  

 ),               
First, we will calculate the mild solution of (  ), by taking Riemann-Liouville integral on both 

sides of (  ), then by Remark 2.3, we obtain  
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  ( )   ( )  .∫ (    )

 

 

  /( )   (    )   (    )   
    ( )   

   ( )

    ( ( ))        ( ) 

where  ( ( ))  ∫   ( )   
 

   ( ( ))
Apply Laplace transformation on both sides of Eq. (1); 

we get 

 ̅ ( )   
  0 ( )  .∫ (    )

 

 

  /( )   (    )1   ̅( )   
    ̅ ( )   

    ̅( )

     ̅( ) 
where,  

 ̅ ( )  ∫  
   

 

 

  ( )                       ̅( )  ∫  
   

 

 

 (    )     

                  ̅( )  ∫     
 

 

 ( )                         ̅( )  ∫     
 

 

 ( ( ))             

then, we get that  

 ̅ ( )   
   (     )  0 ( )  .∫ (    )

 

 

  / ( )   (    )1

   (     )   ̅( )  (     )    ̅( )  (     )   ̅( )  

        ∫    
  

 

 

 ( ) 0 ( )  .∫ (    )

 

 

  / ( )   (    )1   

   ∫    
  

 

 

 ( ) ̅( )   

                                    ∫    
  

 

 

 ( )  ̅( )    

  ∫    
  

 

 

 ( ) ̅( )                                                   ( ) 

Using Remark (2.5) and Eq. ( ), we get that 

    ∫    
  

 

 

 ( ) 0 ( )  .∫ (    )

 

 

  / ( )   (    )1          

     ∫   (  )
 

 

 

 (  )     0 ( )  .∫ (    )

 

 

  / ( )

  (    )1    

 ∫
  

 
,
 

  
  (  )

 
- 

 

 

 (  ) 0 ( )  .∫ (    )

 

 

  / ( )   (    )1                     

                         
 

  
  (  )

 
 
 

  
∫      
 

 

  ( )   ∫     
    

 

 

  ( )   

then, we have  
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    ∫    
  

 

 

 ( ) 0 ( )  .∫ (    )

 

 

  /( )   (    )1   

 ∫ ∫       
 

 

  ( )
 

 

 (  ) 0 ( )  .∫ (    )

 

 

  /( )

  (    )1      

∫ ∫     
 

 

  ( )
 

 

 (
  

  
) 0 ( )  .∫ (    )

 

 

  / ( )   (    )1       

         ∫     
 

 

0∫   ( )
 

 

 (   ) 0 ( )  .∫ (    )

 

 

  /( )   (    )1   1     

                    ∫     
 

 

  0 ( )  .∫ (    )

 

 

  / ( )

  (    )1                                                       ( ) 

    ∫    
  

 

 

 ( ) ̅( )     ∫   (  )
 

 

 

 (  ) ̅( )        

  ∫  (  )      (  )
 

 

 

 (  ) ̅( )   ∫ ,  (  ) ̅( )-
 

 

   (  )
 
 

 [  (  )
 
(  (  ) ̅( ))]

 

 
 ∫    (  )

 
 

 

  (  )     ̅( )   

  ̅( )  ∫ ∫      
 

 

  (  )
 

 

 

  (  )     (    )     

  ̅( )  ∫ ∫ ∫      
 

 

     
 

 

 

 

  ( )  ( 
 )     (    )       

  ̅( )  ∫ ∫ ∫  
 

 

   (   )
 

 

 

 

  ( )
    

  
  (
  

  
)  (    )           

  ̅( )  ∫ ∫ ∫  
 

 

    
 

 

 

 

  ( )
(   )   

  
  (
(   ) 

  
) (    )          

  ̅( )  ∫     *∫  ∫   ( )
 

 

(   )   

  
  (
(   ) 

  
) (    )    

 

 

+   
 

 

 

  ̅( )  ∫     *∫  ∫    ( )
 

 

(   )     ( (   ) ) (    )    
 

 

+   
 

 

 

  ̅( )  ∫     *∫ (   )      (   ) (    )  
 

 

+   
 

 

                                               ( ) 

∫    
  

 

 

 ( ),  ̅( )   ̅( )-   ∫        (  )
 

 

 

 (  ),  ̅( )   ̅( )-   
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 ∫ ∫           
 

 

 

 

  ( ) ( 
 ) 0∫     

 

 

0  ( )  ∫   ( )  

 

   ( ( ))

1   1      

 ∫ ∫ ∫  
 

 

    

  
    

 

 

 

 

  ( ) (
  

  
)     0  ( )  ∫   ( )  

 

   ( ( ))

1                    

 ∫ ∫ ∫  
 

 

(   )   

  
    

 

 

 

 

  ( ) (
(   ) 

  
) 0  ( )  ∫   ( )  

 

   ( ( ))

1        

 ∫     0∫  ∫    ( )
 

 

(   )    ( (   ) ) 0  ( )
 

 

 

 

 ∫   ( )  

 

   ( ( ))

1      1    

           ∫     0∫ (   )     (   ) 0  ( )
 

 

 

 

 ∫   ( )  

 

   ( ( ))

1   1                                                                                    ( ) 

Using      ( )  ( ), we obtain 

 ̅  ∫  
   

 

 

0  ( ) 0 ( )  .∫ (    )

 

 

  /( )   (    )1    

             ∫     
 

 

* (    )  ∫ (   )
   

 

 

   (   ) (    )       +               

                                ∫     
 

 

0∫ (   )   
 

 

  (   ) 0  ( )

 ∫   ( )  

 

   ( ( ))

1   1                                                                ( ) 

Now, apply inverse Laplace transform on Eq.( ), we get  

  ( )    ( ) 0 ( )  .∫ (    )

 

 

  /( )   (    )1   (    )  

 ∫ (   )   
 

 

   (   ) (    )   

 ∫ (   )   
 

 

  (   ) 0  ( )  ∫   ( )  

 

   ( ( ))

1                

Finally, we will calculate the                   of system (  ). 
By using Riemann-Liouville integral and Lemma (2.4), we have 
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  ( )

 

{
 
 

 
 
 

 ( )
∫ (   )   
 

 

   ( )                                  ,    -                                       

 

 ( )
∫ (   )   
 

 

   ( )    ∑  (  )       (       -                

 

   

        ( ) 

We can rewrite the previous equality as  

                        ( )

 ∑  (  )  ( )  
 

 ( )
∫ (   )   
 

 

   ( )         

 

   

 ,       -                        ( ) 

  ( )  {
                       ,    -                                              

                       (       -                       
 

By taking the Laplace transformation to Eq. ( ), we get  

   ̅ ( )  ∑  (  )

 

   

              ̅ ( )  

That is,  

 ̅ ( )  ∑  (  ) 
   

 

   

(     )           

In the same way as before, we can show that the                  of (  ), as follows 

  ( )  ∑  (  )

 

   

  (    )   

From the above, the                  of (  ) is as follows  

 ( )

 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  ( ) 0 ( )  .∫ (    )

 

 

  / ( )   (    )1   (    )                                         

 ∫ (   )   
 

 

  (   ) 0  ( )  ∫   ( )  

 

   ( ( ))

1                           

 ∫ (   )    
 

 

  (   ) (    )     ,    -                                   

  ( ) 0 ( )  .∫ (    )

 

 

  / ( )   (    )1   (    )                                          

 ∑  (  )  (    )

 

   

 ∫ (   )   
 

 

  (   ) 0  ( )  ∫   ( )  

 

   ( ( ))

1   

  ∫ (   )    
 

 

  (   ) (    )     (       -            

   

 

  ( )   ( )  .∫ (    )

 

 

  / ( )          ,  ̂  -  
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                      ( )  ∫   ( )
 

 

 (   )    

  ( )   ∫    ( )
 

 

 (   )   

     ( )  
 

 
  
 
 
    ( 

 
 
 )  

  ( )  
 

 
∑(  )   
 

   

      
 (    )

  
   (   )               

The proof is complete.                                                                                                                      

 In the following Lemma, we will show some properties of the operators    and   . 

Lemma (2.7). The operators    and    are linear, bounded and strongly continuous for any 

fixed      , additionally, if * ( )    + is compact operator, then   ( )       ( ) are 

also compact operators. 

Proof: Since  ( ) is a linear operator for any fixed    , it is clear to check that   ( ) and 

  ( ) are also linear operators. With the same technique that was used in[13], by Remark 

(2.5), if    , we have  

∫    ( )
 

 

   ∫    
 

 

  ( )   
 

 (   )
 

then, for any    ( ), we get  

‖  ( ) ‖  ‖ ∫    ( )
 

 

 (   )   ‖  
 

 ( )
‖ ‖  

if    , we obtain 

∫   ( )
 

 

         ‖  ( ) ‖  ‖∫   ( )
 

 

 (   )   ‖   ‖ ‖  

That is, *  ( )+    and *  ( )+    are bounded operators. Now, we show that the operators 

  ( ) and   ( ) are strongly continuous, for each    ( ) and          , we get 

that  

‖  (  )    (  ) ‖  ‖∫   ( )
 

 

, (  
  )   (  

  )-   ‖ 

 ‖∫   ( )
 

 

, (  
     

     
  )   (  

  )-   ‖

  ∫   ( )
 

 

‖, (  
     

  )   - ‖    

Based on the strongly continuity of  ( ) (   ) ‖  (  )    (  ) ‖ approaches to zero 

as      , consequently the operator *  ( )+    is strongly continuous. In the same manner, 

we can also obtain that *  ( )+    is strongly continuous. 

     Now, assume that  ( ) (   ) is compact operator and *  + is a bounded sequence in  , 

then the sequence * ( )  +    has convergent subsequence * ( )  +    for         

          

‖  ( )     ( )  ‖  ‖∫   ( )
 

 

[ (   )    (  
 )  ]  ‖ 

    
     
‖ (   )    (  

 )  ‖                          

then,       ‖  ( )     ( )  ‖   , which means that the sequence *  ( )  + is 

Cauchy sequence, hence by the completeness of  ,  *  ( )  + is convergent. Similarly, we 

can also obtain that *  ( )+    is a compact operator. The proof is completed.                                                                                                                                                                   
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Add to the above we can see that, 

   ( )   ∫    ( ) 
 

 

 (   )     ∫    ( )
 

 

 (   )       ( )    

for any    ( )  and fixed      
Based on Lemma (2.6), we give the following definition of a mild solution of system (  ). 
Definition (2.8). A function     (,  ̂  -  ) is called a    mild solution of the control 

problem (  ) if   ( )   ( )  (∫  (    )
 

 
  )(  )(   ,  ̂  -) and satisfies  

 ( )

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
  ( ) 0 ( )  .∫ (    )

 

 

  / ( )   (    )1   (    )                                            

 ∫ (   )   
 

 

  (   ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1      ,    - 

      

  ( ) 0 ( )  .∫ (    )

 

 

  / ( )   (    )1   (    )  ∑  (  )  (    )

 

   

 ∫ (   )   
 

 

  (   ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1      (       - 

             

 

                      ( )  ∫   ( )
 

 

 (   )       ( )

  ∫    ( )
 

 

 (   )       

  ( ) we have already mentioned it in Remark (2.5). 

Lemma (2.9) Krasnoselskii fixed point theorem [36]. 

Let   be a convex closed nonempty subset of a Banach space  . Suppose that     ̅ be maps   

into   such that  

i-      ̅     for every pair        , 

ii-   is a contraction, 

iii-  ̅ is completely continuous. 

Then,     ̅     , for some     

Lemma (2.10) H ̈lder inequality. 

Let    ̅  ,   ) be such that 
 

 
 
 

 ̅
  . If     (   )   ̅    ̅(   )  then for         

  ̅    (   ) and ‖  ̅‖  ( )  ‖ ‖  ( )‖ ̅‖  ̅( ). 

Theorem (2.11) Arzela-Ascoli's theorem [37]. 

 A set     ,   - is relatively compact if and only if it is bounded and equicontinuous. 

3. Controllability result. 

In this section, we provide the main results on completely controllable of system (  ). To do 

this, we need to list the following assumptions  

            ( ) is a continuous function, and there exists two constants      ̅    such  

      ‖  (    )    (    )‖    ‖   ‖       ̅       ,   -‖  (   )‖   

            is continuous function such that  (    )( ) is continuous for 

( ,    )      ,  ̂  -  and there exists a constant       such that ‖ (    )  
 (    )‖    ‖   ‖                  (,  ̂  -  )       
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       (,  ̂  -  )    is a continuous function and there exists    (   ) and   

 
 

  (    ) such that ‖∫   ( )
 

 
  ‖   ( ) for all     (,  ̂  -  )      

               (           ) are continuous functions, and there exists constants 

    , with ∑   
 
      such that ‖  ( )    ( )‖    ‖   ‖  

   The state-dependent delay      (,   -  )    is an increasing differentiable function 

and satisfies the inequality  ( ( ))                   

    The linear operator        is defined by  

   ∫ (   )   
 

 

  (   )  ( )    

                                 ( )  
 

    
                              

               
‖   ‖     

For simplicity, we denote   ‖ ‖
 
 
  ,   -

.
    

    
/
(    )

      by    

Definition (3.1). The system (  ) is said to be controllability on ,   -  if for every initial 

function    (,  ̂  -  ) and final state     , there exists an admissible control     

such that the     mild solution  ( ) of system (  ) satisfies  ( )    . 
Theorem (3.2). Let    (,  ̂  -  ) be an initial function. If the hypotheses       are 

holds, then the control system (  ) is controllability on ,   -  provided that 

                                                    [(  
   

 (   )
‖ ‖ )]

                                                                 ( ) 

                             (      
    

 (   )
)  (   )‖   ‖   

Proof.  By using condition   , for any function  ( )    (,  ̂  -  ) choose the control 

   associated with the control problem (  ) as follows: 

  ( )  

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

   

[
 
 
 
 
 
 
 
     ( ) 0 ( )  .∫ (    )

 

 

  /( )   (    )1   (    )

 ∫ (   )   
 

 

  (   ) 0  (    )  ∫   ( )  

 

   ( ( ))

1    

     ,    - ]
 
 
 
 
 
 
 

( )

   

[
 
 
 
 
 
 
 
 
 
     ( ) 0 ( )  .∫ (    )

 

 

  /( )   (    )1   (    )

 ∫ (   )   
 

 

  (   ) 0  (    )  ∫   ( )  

 

   ( ( ))

1   

 ∑  (  )

 

   

  (    )   (       -                  

   

]
 
 
 
 
 
 
 
 
 

( )

 

By using this control, we will show that the operator     (,  ̂  -  )    (,  ̂  -  ) 
defined as 
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(  )( )  

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  ( ) 0 ( )  .∫ (    )

 

 

  / ( )   (    )1   (    )

 ∫ (   )   
 

 

  (   ) 0  (    )     ( )  ∫   ( )  

 

   ( ( ))

1    

     ,    - 

  ( ) 0 ( )  .∫ (    )

 

 

  / ( )   (    )1   (    )

 ∫ (   )   
 

 

  (   ) 0  (    )     ( )  ∫   ( )  

 

   ( ( ))

1   

 ∑  (  )  (    )   (       -            

 

   

 

 (  )( )   ( )  .∫ (    )

 

 

  / ( )             ,  ̂  -                                            

has a fixed point. This fixed point is a    mild solution of control problem (  ), obviously 

that   (  )( )     .For any positive constant    , let    *    (,  ̂  -  ) ‖ ‖  

 +, it is clear that     is closed, convex and bounded set in   (,  ̂  -  ). By simple 

calculations, we can see that (   )     
 

    (,   -) for   ,   - and    (   ). We 

have  

‖∫ (   )   ∫   ( )  

 

   ( ( ))

 

 

  ‖

 ‖∫ (   )   ∫  ( )  

 

 

  
 

 

‖  ‖∫ (   )   ∫   ( )  

   ( ( ))

 

 

 

   ‖   

Using (H ̈ider inequality) and assumption   , we get that 

‖∫ (   )   ∫   ( )  

 

   ( ( ))

 

 

  ‖   

                               *∫ (   )
   
    

 

 

  +

    

‖ ‖
 
 
  ,   -

  ‖ ‖
 
 
  ,   -

(
    
    

)

(    )

         (  ) 

Hence, for all (       -          , we get  
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  ‖  ( )‖  ‖ 
  ‖ 0‖  ‖   ‖ ( )  .∫ (    )

 

 

  / ( )   (    )‖  ‖ (    )‖

 ‖∑  (  )

 

   

  ( )  (    )‖  
 

 ( )
∫ (   )   
 

 

‖  (    )‖  

 
 

 ( )
 1 

  [‖  ‖   ‖ ‖    *  ‖ ‖     
  ,   -

‖ (   )‖+   [‖   ‖  ‖ ‖  ‖ 
  ‖  ̅]  ‖ 

  ‖  ‖ ‖

 ‖   ‖  ̅     ‖ ‖   ∑‖  ( )‖  
   

  ( )
[  ‖ ‖    ̅]  

 

   

 

 ( )
 ] 

  [‖ ‖ (      ‖ 
  ‖   ‖ 

  ‖      
   

 (   )
  )  ‖  ‖   ‖ ‖

   ‖ (   )‖   ‖   ‖  ̅  ‖ 
  ‖  ̅  

   

 (   )
  ̅   ∑‖  ( )‖

 

   

 
 

 ( )
 ] 

  , ‖ ‖  ‖  ‖    - 
     (   )‖ 

  ‖  ̅

  [∑‖  ( )‖  
  

 (   )

 

   

  ̅  ‖ ‖      
  ,   -

‖ (   )‖  
 

 ( )
]  

Next, we shall prove that the operator   has a fixed point on   , that means setting a specific 

positive constant   
 
such that   has  a fixed point on    . 

In fact, by choosing  

   
   ‖ ‖ ,‖  ‖    -

 (   ) [   (  
   

 (   )
‖ ‖ )]

 
  

   (  
   

 (   )
‖ ‖ )

 

We can show that the operator   has a fixed point on    . Our proof will be divided into the 

following three steps. 

Step I.        , whenever      . 

For any        , we obtain  

                  ‖(  )( )‖

  ,‖ ‖   ‖ (    )‖  ‖ (    )‖-  ‖ (    )‖   ∑‖  ( (  ))‖

 

   

 

          
 

 ( )
∫ (   )   ‖   ( )‖
 

 

   
 

 ( )
∫ (   )   ‖  (    ‖
 

 

            
 

 ( )
  



Al-Jawari et al.                                   Iraqi Journal of Science, 2022, Vol. 63, No. 5, pp: 2114-2139                     

5152 

  ‖ ‖              
  ,   -

‖ (   )‖   ‖   ‖      ‖ 
  ‖  ̅  ‖ 

  ‖    

 ‖   ‖  ̅        ∑‖  ( )‖

 

   

 
   

  ( )
‖ ‖‖  ( )‖

 
   

  ( )
(       ̅)  

 

 ( )
 

 * (      
    

 (   )
)  (   )‖   ‖  +    (   )‖ 

  ‖  ̅

  [∑‖  ( )‖  
  

 (   )

 

   

  ̅  ‖ ‖      
  ,   -

‖ (   )‖  
 

 ( )
 ]

 
   

  ( )
‖ ‖‖  ( )‖ 

         
   

  ( )
‖ ‖, ‖  ‖          -                                        

          [   
   

  ( )
‖ ‖ ]       

   

  ( )
‖ ‖ ,‖  ‖    -                       

Hence  (   )     . 

Now, we define two operators    and    on     as follows: 

(   )( )    ( ) 0 ( )  .∫ (    )

 

 

  / ( )   (    )1   (    )

  ∑  (  )  (    )   (       -    

 

   

  ,   -              

(   )( )   ( )  .∫ (    )

 

 

  / ( )          ,  ̂  -  

(   )( )  ∫ (   )
   

 

 

  (   ) 0  (    )     ( )  ∫   ( )  

 

   ( ( ))

1     

 ,   -  
(   )( )             ,  ̂  -    

Obliviously,         and the system (  ) with control    has a mild solution if and only 

if the operator equation           has mild solution   on    . In the following steps, we 

show that    is contraction mapping on     and    is completely continuous. 

Step II.    is contraction on    .  

For any         and    , by using          and Eq. (10), we get 
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‖(   )( )  (   )( )‖     

 ‖  ( ) 0.∫ (    )

 

 

( )   ∫ (    )

 

 

( )  /

 ( (    )   (    ))1  ( (    )   (    ))  

 ∑(  ( )    ( ))

 

   

  (    )‖ 

                                  [   ‖   ‖  ‖ 
  ‖  ‖   ‖]  ‖ 

  ‖  ‖   ‖  

  ‖   ‖ 
                                    [ (     )  (   )‖ 

  ‖  ]‖   ‖.  

‖(   )( )  (   )( )‖   ‖∫ (    )

 

 

( )   ∫ (    )

 

 

( )  ‖      ‖   ‖ 

by (9)    contraction.  

Step III.    is completely continuous.  

i-    is continuous on      

For each *  +     , with      on    . Since   
     for     and by using          

we have, (  ( ))   ( ( ))  (  ( ))   ( ( )         and       ∫   
 ( )  

 

 
 

∫   ( )   
 

 
 

                                       ‖∫   ( )  

 

 

 ∫  ( )  

 

 

‖

   ( )                                                                 
by the dominated convergence theorem, we obtain    

‖  ( )     ( )‖

  0    ‖ 
   ‖   ‖   ‖  ‖ 

   ‖  ‖   ‖  ‖ 
   ‖

 
   

  ( )
  ‖ 

   ‖ 

 
 

 ( )
∫ (   )   ‖. ∫    ( )   ∫   ( )  

 

   ( ( ))

 

   (  ( ))

/‖
 

 

   ‖    ‖1 



Al-Jawari et al.                                   Iraqi Journal of Science, 2022, Vol. 63, No. 5, pp: 2114-2139                     

5122 

  [      ‖ 
  ‖   ‖ 

  ‖   
   

  ( )
     ] ‖    ‖

  
 

 ( )
∫ (   )   ‖∫   ( )   ∫  ( )  

 

 

 

 

‖  
 

 

  
 

 ( )
∫ (   )   
 

 

‖ ∫    ( )  

   (  ( ))

 

 ∫   ( )  

   ( ( ))

 

‖   

     ‖    ‖   
 

 ( )
∫ (   )   ‖∫   ( )   ∫  ( )  

 

 

 

 

‖  
 

 

 

                
 

 ( )
∫ (   )   
 

 

‖ ∫    ( )  

   (  ( ))

 

 ∫   ( )  

   ( ( ))

 

‖                  

    
Therefore, for   ,   -, 

‖(   
 )( )  (   )( )‖  

   

  ( )
  ‖ 

   ‖  
   

  ( )
‖ ‖    

  ,   -
‖   ( )    ( )‖ 

 
 

 ( )
∫ (   )   ‖∫   ( )   ∫  ( )  

 

 

 

 

‖  
 

 

 

                
 

 ( )
∫ (   )   
 

 

‖ ∫    ( )  

   (  ( ))

 

 ∫   ( )  

   ( ( ))

 

‖ 

Which implies ‖   
     ‖          . This means that    is continuous. 

ii-    is compact operator. 

According to Arzela-Ascoli's theorem, we just need to prove that the family {         } 

is equicontinuous and uniformly bounded, and for each   ,   -,  {(   )( )      } is 

relatively compact in  . 

Since ‖   ‖     for each     , then the family {         } is uniformly bounded set, 

we will prove that the   (   )    (,  ̂  -  ) is a family of equicontinuous functions. For 

any      , let          , we have  

  
 ‖(   )(  )  (   )(  )‖

 ‖∫ (    )
   

  

 

  (    ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1    

 ∫ (    )
   

  

 

  (    ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1   ‖ 

 ‖∫ (    )
   

  

  

  (    ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1     

 ∫ (    )
   

  

 

  (    ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1    
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 ∫ (    )
   

  

 

  (    ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1    

 ∫ (    )
   

  

 

  (    ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1    

  ∫ (    )
   

  

 

  (    ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1   ‖     

 ‖∫ (    )
   

  

  

  (    ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1   ‖

 ‖∫ (    )
   

  

 

  (    ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1   

 ∫ (    )
   

  

 

  (    ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1   ‖

 ‖∫ (    )
   

  

 

  (    ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1   

 ∫ (    )
   

  

 

  (    ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1   ‖  

  ‖∫ (    )
   

  

  

  (    ) 0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1   ‖ 

 ‖∫ ,(    )
    (    )

   -
  

 

  (    ) 0  (    )    ( )

 ∫   ( )  

 

   ( ( ))

1   ‖ 

 ‖∫ (    )
   

  

 

,  (    )    (    )- 0  (    )    ( )

 ∫   ( )  

 

   ( ( ))

1   ‖ 

          
Where, 
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   ‖∫ (    )
   

  

  

  (    ) 0  (    )    ( )

 ∫   ( )  

 

   ( ( ))

1   ‖                             

   ‖∫ ,(    )
    (    )

   -
  

 

  (    ) 0  (    )    ( )

 ∫   ( )  

 

   ( ( ))

1   ‖ 

   ‖∫ (    )
   

  

 

,  (    )    (    )- 0  (    )    ( )

 ∫   ( )  

 

   ( ( ))

1   ‖ 

Now, we show that              tends to 0 a uniformly for all      , when        

For    , we have  

   
 

 ( )
∫ (    )

   
  

  

‖  (    )    ( )  ∫   ( )  

 

   ( ( ))

‖   

 
 

 ( )
(       ̅)(     )

  
 

 ( )
‖ ‖‖ ‖(     )

 

 
  

 ( )
‖ ‖ (

    
    

)

(    )

(     )
     

 
 

 ( )
(*
       ̅  ‖ ‖‖ ‖

 
+ (     )

   ‖ ‖ (
    
    

)

(    )

(     )
    ) 

Which implies that              . 

For    , we have  

   
 

 ( )
‖∫ ,(    )

    (    )
   -

  

 

0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1   ‖ 

 
 

 ( )
∫ ,(    )

    (    )
   -

  

 

‖0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1   ‖ 

 
 

  ( )
(       ̅)(     )

  
 

  ( )
‖ ‖‖ ‖(     )

 

 
  

  ( )
‖ ‖ *∫ ,(    )

    (    )
   -

 
      

  

 

+

    

 

Since  

,(    )
    (    )

   -
 
      (    )

   
     (    )

   
      

then,  
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∫ ,(    )
    (    )

   -
 
    

  

 

    
    
    

[  
   
       

   
     (     )

   
    ]  

So, we get 

   
 

 ( )
*
       ̅  ‖ ‖‖ ‖

 
(     )

   ‖ ‖ (
    
    

)

(    )

(     )
    +  

Hence                

Concerning    , if                it is clear that       
For       and   is sufficiently small, we get that   

   ∫ (    )
   

    

 

‖  (    )    (    )‖ ‖  (    )    ( )

 ∫   ( )  

 

   ( ( ))

‖   

        ∫ (    )
   

  

    

‖  (    )    (    )‖ ‖  (    )    ( )

 ∫   ( )  

 

   ( ( ))

‖   

 ∫ (    )
   

    

 

‖  (    )    (    )‖ 0 ‖  (    )‖  ‖  ( )‖

 ‖ ∫   ( )  

 

   ( ( ))

‖ 1    

 ∫ (    )
   

  

    

‖  (    )    (    )‖ 0 ‖  (    )‖  ‖  ( )‖

 ∫   ( )  

 

   ( ( ))

 1    

 *
       ̅  ‖ ‖‖ ‖

 
(  
    )   ‖ ‖ (

    
    

)

(    )

(  
          )+

    
   ,      -

‖  (    )    (    )‖ 

 
  

 ( )
*
       ̅  ‖ ‖‖ ‖

 
    ‖ ‖ (

    
    

)

(    )

     +  

The compactness of  ( ) (   ) and Lemma (2.7) implies the continuity of     in the 

uniform operator topology, this yields that                         
Thus, ‖(   )(  )  (   )(  )‖                is independently of       .From this, we 

conclude that the family {         } is equicontinuous. Finally, we will show that the 

family  ( )  {(   )( )      } is relatively compact in X for any   ,  ̂  -. For 

  ,  ̂  -,  ( ) is relatively compact in X. Let   (   - be a fixed,    (   ) and     is a 

positive real number. Define an operator   
          by  
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(  
  )( )  ∫ ∫  (   )      ( ) , (   )

 -
 

 

   

 

0  (    )    ( )

 ∫   ( )  

 

   ( ( ))

1      

  (   )∫ ∫  (   )      ( ) , (   )
     -

 

 

   

 

0  (    )    ( )

 ∫   ( )  

 

   ( ( ))

1      

       According to the compactness of    (   ) (     ) and boundedness of  

∫ ∫  (   )      ( ) , (   )
     -

 

 

   

 

0  (    )    ( )

 ∫   ( )  

 

   ( ( ))

1       

for each   ,   -  the set {(  
  )( )      } is relatively compact in X. In addition, for 

any         we get that  

‖(   )( )  (  
  )( )‖ 

  ‖∫ ∫ (   )      ( ) , (   )
 -

 

 

 

 

0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1      

     ∫ ∫ (   )      ( ) , (   )
 -

 

 

 

 

0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1       

∫ ∫ (   )      ( ) , (   )
 -

 

 

   

 

0  (    )    ( )  ∫   ( )  

 

   ( ( ))

1     ‖ 

              ‖∫ ∫ (   )      ( ) , (   )
 -

 

 

 

 

0  (    )    ( )

 ∫   ( )  

 

   ( ( ))

1     ‖ 

             ‖∫ ∫ (   )      ( ) , (   )
 -

 

 

 

   

0  (    )    ( )

 ∫   ( )  

 

   ( ( ))

1     ‖ 
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   ∫ (   )   
 

 

‖  (    )    ( )  ∫   ( )  

 

   ( ( ))

‖  ∫    ( )   
 

 

 

  ∫ (   )   
 

   

‖  (    )    ( )  ∫   ( )  

 

   ( ( ))

‖  ∫    ( )  
 

 

 

              *
       ̅  ‖ ‖‖ ‖

 
    +∫    ( )  

 

 

 

    *
       ̅  ‖ ‖‖ ‖

 
    ‖ ‖ (

    
    

)

(    )

      +  

Which implies  ‖(   )( )  (  
  )( )‖              Therefore there are relatively 

compact sets arbitrary close to the set  ( )  and so  ( ) is relatively compact in X. 

Consequently,    is completely continuous operator on    . From the Krasnoselskii fixed 

point theorem,   has a fixed point in     satisfying (  )( )   ( ). Therefore, the system 

(  ) is controllable on   . The proof is complete.                                                                                                                                   

                                                                                                 

4. Application 

In this section, we establish an application of our main result. Consider the following 

impulsive fractional partial differential equation: 

{
 
 
 
 
 

 
 
 
 
  

 

   
* (   )  ∫      (   )

 

 

  +  
  

   
 (   )    ( )  ∫   (   )

 

   ( (   ))

   (   )   

  ,   - *  +⁄    ,   - 

 (   )   (   )      ,   - 

  (   )|
  
 
 
 
| (  

 
  )|

  | (  
 
  )|
       ,   -    {

 

 
}  

 (   )   (   )  ∫   ( (     ))

 

 

            ,  ̂  - 

(  ) 

where   (   )  Set     (,   -  ) and the operator    ( )      defined 

by   (   )    
  

   
 (   )             {    

  

  
 
   

   
    (   )   (   )  

 }                  i            

∑   〈    〉
 
         ( )           ( )  √

 

 
                and its is generates of a  

compact    semigroup   ( )                ( )  ∑    
  〈    〉

 
          ( )  Several 

authors are used this semigroup in their examples, see[16,20,32] .etc. The system (  ) can be 

redrafted as the following impulsive fractional control system 

{
 
 
 

 
 
 
   , ( )   (    )-    ( )    ( )  ∫   ( )

 

   ( ( ))

       ,   - *             +      

  (  )    ( (  
 ))                 

  ( )   ( )  .∫ (    )

 

 

  /( )          ,  ̂  -  ̂    
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       ( )   (   )          ( )( )   (   )      ( )( )    (   )   (     )   
    ,   -    ,  ̂  -       Now we define the functions             by 

i-        ( )  is given by  

 (    (   ))  ∫      (   )
 

 

         ,   -   ,  ̂  -  

ii-     (,  ̂  -  )     is given by 

  (   )    (   )   (   )             ,   -   ,   -  
iii-     (,   -  )    is given by 

 ( (   ))  
 

   
      

iv-                       

 (   (   ))( )      (     )                ,   -   ,  ̂  -              

v-                      

  ( (    ))  
| ( 
 

 
  )|

  | ( 
 

 
  )|
                ,   -  

 For        we have 

‖  (    (   ))    (    (   ))‖  ‖
  

   
∫      (   )
 

 

   
  

   
∫      (   )
 

 

  ‖ 

 ‖     (   )
   
  
      (   )

   
  
‖   ‖   ‖  

           ,‖
  

   
      (   )‖            ,   -  

 ,  ̂  --                             

‖ (   (   ))( )   (   (   ))( )‖  ‖   ‖ 
and  

‖  ( (    ))    ( (    ))‖  
 

 
‖   ‖  

It is also obvious that 

‖∫  (    )

 

 

  ‖  
 

 
 (      )   ( )   

 
  (    )    (   )      

           *‖ (   )‖       ,   -   ,  ̂  -+  Therefore, the assumptions of 

Theorem (3.2) are satisfied, and we deduce that the control system (  )  is controllable.  

Remark: If we replace the control function  ( ) by the control delay function  ( ( )) in 

system (  ), where        ,   )  is twice continuously differentiable and strictly increasing 

function in J, satisfies  ( )   , then the    mild solution of control delay system is as 

follows 
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where  ( )  , ( )  ( )-    is the time lead function, such that   ( ( ))   ( ( ))  

           
To study the controllability of the control delay system, we need to redefine the linear 

operator that defined in the hypothesis     as follows: 

    ∫ (   ( ))
   

 

 

  (   ( ))  ̇( ) ( )    

By the same technique used in this article, one can show that the control delay system is 

completely controllable. 

5.Conclusion 

This paper has investigated the completely controllable nonlinear impulsive integro-

differential fractional nonlocal control system with state-dependent delay in a Banach space. 

The mild solutions of the control system(  ) were obtained by using fractional calculus, the 

Laplace transform, semigroup theory, and probability density function. With the use of the 

control function has been constructed, together with a compact strongly continuous semigroup 

* ( )    + has helped us to establish sufficient conditions for controllability of the control 

system (  ) via Krasnoselskii fixed point theorem. Finally, an example has been given to 

illustrate the effectiveness of the main results. 
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