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Abstract

This paper is concerned with the controllability of a nonlinear impulsive
fractional integro-differential nonlocal control system with state-dependent delay in
a Banach space. At first, we introduce a mild solution for the control system by
using fractional calculus and probability density function. Under sufficient
conditions, the results are obtained by means of semigroup theory and the
Krasnoselskii fixed point theorem. Finally, an example is given to illustrate the main
results.
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1. Introduction

In 1695, fractional calculus was developed as an important mathematical field. The ideas of
fractional calculus have recently been successfully applied to several fields, and researchers
are increasingly finding that fractional calculus can accurately describe many events in the
natural sciences and architecture. Rheology, fluid current, dispersion-like diffuse transport,
and dynamic systems are among the most critical areas of fractional calculus today [1-5]. The
fact that it provides an outstanding method for modelling diverse processes in many areas of
physics, chemistry, economics, and other sciences. It is a clear impetus for further study into
the fractional evolution equation. There are several kinds of fractional derivatives, like
Riemann-Liouville, Caputo, Hadamard, Grunwald-Letnikov, and Hilfer, for more details; see
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[5-7]. In several areas of science and engineering, such as fluid mechanics, biological
simulations, and chemical kinetics, integro-differential equations are used. In [8], the authors
give a comprehensive analysis of integro-differential equations and their solutions using the
Laplace transform procedure. Recently fractional integro-differential equations have been
used to model a wide variety of physical processes, including heat conduction in memory
objects, mixed conduction, convection, and radiation problems [3,9]. The existence of mild
solutions for fractional integro-differential equations was investigated by using the fixed point
theorem in many publications[10-15].

Control theory is an important field of mathematics that deals with the structure and study of
control systems. Controllability is one of the basic principles of mathematical control theory
that has a profound influence on control systems, where it is important in many control
problems for deterministic and stochastic control theories. The principle of controllability, on
the other hand, is well developed for control problems expressed as abstract differential
equations and solved using numerous methods of infinite and infinite-dimensional spaces. In
general, controllability refers to the ability to steer a control system from an arbitrary initial
state to an arbitrary final state by using a set of admissible controls. Recently, many authors
investigated the controllability of fractional differential equations by using various
techniques. In papers [16-20], the researchers discussed the controllability of various
nonlinear fractional differential equations with the help of semigroup theory and fixed point
theorems, as for the papers [21-27], the authors used Mittag-Leffler function and fixed point
theorems to investigate controllability for fractional differential equations.

Delay differential equations with state-dependent delay arise normally from the modelling of
infectious disease transmission, the modelling of immune response systems and the modelling
of respiration, where the delay is due to the time required to accumulate an appropriate dosage
of infection or antigen concentration[28]. On the other hand, delay differential equations are
an abstract formulation of many mathematical models that can be used in various physical,
chemical, and biological processes. It is mandatory to provide a delay in the simulation of
many real-world problems, which is often based on the previous state of the unknown
function. As a result, state-dependent delay differential equations emerge. The length of time
to maturity, for example, is regarded as a continuous delay in a simple population dynamics
model; see [29]. In [30], the author discovered that the time it takes for Antarctic whales and
seals to reach adulthood changes depending on the population’s health. Also, can be applied
Differential equations with State-dependent delay on mathematical models to dynamics,
control theory, and neural networks. The authors of [31] considered a population model with a

state-dependent delay by
8

u(s) = f aM (0)e~©06-9 4g,
§-6(L(®)

Where u(8) and M (6) represent immature individuals and mature individuals, respectively.
G(£(8)) describes a threshold age, which is the maturation time for an immature individual
that matures at a time§ based on the overall population L(&) = ud)+ M (5). The
constants w, a refer to the rate of dies from individual x(6) and the rate immature population
produces, respectively. There are many papers on the controllability of the various fractional
control systems with delay. For example, Ravichandran et al.[32] established controllability
of nonlinear fractional integro-differential equations with state-dependent delay in Banach
spaces by using Leray—Schauder alternative theorem and Krasnoselskii fixed point theorem
with the resolvent operator. Aimene et al. [18] used the Drabo fixed point theorem and the
properties of measures of noncompactness with semigroup theory to obtain the controllability
of impulsive fractional differential equations with delay. Huang et al.[33] derived a set of
sufficient conditions for the existence and controllability of mild solutions for a class of
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second-order neutral impulsive stochastic evolution integro-differential equations with state-
dependent delay by using fixed point theorems. MA and LIU[17] discussed the exact
controllability of fractional neutral integro-differential equations with state-dependent delay
in Banach spaces with the help of fixed point theorems and fractional calculus. In this paper,
our purpose is to study the controllability of a nonlinear impulsive fractional integro-
differential nonlocal control system with state-dependent delay in a Banach space.
( t
D[x(t) — g(t,x,)] = Ex(t) + Bu(t) + f Gx(Q)di,t € ] :=[0,al/{t;, ts,t3, ..., tp}
t=n(x())
3 Ax(t,) = I(x(t7)), r=123,..,m (S1)

x0(0) = @(6) + (f #(w, x,) dw> (), 6¢€[—-a0] a>o.
0

Where a € (0,1), the state x takes value in Banach space X, D¢ is the Caputo fractional
derivative of order a, E: D(E) € X — X is a generator of a strongly continuous semigroup
{T(t),t =0} on,B:Y = L?([o,a],U) - X is bounded linear operator and u(.) is the control
function takes its value in the space Y with U as a Banach space. I,: X — X is the jump
operator, 0 = t, < t; <t, < <t, <t =a,x(t;)and x(t-) represent respectively the
right and left limits of x(t) at t=¢t, with x(t7) =x(t.), Ax(t,) = x(t}) —
x(t;) represents the jump in the state x at time t,.. The functions g, G, £, ¢, x; and n will be
defined below.

The outline of this paper is as follows. In the next section, we recall some necessary
preliminaries related to fractional calculus, Krasnoselskii fixed point theorem, Holder
inequality and introduce the mild solution for system (S;). In Section 3, we study
controllability for system (S;) under specific control u, and sufficient conditions. In Section
4, we give an example to illustrate our main result.

2. Preliminaries

In this section, we will mention definitions and lemmas necessary to present our main results.
Throughout this paper, we assume that E invertible and E: D(E) € X — X is the infinitesimal
generator of a compact C, — semigroup {T(t),t > 0} of uniformly bounded linear operators
in X [34], i.e.

i- There exists M > 1 such that M = sup;s,||T (O],

ii-  forx € D(E), T(t)x € D(E) and T(t)x = AT (t)x. ( ~)

dt

Let D := C([—a, 0], X) be the space of all continuous functions from [—@, 0] into X, if D
is endowed with the norm |||, = sup||lyY(6)]|x, forall ¥y € D, 6 € [—a, 0], then, obviously
(D, 1I.llp) is Banach space. Once again, let the set functions PC([—a, a],X) = {x:[—d,a] —
X, x € C((ty, tr41],X), 7 =0,1,2, ..., m and there exist x(t;") and x(t;) with x(¢;) =
x(t,),forr =1,2,3, ...,m} be the space of piecewise continuous functions. Cleary,
(PC([—a,al,X), |l llrc) is a Banach space, where ||x||pc = supier—aqllx(®Il. g:J XD -
D(A),G:PC([—a,a],X) » X,and A4:] x D - D, are given functions to be specified later.
An initial function ¢ belong to the space D and for any x € X defined on [—a@,a] and any
time t € J, the function x, € D define by x,(6) = x(t + ), 6 € [—a, 0] .The state-dependent
delay n: PC([0,a],X) — J is an increasing differentiable function.
Next, we recall the following definitions related to fractional calculus.
Definition (2.1) [6]. The Riemann-Liouville fractional integral of order g > 0 with the lower
limit O for a function ¢: [0, ) — R is defined by

1 €
1@ =ty J (e—5)91¢(s)ds, €€ (0,),q> 0.
0
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Where T is the Gamma function.
Definition (2.2) [6]. For a function {(e) € C[0, o) the expression
€

‘Dl (e) = F(l;—q)fo (e—5)"9¢(s)ds=1"9() 0<gqg<1,

is called the Caputo derivative of order q.
Remark (2.3) [6].
1. Fora constant ¢, D9(c) =0
2. 19 °Dz(t) = z(t) — z(0), q € (0,1)
3. 19(z(t) + y(£)) = 192(t) + I9y(t), q >0
4. For A > 0, the Laplace transform of 19z(t) with parameter A is 179z(1), where z(4)
is the Laplace transform of z(t).
Lemma (2.4). If x(t) € PC([0, a], X), then the following equality

x(t) — x(0), t €[0,t,]

m

1% °D%x(t) = x(t)—x(O)_zAx(tr), L€ (b bl

holds for any a € (0,1).
Proof. If t € [0, t,], then by Remark 2.3(2), we get
1% °D%x(t) = x(t) — x(0).
If t € (t, tr-11],then by Definitions (2.1) and (2.2) for a € (0,1), we have

1 t
1% °D%x(t) = mf (t —s)*1 ‘Dx(s)ds
0

_ 1 ‘ a1 [T_*D
=TT = a)J;) (t—1s) j; G-0)F dtds

1 ; ,
= m[ X(T)de (t_s)af—l(s _T)_a ds
0 T
Let=17+y(t— 7). Then

t 1
[ =9 -0ds = [ @-D - -0y -0y
T 0

= f A-pP)* Yy *dy=B(a,1—a) =T(a)I'(1 —a)

0
Where B is the Beta function. Therefore
t

1% °D%x(t) = J x(t)dt
0
By integration by parts for piecewise contlnuous functions, we have

1% <Dex(e) = [x(0)]7Z, Z[x(r)r 5 x(6) - x(0) — Z Ax(t,),
r=0

for t € (t,, trpql,r =123, ..,m. The proof |s completed.

Remark (2.5) [35] .Let

hs(1) = Z( 1)i-tpy=ot F(L(Sl-l- D) sin(ind), € (0, ),

be the one-sided stable probablllty density. Then, the Laplace transform of hs(u) given by

Lihs (W} = e, 5 € (0,1),4> 0.In addition, let Ws(u) =+~ "5k, (u a) be a
probability density function defined on(0, 0).Then, for t € [0,1]

2117



Al-Jawari et al. Iragi Journal of Science, 2022, Vol. 63, No. 5, pp: 2114-2139

° © 1 I'(1+17)
fo uWs(udu —fo Fha(u)du =T To0)’

Lemma (2.6). For 0 < a < 1, if x(t) € PC([—a,a],X) and x is a solution of system (S;),
then x satisfies the following equation.

6 €(0,1),u € (0,).

x(t)
( a
Ko [0 + | [ w3, do | ©) = 900,30 |+ 9,3
0
¢ S
+f (t —s)* 1 H,(t — s) |Bu(s) + f Gx(§)d{|ds
0
s—1(x(s))
t
+f (t —S)*EH,(t —s)g(s,x.)ds, t€]0,t]
= 0

1,0 |0(0) + f A0, %) do | (0) = g(0,x0) | + g(t,x)
0

m t
+ Z Ax(t,)K,(t —t,) + f (t —s)* 13, (t —s)|Bu(s) + f Gx(Q)d{|ds
r=1 0 s—n(x(s))

t
+f (t —$)* EH,(t — s)g(s,xs)ds, t € (tptrp1],r =1,23,...,m
L 0

xo(8) = p(6) + f/b(a), x,)dw |(6), 6 €[-a,n0],
0

where, Ky(t) = f WL (O, Ha(O)
0

= afj ¥, T (ut*)du , ¥, (u) it is previously
0

mentioned in Remark (2.5) and u € (0,),a € (0,1) .
Proof. It's easy to see that x(.) can be decomposed x;(.) + x,(.), where x; is a continuous
mild solution for
( t
‘D%, (t) = “D%g(t,x;) + Ex,(t) + Bu(t) + f Gx()d{, te€]
t—TI(x(t)) (52)

X10(0) = @(0) + (f #(w, x,) dw) (), 6€[-an0]
\ 0
and x, is the PC — mild solution for

°D%x,(t) = Ex,(t), t € J/{t,ty o, tm}
Ax(t,) = Lx(t;), r=123,..,m (S3)
XZ()(H) = O, 9 € [_d, 0]

Indeed, by adding together system (S,) with system (S5), it follows by system (S;). Since x, is
continuous, then x, (tY) = x,(t7), r = 1,2,3,, ..., m.

First, we will calculate the mild solution of (S,), by taking Riemann-Liouville integral on both
sides of (S,), then by Remark 2.3, we obtain
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0
+I1°H(x(8)), (1)

where H(x(t)) = ftt_n(x(t)) Gx(¢)d¢.Apply Laplace transformation on both sides of Eq. (1);

() = 0(0) + ( f A0 x,) dw) () — g(0, %) + gt x,) + I*Ex, (£) + [*Bu(t)

we get
£, =171 |p(0) + ( f A, x,) dw) () — g(0,x0) | + GO + A=*Ex, (1) + A~*Ba(A)
0
+A7*HA)
where,
%, (1) =J. e M x, (t)dt, g =f e M g(t,x,)dt,
0 0
() = f e M u(t)dt, HQ) = f e M H(x(t))dt, A>0,
0 0

then, we get that

% (w) = 2971 I2% = E) 7 (0) + (f A(w, xy) dw) (0) = 9(0,x)
0

+ 2%(IA% — E)"1G(A) + (I1% — E)~1Bu(d) + (1A% — E)"YH(A)

= A“‘l.f e 2 T(s)
0

p(0) + fh(a), X)) dw | (0) — g(0,x)|ds
0

+ 2 jme‘las T(s)g(N)ds
0 [0/e)
+f e S T(s)Bu()ds
0

+ f e s T(s)H(N)ds (2)
0
Using Remark (2.5) and Eqg. (2), we get that

/10(—1.” e_)‘aST(S)
0

@((0) + (f #A(w,x,) dw) (0) —g(0,xy) | ds
0 ]

— /10(—1.” e—(lu)“ T(ua)aua—l
0

<p(o>+< f A(w,x,) dw | (0)
0
—g(0,x0) | du

- f T oy ey
0

p(0) + (f #(w, x,) da)) (0) —g(o, xo)‘ du,
0

A du
; d —-(Aw)“ d ° —Auu . —Aup
Since T = . e h,(W)du = ) —Aue h,(W)du

then, we have
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Aa—lf e—l“sT(S)
0

@(0) + (f A(w, x,) dw) (0) — g(o0, xo)] ds
0

¢m)+<fhﬂmmﬂdw>(®
0

= fo . fo mue"m“ he (1) T (u®)

- g(O, xO) dU,d‘Ll

fo i fo T hg ()T (;—Z)
[
0

®(0) + ( f A(w, x,) dw) (0) —g(0, xo)] dtdp =
0

f W, (1) T(ut®)
0

¢(0) + (f A(w,x,) dw) (0) - g(0, xo)] d#] dt
0

[o.0]
f e—lt ?Ca
0

—9(0,x) | dt. (3)

0(0) + ( f A(w,%,) dw> ©)
0

g "1 T(s)g(A)ds = A% [ "= T () g (M) cws du
=f a(Aw)* 1 le~M® T(u“)g(/l)du=J [T (u®)g(A)] de~Aw*
0 0
= [e_("“‘)a(—T(u“)g(A))]Z0 +j ae~ MW ET(u®)u®1gG(A)du
0
=g) +f f au® 1 e~ ET(u®) e~ g(s, x;)dsdu
o ron non
=g()l)+j j J au® e M (WET(u%)e *g(s, xs)dudsdu
) -t
S —A(v+s) v _
_g()l)+j0 jo Jo ae? h, () :“1“ ET(Ma)g(s,xS)dydsdu
_ R R (t—s)*” ((t—S)“>
g +j0 ]0 jo c:e hq (1) e 1ET e g(s, xg)dudsdu
o © o (t —s)* <(t—s)“> l
_g()l)+j0 e U% afo hq (1) e ET pe g(s,xg)duds|dt
~ g+ | fﬁtfaf wmuau—sw*EHMI—@%g@mQWMJdt
0 o Jo

— g+ |

0

: e M Ut(t —$)*EH,(t — s)g(s, xs)dsl dt (4)
0

f Ce S T(s)[BR() + A)1ds = f qu® e~ T () [BE(A) + H(A)du
0 0
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N

= foo fooaua_le—ﬂuu he (T (u%) U‘”e_m [Bu(s) + Gx({)d(‘ ds\ dudu
0 J0 0

s=1(x(s))
s

oo [e's) oo va—l va
=f f f a— e ™ h,(WT (—a)e‘ls Bu(s) + f Gx({)d{|dsdudv
o Jo Jo Hu U
s=n(x(s))
S

= foo foo foo“ (t— 5261—1 oAt ha(.u)T<(t _as)a> [Bu(S)-I- f Gx(()d(] dtdsdu
o Jo Yo U u

s=n(x(s))

- f e-“lf « f u‘l’a(u)(t—S)“‘lT(u(t—S)“)[Bu(S)
0 0 0

+ j Gx({)d(‘ d,u,uds‘ dt
s=n(x(s))

= foo e~ Mt Ift(t — $)* 1 H,(t —s) [Bu(S)
0 0

+ ] Gx({)d{‘ ds‘ dt. (5)

s=n(x(s))
Using Egs.(3) — (5), we obtain

oo
Xl = f e_lt
0

+ fooe‘” [g(t, x;) + ft(t —S)* YEH,(t —s)g(s,x,)ds l dt,
0 0

[oe]
+f e~
0

N

+ j Gx({)d{‘ ds‘ dt. (6)

s—n(x(s))
Now, apply inverse Laplace transform on Eq.(6), we get

Ko (0)

@(0) + <f #(w, x,) dw> (0) — g(o, xo)] dt
0

ft(t —$)* 1 H, (t —s) |Bu(s)
0

x1 (1) = Ko (t) + 9g(t, x¢)

¢(0) + (J (W, xy) dw) (0) — g(0,x)
0

+ jt(t —S)*LEH,(t —s)g(s, x5)ds
0

S

Bu(s) + J Gx(()d(] ds, te€]
s=n(x(s))

Finally, we will calculate the PC — mild solution of system (S5).

By using Riemann-Liouville integral and Lemma (2.4), we have

+ jo (t—9)* 13, (t—>s)
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xz(t)
J Ma )f (t —s)* T Ex,(s)ds, t €[0,t]
(7)
_ a—1
U( )f (t—s)* 1 Ex,(s)ds, +ZAx(tr) te(t,t.pq]l, r=1.23,.
We can rewrite the previous equality as
x(t) .
= ) Ax(t,.)8,(t) + (t—s)*1TEx,(s)ds, t
2. wal, :
Eo[tr' trial- 0.6 (8)
, te|0,t
8r(8) = {1, t € (t,, ;r+1]' r=123,..,m

By taking the Laplace transformatiorg to Eq. (8), we get
%, = Z Ax(t,) A-te M 4 1-@Ex, ().
That is,
%, = Z Ax(t,)ATL (1A% — E)~1e=Atr,
In the same way as before, we can show that the PC — mild solution of (S53), as follows
%, (£) = z Ax(t,) K (¢ — t,.).

r=1
From the above, the PC — mild solution of (S;) is as follows

x(t)
g
Ko® [0 +{ [ A3, do | ©) = 900,300 |+ 930
0
¢ S
+] (t —s)* 13, (t —s) |Bu(s) + Gx()d{|ds
° s=n(x(s))
t
+ j (t —)* EH,(t — 5)g(s,xs)ds, t €[0,t]
= 0 .
Ke(t) |9 (0) + (] h(w,x,)dw | (0) — g(0,x0) | + g(t,x¢)
0
+Z Ax(t,) K, (E — t,) + f (t — )T L, (t — 5) | Bu(s) + f Gx(()d(‘ ds
- 0
= s—n(x(s))
+f (t —$)* EH,(t — s)g(s,xs)ds, t € (ty, trs1l, r=123, .., m
0

x0(0) = @(6) + fh(w, x,)dw |(0), 6 €][-a,n0],

2122



Al-Jawari et al. Iragi Journal of Science, 2022, Vol. 63, No. 5, pp: 2114-2139

where r = 1,2,3,...,m, K, (t) = f Y, (W) T(ut*)du,
0

Ho (D) = a f 1o () T (ut®) dp

0

el = e (170).

he(u) = Z( D F(la: D sin(imta), 0<p < oo,
The proof is complete.
In the following Lemma, we will show some properties of the operators K, and #,,.
Lemma (2.7). The operators X, and #, are linear, bounded and strongly continuous for any
fixed t > 0, additionally, if {T(t),t > 0} is compact operator, then K, (t) and H,(t) are
also compact operators.
Proof: Since T(t) is a linear operator for any fixed > 0 , it is clear to check that &, (t) and
H,(t) are also linear operators. With the same technique that was used in[13], by Remark
(2.5), if t = 1, we have

fo Oolﬂ/Ja(ll) dp = fo Oou‘“ he(Wdp =

r(1+a)
then, for any x € D(E), we get
196,01 = |a | i) T(ut“)xduH oo Wl
if T = 0, we obtain
fowwa(u) dyp = 1and ||%, (x|l = fooowa(u) T (ut®)xdu|| < Ml|x||.

That is, {K,(t)}ss and {H,(t)};s, are bounded operators. Now, we show that the operators
K, (t) and H,(t) are strongly continuous, for each x € D(E) and 0 < t; < t, < a, we get
that

1K e (t2)x — Ko (t)x]| =

[ wetiras - T(tf‘u)]xduH
0

<M ] e ) T (50 — t80) — Nxlldp

Based on the strongly continuity of T(t), (t = 0) ||, (t,)x — ¥, (t,)x|| approaches to zero
as t, — t;, consequently the operator {F,(t)};s( is strongly continuous. In the same manner,
we can also obtain that {#, (t)}:s¢ is strongly continuous.

Now, assume that T(t) (t > 0) is compact operator and {x,} is a bounded sequence in X,
then the sequence {T(t)x,};~o has convergent subsequence {T(t)xm}>o fOr x,,x,, 2 >

gandt >0
”:}Ca(t)x;; - :}Ca(t)qul =

| e e = e+ e = TCe el
0

f Ye (1) [T (utx,, — T(,uta)xq]dyH
0

< sup |[T(ut¥x, — T(utY)x,|| >0 as p - g,
u,t>0

then, lim,,_,||%,(0)x, — X, (£)x,|| = 0, which means that the sequence {X,(t)xn} is
Cauchy sequence, hence by the completeness of X, {X,(t)x,,} is convergent. Similarly, we
can also obtain that {H,(t)};>, is a compact operator. The proof is completed.
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Add to the above we can see that,

EH,(t)x = af
0
forany x € D(E) and fixed t > 0.

Based on Lemma (2.6), we give the following definition of a mild solution of system (S,).
Definition (2.8). A function x € PC([—a, a], X) is called a PC —mild solution of the control
problem (S,) if x(8) = @(8) + ([, A(w, x,) dw)(8)(8 € [-a,0]) and satisfies

x(t)

‘

[ee]

e (WE T(ut*)xdp = a f e (1) T(ut*)Exdp = H,(¢)Ex,
0

Ko () |9(0) + f A0, %) dw | (0) — g(0,x0) | + g (6, x.)
0

¢ S
+f (t —s)*1H,(t —s)|Eg(s,xs) + Bu(s) + f Gx(Q)dl|ds, t €[0,¢t],
0 s—n(x(s)

Ko [0 + | [ A5, do | ©) = 90030 |+ g2 + D 8x(eIKole - 1)
) -

r=1
S

t
+f (t —s)*1H,(t —s)|Eg(s,xs) + Bu(s) + f Gx(Q)d{|ds,t € (t,, ty41],
0

s—n(x(s))
\ r=123,..,m

where r =1,2,3,...,m,K,(t) = j W, (W) T(ut®)du, H,(t)
0

—a f 1o () T(ut ) dpt and
0

Y, (1) we have already mentioned it in Remark (2.5).

Lemma (2.9) Krasnoselskii fixed point theorem [36].

Let D be a convex closed nonempty subset of a Banach space . Suppose that @&, ® be maps D
into X such that

i- ®x; + dx, € D for every pair x;,x, € D,

ii- @ is a contraction,

iii- @ is completely continuous.

Then, &z + &z =z € D, forsome z € D

Lemma (2.10) Holder inequality.

Lety,7 € [1, ) be such that%+ % =1.1fveLY(J,R), D€ L(J,R),thenfor 1 <y < oo,

vv € L'(J,R) and ool < ”V||LY(])”17”L7(])-

Theorem (2.11) Arzela-Ascoli's theorem [37].

Aset D c C[], X] is relatively compact if and only if it is bounded and equicontinuous.

3. Controllability result.

In this section, we provide the main results on completely controllable of system (S;). To do
this, we need to list the following assumptions

Aj. g:] x D - D(E) is a continuous function, and there exists two constants Lg, L > 0 such
that [|[Eg(t,x,) — Eg(t, x|l < Lyllx — yll and Ly = supeqoq1llEg(t, 0)].

A,. A:] XD — D is continuous function such that 4(w,x,)(8) is continuous for
(w,x,,0) €] xD x[—a,0] and there exists a constant L, > 0 such that |4 (w,x,) —
#(w,y,)|l < Lyllx — yl|l, whenever x,y € PC([—a,a],X),w € ].
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As.G:PC([—a,a],X) —» X is a continuous function and there exists a; € (0,a) and J €

1
La(J, R*) such that || [, 6x(¢) d¢ || < 3(t) for all x € PC([-a,a] X), t €.
Ay I:X - X, (r=123,..,m)are continuous functions, and there exists constants
L, > 0,with 7%, L, = L such that ||I.(x) — L. ()|| < L.||x — yI|.
As.The state-dependent delay n: PC([0,a],X) — ] is an increasing differentiable function
and satisfies the inequality n(x(t)) < t foreach ¢t € J.
Ag. The linear operator W:Y — X is defined by

Wu = fa(a —$)* 1 H,(a — s)Bu(s)ds,
0

Y
has an inverse operator W ~!: Rang(W) — =T and there exits a constant k
> 0 such that

W= < k.

. .. 1_a1 (l_al) _

For simplicity, we denote 2|[J|| 1+ (—) a*"“ py X
Leifo,t] \* "%

Definition (3.1). The system (S;) is said to be controllability on [0, a] if for every initial
function ¢ € C([—a, 0],X) and final state x,; € X, there exists an admissible control u € Y
such that the PC —mild solution x(t) of system (S;) satisfies x(a) = x;.
Theorem (3.2). Let ¢ € C([—a, 0], X) be an initial function. If the hypotheses A; — A, are
holds, then the control system (S;) is controllability on [0, a] provided that

a

c [(1 + % ||B||K)]
<1, €))

a

a”Lg B
Where, C=M (L + aL,L + m) + (M + 1)”E llng

Proof. By using condition A, for any function x(.) € PC([—a, a],X) choose the control
u,, associated with the control problem (S;) as follows:
(

31— Ko@) |0(0) + f A0, %) do | (0) = g(0,x0) | - g(a,x0)
0

wt a S (t)
—] (a—s)*"TH, (a—s)|Eg(s x5) + J Gx(0)d{|ds,
0 s—n(x(s))
t €[0,t],

ux(t) =< H
X1 — Ko@) |0(0) + f A(0,x0) do | (0) = g(0,x0) | - 9(a,x0)
0

N

W - ja(a —5)* 1 H,(a—s)|Eg(s,xs) + f Gx(Qd¢|ds  |@®
0 s=n(x(s))

m
- Z Ax(t,) K, (a—t,.),t € (t, tr41], r=123,..,m.
\

L r:l .
By using this control, we will show that the operator I1: PC([—4a,a],X) = PC([—a, a], X)
defined as
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Ko () |(0) + f A0, %) do | (0) = g(0,xo)

N

t
+f (t—s)*1H,(t —5s)|Eg(s,x5) + Bu,(s) +
0 s-n(x(s))
€ [O! tl]'

(M) (6) =

Ko () |(0) + f A0, %) do | (0) = g(0,xo)

N

t
+f (t—s)* T H,(t —s)|Eg(s,x5) + Bu,(s) +
0 5= (x(s)

+ZAx(tr)7Ca(t —t),t € (t, trpql,r = 1,2,3, ...

r=1

\

(Ilx)(0) = p(6) + fﬁ(w, x,)dw | (6), 0 € [—a,0],

+ g(t, x;)

Gx(Q)d¢ | ds,

+ g(t, x;)

Gx(Q)d{|ds

has a fixed point. This fixed point is a PC —mild solution of control problem (S;), obviously
that (Ilx)(a) = x; .For any positive constanty > 0, let B, = {x € PC([—a, a],x), [|x|| <
v}, it is clear that B, is closed, convex and bounded set in PC([—d,a],X). By simple

1

calculations, we can see that (t — s)*~! € L«1-1([0,t]) for t € [0,a] and a; € (0,a). We

have

N

Jot(t —s5)e1 ] Gx(Q)dl ds

s-n(x(s)) (x(s)
s—n(x(s)

fot(t —s)e 1t f Gx({)dl ds

0

0

Using (Hoider inequality) and assumption A5, we get that
S

J:(t —s)*1 f Gx({)dl ds

s=n(x(s))
U (t - s)Tar ds] 151+
Le1[0,t]
1—(11 (1-ay)
<230 s (=F) e 10
Leifot] \& — 04

Hence, for all (t,,t,+1], ¥ = 1,2, ..., m, we get
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e OI < [IWHI e ll + M [|@(0) + fh(w,xw)dw (0) — g(0,x0)|[ + llg(a x)ll

r) Sr(t):Ka (a - tr)

M (@ _
4 @fo (t — )% 1 |Eg(s, xo)llds

+ M X
I'(a)
K |llx. |l + Mllo|l + Ma thllxIH suop || (w, O)| +M[IIE HiLgllxll + IEILg ]+|IE HLg x|
a)E a
+IE7HILs + ML||x|| + M L.(0)] + L,|lx|| + Ls| +
E~H [E4] EII()II l,()[ [E4] g] F()]

a

Ma
=K Mal M||E7Y||L E~ YL ML+ ——L ) M
Il (MaL + MIE L + 1Ly + ML + roms L) + il + Ml

+ MallAi(w, 0|l + MIEHILg + IIE7 LG + =< Lg +MZIII Ol

Ma
Fa+1)7
M

vt

= K[Cllx[l + llx, ]| + C4]
€=M+ 1)|IE‘1|IL—

a

Zul O+ fyte el +a sup 1A, Ol + 5051

Next, we shall prove that the operator [T has a fixed point on B,,, that means setting a specific
positive constant y, such that IT has a fixed point on B, .
In fact, by choosing

+M

B Ma®||Bllk[llxy |l + c4] 1
Yo = Ma“ + Ma“
Mo+ 1) [1— (”W”B”Kﬂ 1_C<1+W”B”K>

We can show that the operator IT has a fixed point on B, . Our proof will be divided into the
following three steps.
Step I. Ilx € B, whenever x € B,

Forany x € B, , we obtain
I (M) ()] .
< Mllloll + alli(w, x,) Il + 190, x)lI] + llg (&, x )1l + Mlelr(x(tr))”
f(t— U IBuy(s)] ds + = f(t— JetlgGlds o+ s
I‘( ) s u,(s)|l ds ) s g(s,xs|l ds @)
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< Mllll + MaLpyo + Ma sup |[4(w, Ol + MIIE™ ILgyo + MIE™ ILg + IE~ ILgYe

w€e[0,a]

m
1 Ma*®
B L + MLy, + MZIIIr(O)II +

e LIPN]

¢ Ma” (Lgvo + Lg )+ W —X
al(a) 970 @
L,
[M(L'FGL/L‘FW)-F(M-}-I)”E 1||Lg Yo+ M+ DJE 1||Lg
a® M
+MZIO+ — Lz + +a sup [|[A(w,0)|| +=—=2
1O+ e yta + ol + @ sup (14,001l + 5o
( )|
a
= cyo+ oo IBIKIG | + chyo + key)
a a
= |e + e gy 1BIK o + e + s Bl + ] = vo,

Hence I1(B,,) < B,,
Now, we define two operators II; and I1, on B, as follows:

(M) () = HKe (0) [ (0) + f A(w,x,) dw | (0) — g(0,x0) | + g(t, x;)
+ Z Ax(t,)K,(t —t.),t € (t,, t,41], t€[0,al,r=12,..,m,

(,2)(6) = p(6) + j Ao, x,)do | ©), 6 €[-a,0],

t
(MMx)(t) = f (t—s)*TH,(t —5s)|Eg(s,x5) + Bu,(s) + f Gx(Q)d{|ds,t
0 s—n(x(s))
€ [0,a],
(M,x)(8) =0, 6 €[-a,n0].
Obliviously, IT = I1; + II, and the system (S,) with control u, has a mild solution if and only
if the operator equation x = I1;x + I1,x has mild solution x on B,, . In the following steps, we

show that I1, is contraction mapping on B, and II, is completely continuous.
Step I1. I, is contraction on B,
Forany x,y € B, and t € J, by using A, A, A, and Eq. (10), we get
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I (M1x) () — (M) (Ol

= |l f A(w,%,) (0)dew — f A(@,7,) (0)dw

—(9(0,x0) = g(0,y)) | + (gt x) — g(t,y))

£ (000 = h () Kalt 1)

< MlaLgllx = yll + IE7 I Lgllx — ylI] + IE7XLgllx — vl +
ML||x — y|l
= [M(aLs + L) + (1 + MIEILg]llx — ylI.

(M%) (6) — (I y) (O)]] = < MaLyllx = yli

f/b(a), Xy,) (0)dw — f 4H(w,y,) (0)dw
0 0

by (9) I1; contraction.

Step I11. I, is completely continuous.

i- I, is continuous on B, .

For each {x"} € B, , with x™ — x on B, . Since x;" — x, for t € ] and by using A, A3, As

we have,G(x™(t)) = G(x(£)), n(x™(t)) = n(x(t),as n > o and lim, fos Gx™(Q)d( =
J; Gx(Q)dg.

N N

[ 6xras - [ exya

0 0

Noting that

< 23(s),
by the dominated convergence theorem, we obtain
[l (8) — uen ()|
< k|MaLgllx™ — x|l + MIE™H[Lgllx™ — x|l + [IE~ I Lgllx™ — x|

a

a

- n __

+ @ Lyllx™ — x|
S S
M a

b ] (a—s)*? j Gx"({)dg — j 6x(O)dg

I'(a) J,

s=n(x"(s)) s—1(x(s))

+ ML||x,, — x||
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a

Ma
< k|MaLy + MIE|IL, + IE*|ILy + T@ Tkt ML] Iz, — x|

M
thepes [ (@- 9 f Gx™(9)dg — f Gx(0)d¢| d

0

u e s=n(x™(s)) s=n(x(s))
o _ a—-1 n _
+k[‘(a) i (a—s) bf Gx™(Q)d{ Of Gx({)dq|| ds

N N

[ 6xn@as - f Gx(@)d¢ | ds

0
s—n(x™(s)) s=1(x(s))

- —_ J)a—-1 n _ N
+kl“( )f (a—ys) f Gx™({)d¢ Of Gx(Q)d{||ds >0 as n

0

= kCllx" = x| + ks )f (a—s)°

Therefore, for t e [0 al,

1)) = MO < 2 )l — 2l + 2 1B sup [len(s) — we(S)]
X 2 X O, xs x e ) S:;Jp()l un(s) — u, (s
+ e f (a—5)* Of Gx"({)dg — f Gx({)dg|| ds
s=n(x™(s)) s—1(x(s))
- — q)a-1 n _
+k[‘( )f (a—1s) Oj Gx™({)d¢ Of Gx(Q)d{

Which implies ||TI,x™ — I1,x|| = 0 as n = oo. This means that IT, is continuous.
ii- [T, is compact operator.
According to Arzela-Ascoli's theorem, we just need to prove that the family {Hzx, X € Byo}

is equicontinuous and uniformly bounded, and for each t € [0, a], {(l'lzx)(t), X € B,,O} is
relatively compact in X.

Since ||IT,x|| <y, for each x € y,, then the family {Hzx, X € ‘ByO} is uniformly bounded set,

we will prove that the HZ(B),O) C PC([—a, a], X) is a family of equicontinuous functions. For
any x € B, let0 < t; <t, < a, we have

I (Tzx) (£2) — (x) (el

t2
= f (t, — )* T H,(t, —s) |Eg(s, x5) + Bu(s) + f Gx(Q)d{|ds
0 s—n(x(s)

(t, —$)* Y H,(t; —s) |Eg(s, xs) + Bu(s) + f Gx()d{|ds
s=n{x())

t1

0

t2

(t, —s)* Y H,(t, —s) |Eg(s,x;) + Bu(s) + f Gx({)d{|ds

h s=n(x(s)
S

ty
(t, —s)* Y3, (t, —s) |Eg(s, xs) + Bu(s) + f Gx(0)dq|ds
s=n(x(s))

0
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s
t1

+ | (&, —8)*rTH,(t, —s)|Eg(s, x5) + Bu(s) + f Gx(Q)d{|ds

0 s-n(x(s))
S

— 1(1:1 —8)* Y3, (t, —s)|Eg(s,xs) + Bu(s) + f Gx(Q)d{|ds
0

s=n{x(s))

ty S

- (t;1 — ) T Hy(ty —5)
0

Eg(s,xs) + Bu(s) + f Gx(()d{] ds
s—1(x(s))

s
t2

IA

(t, — )* T H,(t, — s)[Eg(s, x5) + Bu(s) + f Gx({)d{|ds
s—n(x(s))

S

t1

t1

+ (t, — s)* T H,(t, —s) |Eg(s, x5) + Bu(s) + f Gx()d{|ds

0 s—n(x(s)
S

t1
- (ty — $)* 1 H, (¢, —5)
0

Eg(s,xs) + Bu(s) + f Gx(()d(‘ ds
s—n(x(s))

Eg(s,xs) + Bu(s) + j Gx(()d(] ds
s—n(x(s))

ty
(ty — $)* T Hy(ty — 5)
0

+

Eg(s,xs) + Bu(s) + f Gx(()d{] ds
s=1(x(s))

ty
- (t; — ) T Hy(ty —5)
0

s
t2

(t, = $)* 1 H,(t —5)
t1

Eg(s,xs) + Bu(s) + f Gx(()d(] ds
s=n(x(s))

%1
4 ] [(t — )7 = (t1 — )% Hyty — 5) | Eg (s, xs) + Bu(s)
0

N

+ J Gx({)d¢ ‘ ds
s—n(x(s))

+ f (ty = )7 [Hy (s — 5) — Hy (s — )] [Eg(s, xs) + Bu(s)
0

N

+ f Gx(()d{‘ ds

s-n(x(s))
== P]_ + P2 + P3
Where,
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ts
P, = (t; = $)* 1 Ho(ty — 5) |Eg(s, xs) + Bu(s)
%1
S
+ f Gx({)d{|ds
s=n(x(s))

P, = f 1[(tz =) = (ty = ) T Hy(t, — 5) |Eg(s, x5) + Bu(s)
0

+ f Gx(Q)d{|ds

s—n{x())
t1
P; = (ty — ) [Hy(ty — 5) — Ho(ty — 5)] [Eg(s, x5) + Bu(s)
0

+ j Gx({)d(|ds

s—n(x(s))
Now, we show that P;, P, and P; tends to 0 a uniformly for all x € B

For P;, we have

Yor When &, — t;.

N

M ([t )
P, < o) . (t, —s)* ||Eg(s,x5) + Bu(s) + f Gx(O)d{|| ds
s=n(x(s))
[24 M a
< F( )(Lg)/o +Lg)(t, — t)* + —— @ IBII[ull(t; — t1)
L, 2M 1— a7 .
(i) G-
M ([Lgyo + Ly + IBlllull o ey (= a7
) (I . l (t —t)* + 2|3l (a — a1) (t; —t1)

Which implies that lim,,_, P; = 0.
For P,, we have

p < M jtl(t—)“"l—(t—)“_l Eg(s,x.) + Bu(s) + J 6x(0)de|d
2 = F(Ol) o [ 2 S 1 S ] g SIXS u s S_n(x(s)) X ( ( S

<i]tl(t—)a-1—(t—)a-1 Eg(s,x.) + Bu(s) + J Gx(0)de|d
T/, [(t; —s 2—S ] 9(s, xs u(s N x({)d(|ds

—t)*

M . M
< ) (Lgvo + Lg)(tz — t)% + @

2M 43 f a—-1 a—1 ﬁd e
w190 [ 16 = 97 - - syt

Since
1 a—1 a—1
[(t; =)* = (t; =) 1m0 < (t; — $)1-% — (t; —5)17 %,
then,
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ty 1 1—a a-1 a-1 a—1
J. [t =) = (t; —5)* ! 1mm ds < T—a [tll_al — T+ (L, - t1)1_“1]-
0 1
So, we get

g¥o + Lg + [IBlllull (1-ay)

p < M | (t t)a+2||~||(1_“1)
2= T(a) a z o a—a;

-

Hence, lim;,_,;, P, = 0.
Concerning P; ,ift; =0, 0 <t, < a,itisclearthat P; = 0.
For t; > 0, and v is sufficiently small, we get that

t1—w
P3 < .f (tl - S)a_l ”}[a(tz - S) - }[a(tl - S)” Eg(S, xs) + Bu(s)
0

+ j Gx({)dq|| ds
s-n(x(s))
ty
+ f (tr = )% | Ho (s — 5) — Ho(tr — I ||Eg(s,20) + Buls)
t1—w
+ f Gx(¢)dq|| ds
s=n(x(s))

t1—w
< f (t1 = )HIH(t2 = 5) = Ho(ty = I | NEG(, x| + [1Buls)]]
0

S
+ j Gx(Q)dq|| | ds
s=n(x(s))

+ f (= ) | Ha (s — 5) — Halty — I | 1Eg(s, x| + 1BuCs)]
t

1—w
N
+ f Gx({)dq | ds
s—n(x(s))
- ngYO + Lg + IBlull
a
X sup ||Ho(t; —5) — He(ty — 9|

(1-aq)

«_ .  a Sl 1—aq
(% —w*) + 2[5l

(tla—al _ wa—al)l
1

t€[0,t1—4 ]
2M [Lgyo + Ly + |IBIlllu 1— a;\ 7
+ Cl w23 (=) e,
I'a) a a—a

The compactness of T(t) (t > 0) and Lemma (2.7) implies the continuity of H, in the
uniform operator topology, this yields that P; - 0, as t, — t; and w — 0.

Thus, ||(TI;x) (t2) — (Ixx)(t)]| = 0,as t, — tq, is independently of x € B, .From this, we
conclude that the family {Il,x, x € B, } is equicontinuous. Finally, we will show that the
family Z(t): = {(I1,x)(¢), x € B, } is relatively compact in X for any ¢ € [-a,a]. For
t € [—a, 0], Z(t) is relatively compact in X. Let t € (0,a] be a fixed, ¢ € (0,t) and m isa
positive real number. Define an operator I15* on B, by
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t—0 (oo
()@= [ [ att- 9w GoTlat - 7] [Eg (5,%5) + Bu(s)
0 m

S

+ f Gx(()d(] duds
s=1(x(s))

t—o %)
=T(e%m) f f a(t — ) uW, (WT[u(t — s)* — o*m]|Eg(s,xs) + Bu(s)
0 m

+ f Gx({)d¢

s—n(x(s))
x € B,,. According to the compactness of T (¢*m) (e“m > 0) and boundedness of

duds

t—o [o]
f f a(t — )P, (WTIut — ) — %m] | Eg(s, xs) + Bu(s)
0 m

N

+ j Gx(¢)d¢
s=1(x(s))

for each ¢ € [0, a], the set {(II7*x)(¢), x € B,,} is relatively compact in X. In addition, for
any x € By, we get that

1(22)(6) = (115" x) (O

duds,

N

t orm
—a f f (t — )% W, GOTIu(t — )% | Eg (s, x5) + Bu(s) + j 6x()dg | duds
0 Y0

s=n(x(s))
¢ . S
4 j j (¢ — ) ¥, (WTIu(t — )7 | Eg (s, x5) + Bu(s) + Gx({)dg | duds —
0 m s=n{x(s))
t—o0 ro
]0 ] (t — )% W, (WTIut — ) | Eg(s, xs) + Bu(s) + j Gx(()dc‘duds
" s—1(x(s))

<«

f f (t — )% ¥, (W Tt — )% | Eg(s, ;) + Bu(s)
0 Y0

N

+ f Gx(()d(] duds
s-n(x(s))

+ a

j j (t — ) W, GOT[u(t — )] [Eg(axs)wu(s)
t—oYm

N

+ j Gx({)d{‘ duds
s=n(x(s))
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< aMf (t —s)*1||Eg(s,xs) + Bu(s) + f Gx(Q)d{|| ds fm,ulpa(u)du +
0 0

s—n(x(s))
t s oo
aM | (t—s)*"|Eg(s,xs) + Bu(s) + f Gx({)dg d5f u¥e (Wdu
e s—n(x(s)) "
L + L; + ||B]|||u m
SaMl glo ga Ll ”a“+2f u¥, (Wdp
0

(1-ay)

L + L; + ||B[|[|u l1—«a
+aM[gyo s+ Bl ||Qa+2”3”< ) Ql
a a—a;

Which implies  ||(T1x)(¢) — (M2%x)(®)|| = 0, as o, m — 0. Therefore there are relatively
compact sets arbitrary close to the set Z(t) and so Z(t) is relatively compact in X.
Consequently, TI, is completely continuous operator on B, . From the Krasnoselskii fixed
point theorem, II has a fixed point in B, satisfying (Tlx)(t) = x(t). Therefore, the system

(S1) IS controllable on ] The proof IS complete.
[]
4. Application

In this section, we establish an application of our main result. Consider the following
impulsive fractional partial differential equation:

(aa z aZ ¢
5ca v(t,z) —f sinv;(6,B) d%] = ﬁv(t, z) + Bu(t) + f Ww(, 2) e 7E=9dg,
0 t-n(v(t,2))

t €[0,1]/{t;},z € [0, 7],
v(t,0) =v(t,m) =0, t €[0,1],
1- (Sa)
1 M zE[On]t={l}
= 1+ 2| PTG
1

v(0,z) = p(0,z) + f sin(v(w + 6,z))dw, 6 €[-a,0],

Av(t, Z)lt

0
where « € (0,1). Set X = L?([0,],R) and the operator E:D(E) S X — X defined
by Ev(t,z) =
2 2
%v(t, z) with domain {v ex: 20V X, v(t,0) =v(t,m) =

0z’ 9z2

0} .Then, E can be written as Ev =

;?‘;ljz(v, v;) v;,v € D(E) where v;(z) = ﬁsinjz,j =1,2,3,...and its is generates of a

compact C, —semigroup T'(t) in X given by T(£)v = X572, e It (v, v;)v;,v € D(E). Several
authors are used this semigroup in their examples, see[16,20,32] .etc. The system (S,) can be
redrafted as the following impulsive fractional control system

x0(60) = p(0) + fh(a), x,)dw |(0), 6 €][-a,n0], a>o.
0
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Where x(t) = v(t,.),thatis x(t)(z) = v(t,z)and x,(0)(z) = v,(0,z) = v(t + 0,z),t €
J,z€[0,m],0 € [—a,0],m = 1. Now we define the functions g, G,n, #,I; by
i- g:] XD = D(E) is given by

Z
g(t, vt(H,Z)) = f sin v,(6,B) dB, teJ,ze|0,m],0 € [—a,0].
0

Ii- G:PC([—a,a],X) — X isgiven by
Gv(t,z) = A({, z)e 79, ALy >0,t€],{€]0,t],z€|0mnr]
ii- n: PC([0,1],X) — J is given by

t
n(v(t,z)) =Tx¢ tej.

Iv- #:] X D = D is given by
A(w,v(w,2))(0) = sinv(w + 6,2), te] ze[0,n], 0 €[-a,o0].
V- I;: X — X is given by

PGl

I , = , 0, m].
(v(ty,2) = 2+|( oIk te] zelo,n]
For u, v € X, we have

|Eg(t, v:(6,2)) — Eg(t,u.(8,2))| = ’

2 2

2% (* a° (*
—f sin v,(6,B) d%——f sinu,(6,B) dQ}H

2 2
0z* J, 0z* J,

< M|lv —ull.

VA

veEX,te],ze|0,m],0

av,
= 0,
”cos v:(6,z 622

—sin v(0, z)

where 9t = sup{ PP

€ [—a,0]¢.And itis easy to see that

||h(a), v(w, Z))(H) — h(a), v(w, Z))(H)” < |lv—ull
and

1
I1(v(t0,2) = 1 (uCtr, D) < 5 1w = ull.

It is also obvious that

t
1

va(n{,Z) di|| < %iﬁ(l —e ") =5(t) € Le«(J,R),a; € (0,a),t €],

0
where )t = sup{||v(t,2)||:t € ],z € [0,7],0 € [—a,0]}. Therefore, the assumptions of
Theorem (3.2) are satisfied, and we deduce that the control system (S,) is controllable.
Remark: If we replace the control function u(t) by the control delay function w(6(t)) in
system (S;), where §:] — [0,0) is twice continuously differentiable and strictly increasing
function in J, satisfies 6(t) < t, then the PC —mild solution of control delay system is as
follows
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x(t)
p

(0 |0(0) + f A0, %) do | (0) — g(0,x0) | + gt x)

N

t
+J. (t —s)* T H,(t—5s)|Eg(s,xs) + f Gx()d{ | ds,
° s=n(x(s))

6(t)
+ f (t— ()" H,(t — e(s))Bé()u(s)ds,  t € [0,t,],
6(0)

Ka(® 90 + | [ A7) do | ©) = 9050 | + g3 + ) Ax(e)Kele = 8)
0 r=1

N

¢
+f (t—s)* 1 H,(t—5s)|Eg(s,x) + f Gx(0)d{|ds
0
s—1(x(s))

50 B
+f (t- s(s))a ! Ho(t — e(s))Bé()u(s)ds, t € (b, trye], 7 =1,2,3,...,m
L s

xo(0) = p(6) + fﬁ(a), X,)dw | (8), 6 € [—a,0],
0

where &(s) : [6(0),8(a)] - ] is the time lead function, such that &(8(t)) = 6(e(®)) =
t,fort €.

To study the controllability of the control delay system, we need to redefine the linear
operator that defined in the hypothesis A, as follows:

Wu = j Y@= e()" " Hy(a — £())BE(s)u(s)ds.
0

By the same technique used in this article, one can show that the control delay system is
completely controllable.

5.Conclusion

This paper has investigated the completely controllable nonlinear impulsive integro-
differential fractional nonlocal control system with state-dependent delay in a Banach space.
The mild solutions of the control system(S;) were obtained by using fractional calculus, the
Laplace transform, semigroup theory, and probability density function. With the use of the
control function has been constructed, together with a compact strongly continuous semigroup
{T(t),t = 0} has helped us to establish sufficient conditions for controllability of the control
system (S;) via Krasnoselskii fixed point theorem. Finally, an example has been given to
illustrate the effectiveness of the main results.
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