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Abstract 

     A mineralogical study using X-ray diffraction supported by scanning electron 

microscopic examination on the Paleocene- Eocene Kolosh and Gercus formations 

from northern Iraq is conducted to show the distribution of clay minerals and their 

paleoenvironmental implications. Smectite palygorskite, kaolinite, illite, and chlorite 

are commonly present in varying proportions within the Kolosh and Gercus 

formations. Association of smectite and chlorite in the claystone of the Paleocene 

Kolosh Formation refers to marine environment of this formation, whereas 

development of palygorskite fibers from smectite precursor may relate to post-

depositional diagenesis. In addition, the abundance of illite and kaolinite in the 

Eocene Gercus Formation suggests a greater influence of terrigenous input in humid 

conditions, affecting the distribution of these clay minerals. The study shows 

vertical change in clay minerals distribution when illite and kaolinite dominate in the 

Eocene Gercus Formation, in comparison to chlorite and smectite abundance in the 

Paleocene Kolosh Formation which may relate to global warming in the Eocene.  
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Introduction 

     Highly sensitive changes in clay mineral structures due to changes in temperature and pH 

in their surroundings make them useful indicators for changes in paleoenvironmental 

conditions [1]. Generally, clay minerals are the products of sedimentation and diagenesis 

under certain circumstances related to provenance, climate, and water conditions; therefore, 

they have important implications for interpreting the paleoenvironmental and 

paleoclimatic history [2-5]. 

In the Cenozoic sedimentary successions from northern Iraq, clay minerals of Paleocene to 

Eocene rocks (Figure 1) representing the Kolosh and Gercus formations were subjected to a 

detailed mineralogical study. The studied succession is characterized by a thick deposition of 

clastics and carbonates represented by the Kolosh Formation (Paleocene-lower Eocene) and 

the Gercus Formation (Middle Eocene). Grey to green colored shale, sandstone, marl, and thin 

limestone of the Kolosh Formation were deposited in a narrow rapidly subsiding trough 

setting    

Email: alialjubory@yahoo.com 

and represent marginal marine environment [6]. Whereas, the Gercus Formation comprises 

red-colored sandstone and mudstone that were deposited in continental environments such as 

alluvial fans, river floodplains, lakes, and deltas [7-8].  

In a global context, major climatic changes were observed at the late Paleocene-early Eocene 

interval, including various sedimentological, mineralogical, and paleontological variations, as 

an intemperate episode of global warming representing a significant impact on both marine 

and terrestrial ecosystems [9-10].  

In the present work, X-ray diffraction (XRD) supported by scanning electron microscopic 

(SEM) study is achieved for the marl, shale, and mudstone units from the two formations in 

selected section in Shaqlawa area, northern Iraq (Figure 1). We aimed to elucidate 

paleoenvironmental interpretation of the Kolosh and Gercus formations (Paleocene-Eocene) 

succession based on data deduced from clay mineralogy. 

Geological setting 

Iraq is located in the northeastern part of the Arabian Plate which forms a part of the long and 

wide northern passive margin of Gondwana bordering the Paleo-Tethys Ocean [11]. This part 

is a foreland basin that was created in response to loading of the crust by thrust sheets 

generated due to compression [11]. The evolution of the basin in terms of sedimentary 

environment, succession thickness, and vertical trends is strongly dependent on the degree of 

compressional tectonic activity [12]. 

In northern Iraq, the middle Paleocene- Eocene was deposited in Megasequence AP10 

according to Sharland et al. [13] during a period of renewed subduction and volcanic activity 

associated with the final closure of the NeoTethys.   

The Kolosh Formation represents the deepest and mobile sedimentary basin of Paleocene-

lower Eocene cycle of Iraq [14]. It is connected with gradual lateral passage with the 

previously described Aaliji Formation and represents its contemporaneous clastic facies.  

The studied Kolosh and Gercus formations are cropping out in a narrow belt of the High 

Folded belts (Figure 1). In this region, Kolosh clastics represent deep sea sediments that were 

spilled over in the narrow NeoTethyan Ocean onto the passive continental margin of the 

Arabian Plate from the approaching active margins of the Iranian and Turkish Plates [15]. The 

Middle Eocene Gercus Formation represents a typical continental red bed succession. It is 

dominated by clastic sedimentation of conglomerates, sandstones, mudstones, and marls, with 

some carbonates and evaporates deposited under an arid to semi-arid climate [7, 8, 16]. 
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Figure 1-Paleogeographic and facies maps of Late Paleocene (left) and Middle Eocene 

(right), after [17], showing the narrow belt of the Kolosh and Gercus formations cropping out 

in northern Iraq, along with the location of the studied section. 

 
Materials and Methods 

Clay mineral analysis was performed by x-ray diffraction of selected samples from the studied 

formations in northern Iraq (Figures 1 and 2). Thirty-five samples (20 from Kolosh and 15 

from Gercus formations) were collected from the claystone members in both formations. 

Representative scans for x-ray diffractograms are included in Figures 3 and 4. Bulk samples 

were analyzed using Phillips Spellman DF3 diffractometer with Cu-α radiation at the School 

of Earth and Environmental Sciences of Wollongong University, Australia. SEM analysis was 

performed using Camscan MV 2300 at the School of Material Engineering of Wollongong 

University, Australia. Additional SEM analysis was conducted at the Steinmann Institute of 

Bonn University, Germany, using a Camscan MV 2300 SEM with a calibrated energy 

dispersive X-ray analysis system.  
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Figure 2-Simplified lithological section for the studied Kolosh and Gercus formations in 

Shaqlawa area showing samples location and distribution of clay minerals  

 

Results 

     X-Ray diffraction analysis revealed the presence of smectite palygorskite, kaolinite, illite, 

and chlorite in varying proportions between the Kolosh and Gercus formations (Figures 3 and 

4). 

In the Kolosh Formation, chlorite is the abundant mineral observed, in addition to kaolinite, 

smectite, and palygorskite (Figure 3), whereas the main clay minerals observed in the Gercus 

Formation are illite and traces of kaolinite and chlorite (Figure 4). Associations of these 

minerals are used to discuss the paleoenvironmental conditions and terrigenous input.   
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Scanning electron micro-images (Figures 5 and 6) show that the studied clay minerals in both 

formations are of either terrigenous (detrital) and/or authigenic and diagenetic origin. 

Smectite is present in framboidal shapes, commonly with outgrowing of palygorskite fibers, 

reflecting its diagenetic origin from smectite precursor; however, isolated fibers of 

palygorskite are also common. Illite exists either in flaky plates or in fibers, whether these 

fibers are isolated or filling fractures. Kaolinite commonly occurs in platy hexagonal degraded 

forms. 

 
Figure -3 Representative X-Ray diffractograms of claystones from the Kolosh Formation 

(Samples K6 and K13 for the upper and lower diagrams, respectively; see Figure 2 for 

samples location). 
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Figure -4 Representative X-Ray diffractograms of claystones from the Gercus Formation 

(Samples G3 and G11 for the upper and lower diagrams, respectively; see Figure 2 for 

samples location). 
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Figure 5-Scanning electron micrographs of clay minerals in the Kolosh Formation. A- 

Feldspar grain showing transformation to platy kaolinite (arrow). B- Common flaky nature of 

clay minerals in claystone showing degraded platy kaolinite (arrows).  C- Framboidal smectite 

(white arrow) and a precursor for palygorskite fiber (black arrow). D- Flaky illite (white 

arrow) and degraded platy kaolinite (black arrow). 
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Figure -6 Scanning electron micrographs of clay minerals in the Gercus Formation. A- 

Common illite flakes and plates (arrow). B- Palygorskite in both authigenic condensed 

accumulation form (white arrow) and separated detrital broken fibers (black arrow). D- 

Fibrous illite filling and hilling pores or fractures (white arrows).  E- Degraded platy kaolinite 

(white arrows). 

 

Discussion 

Detrital clay minerals are the end product of continental weathering. These minerals are 

useful indicators for the past changes in weathering regimes. In general, continental 

weathering is highly affected by climatic change, which in turn affects the weathering rates, 

runoff, soil formation, and transport of terrigenous (detrital) material to the sea [3, 18, 19]. 
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The sedimentation of detrital clay minerals in marine environments takes place mainly 

through fluvial and/or eolian pathways [20]. 

Marine sediments may store a record of the environmental conditions and allow comparing 

these with changes in oceanographic circulation and with global temperatures [21]. Presuming 

that geology and geomorphology of the source region remained fairly stable for the time 

period in consideration in a tropical region, rainfall seems to be the main factor determining 

the composition of clay minerals in marine sediments [22-23]. 

Aridity and humidity in the source area are affected by climate, which in turn affects the 

composition of clay minerals. Therefore, similar rock types undergoing weathering in 

different climatic conditions could give rise to different clay mineral assemblages [24]. 

The clays formed and deposited within the sequences of the Kolosh and Gercus formations 

(Paleocene-Eocene) in northern Iraq are indicative of the deposition of these formations in 

several types of environment, extending from continental to transitional environments (Gercus 

Formation) to deep marine environments, represented by the thick, grey to green colored 

deposits of the Kolosh Formation.  

By tracking the results of the mineralogical analysis of clay minerals typing using the 

techniques of XRD and SEM, a group of clay minerals, including smectite, palygorskite, 

illite, chlorite, and kaolinite were recognized. 

It is noted that the clay minerals in the studied claystone are detrital and/or authigenic and 

diagenetic in origin. Clay minerals have undergone little change in the zone of weathering and 

are chemically unreactive in deep oceans [3]. 

Kaolinite and smectite could be formed by crystal growth in the basin of deposition, at the 

expense of muscovite, k-feldspar, and plagioclase. However, kaolinite is more likely to be 

inherited from kaolinitic source, since detrital kaolinite is very unlikely to form in seawater 

[25]. Previous studies confirmed the presence of kaolinite in the river environments (Gercus) 
[26], which is established in these continental environments due to the presence of acid 

solutions that have a suitable environment for sedimentation [1].  

Detrital origin of kaolinite relates mostly to derivation from igneous rocks that are rich in 

potash feldspars or from reworking of older sedimentary rocks [27]. Presence of detrital 

kaolinite in the form of degraded hexagonal plates (Figures 5B, D and 6D) is an indication of 

little effect of chemical weathering in the source area [3]. 

Authigenic formation of palygorskite is commonly observed in lagoons and evaporitic basins 
[27].  Palygorskite can also be formed by transformation from precursor clays (Figure 5C) 

during early diagenesis [3], by direct crystallization in calcareous soils, or as results of 

hydrothermal alteration of basaltic glass in the open oceans in association with fore-arc basins 

[28]. 

 In the weathering zones, illite commonly forms due to alteration of muscovite, biotite, and k-

feldspar [29]. Presence of illite as flakes or fibers (Figures 5D and 6A, C) may indicate the 

altered form of illite from older feldspars or other silicate minerals. 

Smectite formation is favored in marine environments with mild alkaline, available   Ca, 

paucity of K, and high Si and Mg. Poor drainage is necessary because otherwise water can 

leach away ions (e.g. Mg
+2

) released in the alteration reactions [3]. 

The changes observed in clay minerals in the studied Paleocene-Eocene succession suggest 

interaction of clay minerals of terrigenous and marine sources in the Kolosh Formation. The 

dominance of chlorite and smectite (Figure 2) signifies a marine influence as a result of rising 

in sea level [30], whereas the association of illite and kaolinite (Figure 2) in the Gercus 

Formation suggests a greater influence of terrigenous input [3]. The observed vertical change 

in clay minerals distribution, from abundance of chlorite and smectite in the Paleocene 

Kolosh Formation to illite and kaolinite dominance in the Eocene Gercus Formation, may 

relate to global warming in the Eocene. 
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Conclusions 

Clay mineral distributions in the Paleocene- Eocene from north Iraq revealed the dominance 

of smectite and chlorite with lower amounts of illlite in the claystones of the Paleocene 

Kolosh Formation, which refers to marine conditions as the main paleoenvironmental factor 

affecting such dominance. Post-depositional diagenetic reactions affect the transformation of 

palygorskite from precursors smectite. This mineral association may refer to dominance of 

warm and wet conditions that serve the preservation of these minerals. Whereas, the 

association of illite and kaolinite in the Eocene Gercus Formation suggests a greater influence 

of terrigenous input in humid conditions, such as rivers or coastal environments. This vertical 

distribution of clay minerals may relate to the global warming recorded in the Eocene. 
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