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Abstract 

     A quantitative description of microstructure governs the characteristics of the 

material. Various heat and excellent treatments reveal micro-structures when the 

material is prepared. Depending on the microstructure, mechanical properties like 

hardness, ductility, strength, toughness, corrosion resistance, etc., also vary. 

Microstructures are characterized by morphological features like volume fraction of 

different phases, particle size, etc. Relative volume fractions of the phases must be 

known to correlate with the mechanical properties. In this work, using image 

processing techniques, an automated scheme was presented to calculate relative 

volume fractions of the phases, namely Ferrite, Martensite, and Bainite, present in 

the microscopic image of high strength low alloy steel. First, the microscopic image 

was segmented into Ferrite, Martensite, and Bainite regions. The phase structure's 

geometric property was used to identify different phases present inside the 

micrograph. After phase detection, the volume fraction of each region is calculated.  
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1. Introduction 

      The properties of materials are governed by their micro-structure [1, 2]. Thus, it is 

essential to obtain a quantitative description of the micro-structure of the materials. This 

quantitative description can be achieved using direct and indirect approaches [3]. One indirect 

method example is X-ray diffraction-based measurement [4], where lattice parameters are 

measured to estimate structural parameters. On the other hand, in direct techniques, the 

structural parameters are directly measured. 

 

     Moreover, the presence of stress and texture may produce an erroneous result in an indirect 

approach. Microscopic investigations are performed in direct technique. In microscopic 

investigations, the metal surface is first observed using a microscope, and images of the 

observed surfaces are collected. Afterward, image processing and analysis techniques are 

applied to these microscopic images [5].  

 

     The microscopic images are called micro-graphs, which are first converted into digital 

form for subsequent storage, analysis, processing, and interpretation [6-10]. Digital Image 

processing techniques are widely used to extract specimen information from a micrograph. It 

has become an integral part of a microscopy-related experiments in metallurgy and materials 

engineering [11, 12].  
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Segmentation is the most crucial step in the micro-graph analysis. The structure of the surface 

of investigated metal captured by microscopic image is called microstructure. Micro-structure 

consists of various phases denoting various phases. Features like gray level intensity, textural 

pattern, and edge orientation discriminate the different phases present in the micro-graph. The 

features will be used to discriminate between different phases depending on the material 

under study. Image processing techniques may be disturbed due to noise, impurities in the 

image acquisition system, or environmental issues (like contrast, brightness, magnification, 

etc.). These may pose additional challenges in the segmentation step. The similarity between 

the phase boundaries with one of the phases makes the task very difficult.  

 

     The most critical step in the quantitative analysis of the micro-graph is to classify different 

phases present in the dual-phase or multiphase metallography samples. The performance of 

the classification or segmentation of different phases tremendously influences the accuracy of 

subsequent measures. Researchers have applied different image processing techniques for this 

purpose, but the methodology has not been described in a structured manner. The methods 

depend on the manual application of different image processing techniques in an ad-hock 

manner.  As a result, no general solution exists for micro-graph with different microstructures; 

it depends on the problem domain, which motivated us to focus on this problem. 

  

      In the present work, the task is to extract the three phases in steel and measure the volume 

fraction of these three different phases. Different phases in the micro-structures were formed 

due to various continuous cooling and isothermal heat treatments. Ferrite phases developed 

from the austenite phase if cooling was controlled. However, rapid cooling generates two 

phases – ferrite and martensite. Bainite was developed if the cooling process includes 

isothermal hold at some intermediate temperature. Bainite is the ferrite phase with retained 

austenite in it. The phases are observed at high resolution with Single Electron Microscope 

(SEM) micrograph, as shown in Figure 1. 

 

      Figure 1 consists of three phases: Ferrite, Bainite, and Martensite marked as F, B, and M, 

respectively. It can be observed from the micro-graph that martensite phases are smooth 

circular regions with high-intensity values. The remaining region inside and outside the 

circular martensite phase can be divided into two parts. The blackish portion with low 

intensity is the ferrite phase, and the portion with higher intensity within these ferrite phases is 

called the bainite phase. The work aims to classify these three phases in the micro-graph and 

separately identify the ferrite and bainite phases inside and outside the circular martensite 

phase. After correctly classifying the phases, the volume fraction of these phases is measured. 

  

 
Figure 1: Three phases of metal 

F 

B 

M 
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2. Past work 

     The quantification of phase volume fractions is commonly and almost routinely done using 

light microscopic images or scanning electron microscopic images of the microstructure. 

Before phase quantification, it is necessary to develop the material's micro-structure using 

small specimens metallographically polished and etched to develop the micro-structural 

details following standard metallographic procedure. It should be noted that the entire 

procedure of preparing the specimen is manual. 

 

     Microscopes were integrated with a digital camera, and the images captured by this camera 

were stored in a personal computer. The digital images of micro-structures were used for 

characterizing the micro-structure, including the relative volume fraction of the phases. The 

typical image analyzing software was generally used for this purpose. The microstructure 

analysis for the relative volume fraction of the phases was based on the grey level of different 

phases/constituents that developed depending upon the etching reagent and phase 

characteristics. However, only grey level-based analysis often poses difficulties in 

determining the phase volume fractions. This difficulty primarily arises from minimal 

variation in the grey level characteristics within/between the phases and in a complex 

structure where different phases with almost similar grey levels (or with no variation in grey 

level) remain finely intermixed. Hence, there remains challenging in such critical conditions 

to delineate different phases and determine the relative phase volume fraction. Keeping all 

these challenges in mind, the methodology for automated measurement mostly comes down to 

the task of image segmentation. 

 

     It is observed that very few efforts have been made to automate the segmentation of 

microstructures and measure the volume fraction of the phases present. Furthermore, the 

methodologies adopted are material specific. It is well known that the micro-structures vary 

from material to material and with different processing parameters. Hence devising an 

automated system applicable to all cases is very difficult. It has motivated the researchers to 

customize the systems for specific scenarios. 

 

       Komenda [13] proposed a scheme where an image classifier has been integrated with 

context vision [14]. Spatial dependencies between regions were measured to extract the areas 

of interest. However, such analysis incurs computational costs. Moreover, classification 

accuracy heavily depends on proper training. A neural network also has been tried to classify 

the phases of an alloy [15]. A comparative study has been done between multi-layer 

perceptron and self-organizing map topologies for segmenting micro-structures in 

metallographic images. In this work, a multi-layer perceptron neural network was trained 

using a supervised backpropagation algorithm, and self-organizing map neural network 

training was based on the unsupervised Kohonen algorithm. The network was trained using 

sixty samples of cast irons, and the results obtained by the multilayer perceptron neural 

network were very similar to the ones obtained by visual human inspection. It is worth 

mentioning that for such supervised techniques, sufficient samples are required for proper 

training. Chatterjee et al. [16] presented an image processing-based automated system that 

considered intensity-based thresholding to differentiate the phases in High Strength Low 

Alloy (HSLA) steel. To refine the measurement, phase boundaries with intensity values 

similar to one of the phases were identified as thin regions and ignored in the measurement. 

Gruttadauria et al. [17] utilized Image Pro Plus software to identify the phases, which also 

differentiated the phases based on intensity. 
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Paulic et al. [18] calculated graphite, ferrite, and ausferrite volume fraction using a threshold-

based technique. Salem et al. [19] analyzed Ti6AlV4 microstructure data by learning the 

phase patterns. Campbell et al. [20] also worked with Ti6AlV4 specimens. Watershed 

transform followed by a merging technique had been used for region segmentation. In each 

region, phases were identified by using thresholding. Deep learning has been tried by Azimi 

et al. [21]. However, it requires a large data repository for formal learning. Gray-level co-

occurrence-based textural properties were considered by Naik et al. [22] for phase 

identification. Yang et al. [23] quantify alpha and beta phases in dual-phase Ti-6Al-4V 

titanium using Image-Pro Plus software. 

 

     Commercially available software mainly relies on intensity-based thresholding, and the 

user provides an option to select the threshold. However, the brief discussion reveals that the 

problem was not that trivial. The threshold-based scheme fails to consider phase intensity 

variation and other structural criteria. Consequently, a more rigorous segmentation scheme 

becomes essential. 

 

3. Methodology 

      The micrograph consists of three phases, as shown in Figure 2(a). Boundaries separated 

the phase regions in a micrograph. Sample Ferrite, Bainite, and Martensite region have been 

marked as F, B, and M, respectively, in Figure 2(a). As discussed earlier, the present work 

aims to classify the three phases in the micrograph and separately identify the ferrite and 

bainite phases inside and outside the circular martensite phase. The following significant steps 

were performed to achieve that. 

1. Binarization of image  

2. Detection of Martensite phase 

3. Refinement of black regions 

4. Classification of black regions 

4.1 Detection of the black region inside or outside of the Martensite phase 

4.2 Classification of Bainite and Ferrite phase  

 

3.1 Binarization of the image  

     The gray-scale fractography image was first binarized using intensity-based thresholding. 

It has been discussed that, in general, the Martensite phase poses a higher intensity value, and 

the bainite and ferrite phases were characterized by low-intensity pixels. Using OTSU method 

of thresholding based on the intensity histogram, a threshold, this chosen so that B[i, j] = 1 if 

F[i, j] > th and B[i, j] = 0 otherwise. F[i, j] and B[i, j] denote the pixel at [i, j] location of the 

grayscale image and the corresponding image after binarization. The binarized image of the 

original micro-graph (Figure 2(a)) is shown in Figure 2(b).   

 

3.2 Detection of martensite phases 

      After thresholding, the white region of the micro-graph was identified as the Martensite 

phase. The next task was to separate the bainite and ferrite phases from the black region. 

 

3.3 Refinement of black regions 

      The bainite and ferrite phase was characterized by low-intensity value, but some white 

blocks may present in them. Hence, the bainite and ferrite phases were turned into a black 

region after thresholding. However, white blocks sometimes divide a black region into 

smaller subparts. Each black region was first marked by a unique number using a region-

growing algorithm [24]. After that, erosion [25] operation was applied to join these smaller 

regions. However, after erosion, the area of the black region will increase. Hence, dilation was  
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applied [25] to remove the extra added areas.  

After thresholding, some insignificant black regions may be present in the micro-graph due to 

noise. The following algorithm was used to remove the small insignificant regions. 

Step 1: Calculate the size of each black region. 

Step 2: Find the average sizes of the regions. 

Step 3: If the black region's size is smaller than the average, remove the i-th region. 

 

3.4 Classification of black regions  

     After preprocessing, the black regions were further classified into two phases: bainite and 

ferrite. Figure 2(a) shows that the ferrite phases were characterized by low intensity, whereas 

bainite phases were characterized by relatively high-intensity value but lower than the 

martensite phase. So local thresholding was applied to each black region using the OTSU 

method to classify the black regions into two phases. However, the two phases may be 

surrounded by the martensite phase, or the two phases may present in between two martensite 

phases. Hence, the bainite phases were separated inside and outside the martensite phase. The 

same was also done for the ferrite phase.  

 

3.4.1 Detection of the black region inside or outside of the Ferrite phase 

       First, each black region's Centre of Gravity (COG) was calculated; then, finding a pixel in 

that region that is furthest from COG and calculating the Euclidian Distance (d) of that pixel 

from COG; then, drawing a circle considering COG as the center and d as the radius. If the 

circle covers more than one black region, it is considered a black region outside a ferrite 

phase; otherwise, it is considered inside the ferrite phase. 

 

3.4.2 Classification of Bainite and Ferrite phase 

     Each black region inside or outside of Martensite phases was further classified as Bainite 

and Ferrite phases depending on local thresholding using the OTSU method. For this, a 

threshold is chosen depending on the intensity values of the original micrographs pixels in the 

black regions of the refined image. If the intensity of a fractography pixel in the black region 

inside the Martensite phase is less than the, then it can be characterized by the Ferrite phase 

inside the Martensite phase; otherwise, it is the Bainite phase inside the Martensite phase. The 

same method was applied for the black region outside the Martensite phase to classify it into 

Bainite and Ferrite phases outside the Martensite phases. The segmented image is shown in 

Figure 2(c), where the white regions correspond to the Martensite phase; blackish regions 

correspond to Bainite and Ferrite phase within the circular Martensite phase with two 

different shades, and the Bainite and Ferrite phase outside the circular Martensite phase was 

represented by a gray region with two different shades.   
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          (a)                     (b) 

 
      (c) 

Figure 2: (a) Three Phase Micrograph (b) Threshold Image (c) Segmented Image. 

 

Table 1: Volume Fraction of Different Phases 

Micrograph Martensite 
Inside martensite Outside martensite 

Ferrite Bainite Ferrite Bainite 

Micrograph 1 .64 .03 .04 .12 .17 

Micrograph 2 .65 .06 .06 .09 .14 

Micrograph 3 .73 .04 .04 .09 .10 

Micrograph 4 .65 .03 .05 .11 .16 

Micrograph 5 .69 .04 .03 .11 .13 

 

4. Results and Discussions 

     High Strength Low Alloy (HSLA) steel was used in the present investigation. The 

specimen was observed in a Scanning Electron Microscope (JSM6360) under secondary 

electron imaging mode, and the image was captured and stored in a computer. The brightness 

and contrast of the images were controlled by the in-built image controlling software of the 

microscope.  

 

      The proposed methodology was applied to 20 micrographs, and each micrograph's volume 

fraction of Martensite, Bainite, and Ferrite phases was calculated. The volume fractions for 
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five micrographs are listed in Table 1. It can be observed from the table circular martensite 

phase covers most of the area (60% to 75%) of the micrograph. The total ferrite phase inside 

and outside the circular martensite region covers more or less 15% of the total area. The 

bainite phase covers the remaining 15% to 20% area. The ferrite and bainite phase present 

inside and outside of the circular martensite phase are measured separately. It can also be 

observed from the result that the percentage of ferrite and bainite phases within the circular 

martensite phase was equally distributed. However, outside of the circular martensite phase, 

the occurrence of the bainite phase is slightly more than the ferrite phase. These observations 

can be used to control the material's properties.  

     Traditional commercially available software classifies the phases depending on intensity 

variation. Thus, this software can detect the volume fraction of the phases in the whole 

micrographs but cannot separately detect the volume fraction of bainite and ferrite phases 

inside and outside the circular martensite phase. 

  

5. Conclusions 

      This work presents an automated scheme for extracting three phases, ferrite, martensite, 

and bainite, in high-strength low alloy steel. The scheme uses image processing operations 

like thresholding, region growing, erosion, and dilation to identify three phases. High-

intensity circular-shaped Martensite phases were extracted using the Otsu thresholding 

method. The bainite and ferrite phases were spread inside and outside the circular martensite 

phase. The bainite and ferrite phases inside and outside circular martensite phases were 

determined separately using the geometrical property. At last, the volume fraction of different 

phases in the micrograph was measured. Most commercially available software classifies the 

phases based on intensity variation and fails to extract bainite and ferrite phases inside and 

outside the circular martensite phase separately.  

 

References 
[1] N. J. Petch, “The cleavage strength of polycrystals,” Journal of the Iron and Steel Institute, vol. 

174, pp. 25–28, 1953. 

[2] W. L. Spychalski, K. J. Kurzydlowski, and B. Ralph, “Computer study of inter- and intraangular 

surface cracks in brittle polycrystals,” Materials Characterization, vol. 49, no.9, pp. 45–53, 2002. 

[3] T. Wejrzanowski, W. L. Spychalski, K. Rozniatowski, and K. J. Kurzydlowski, “Image-based 

analysis of microstructures of engineering materials,” International Journal of Applied 

Mathematics and Computer Science, vol. 18, no. 1, pp. 33–39, 2008. 

[4] C. E. Kril and R. Birringer, “Estimating grain-size distributions in nanocrystalline materials from 

x-ray diffraction profile analysis,” Philosophical Magazine A, vol. 77, no. 3, pp. 621–640, 2001. 

[5] K. J. Kurzydlowski and B. Ralph, The Quantitative Description of the Microstructure of 

Materials, CRC Press, London, 1995. 

[6] Q. Wu, F. S. Merchant, and K. R. Catleman, Microscope Image Processing, Academic Press, UK, 

2008. 

[7] D. L. Spector and R. D. Goldman, Basic Methods in Microscopy, Cold Spring Harbor Laboratory 

Press, 2005. 

[8] G. Sluder and D. E. Wolf, Digital Microscopy, Academic Press, UK, 2003. 

[9] S. Inoue and K. R. Spring, Video Microscopy, Springer, 1997. 

[10] D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging, Wiley-Liss, 2001. 

[11] K. R. Castleman, Digital Image Processing, Prentice-Hall, 1996. 

[12] A. Diaspro, Confocal and Two-photon Microscopy, Wiley-Liss, 2001. 

[13] J. Komenda, “Automatic recognition of complex microstructures using the Image Classifier,” 

Materials Characterization, vol. 46, no. (2-3), pp. 87–92, 2001. 

[14] ContextVision AB, Context vision Users’s Guide, MicroGOP2000/S Software V. 3.1. 

ContextVision,1999. 



 Banerjee                                                 Iraqi Journal of Science, 2022, Vol. 63, No. 10, pp: 4601-4608 

 

4608 

[15] V. H. C. de Albuquerque, A. R. de Alexandria, P. C. Cortez, and J. M. R. S. Tavares, “Evaluation 

of multilayer perceptron and self-organizing map neural network topologies applied on 

microstructure segmentation from metallographic images.” NDT & E International, vol. 42, no. 7, 

pp. 644–651, 2009. 

[16]  O. Chatterjee, K. Das, S. Dutta, S. Datta, and S. K. Saha, “Phase extraction and boundary 

removal in dual phase steel micrographs,” In Proceedings of India Conference (INDICON), 

IEEE, 2010. 

[17]  A. Gruttadauria, D. Mombelli, E. M. Castrodeza, and C. Mapelli, “Processing and 

characterization of dual phase steel foam,” Revista Materia, vol. 15, no. 2, pp. 182–188, 2010. 

[18]  M. Paulic, D. Mocnik, M. Ficko, J. Balic, T. Irgolic, and S. Klancnik, “Intelligent system for 

prediction of mechanical properties of material based on metallographic images,” Technical 

Gazette, vol. 22, no. 6, pp. 1419–1424, 2015. 

[19]  A. A. Salem, J. B. Shaffer, R. A. Kublik, L. A.Wuertemberger, and D. P. Satko, “Microstructure- 

Informed Cloud Computing for Interoperability of Materials Databases and Computational 

Models: Microtextured Regions in Ti Alloys,” Integrating Materials and Manufacturing 

Innovation, vol. 6, no. 1, pp. 111–126, 2017. 

[20] A. Campbell, P. Murray, E. Yakushina, S. Marshall, and W. Ion, “New methods for automatic 

quantification of microstructural features using digital image processing,” Materials and Design, 

vol. 141, pp. 395–406, 2018. 

[21] S. M. Azimi, D. Britz, M. Engstler, M. Fritz, and F. Mucklich, “Advanced Steel Microstructural 

Classification by Deep Learning Methods,” Scientific Reports, vol. 8, 2018. 

[22] D. L. Naik, H. U. Sajid, and R. Kiran, “Texture-based metallurgical phase identification in 

structural steels: A supervised machine learning approach,” Metals, vol. 9, no. 5, 2019. 

[23] D. Yang and Z. Liu, “Quantification of Microstructural Features and Prediction of Mechanical 

Properties of a Dual-Phase Ti-6Al-4V Alloy”, Materials, vol. 9, 2016. 

[24] B. Chanda and D. D. Majumder, Digital Image Processing and Analysis, Prentice-Hall, India, 

2001. 

[25] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice Hall, India, 1992. 

 

 

 

 

 

 

 


