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Abstract:

In this work, we are concerned with how to find an explicit approximate solution
(AS) for the telegraph equation of space-fractional order (TESFO) using Sumudu
transform method (STM). In this method, the space-fractional order derivatives are
defined in the Caputo idea. The Sumudu method (SM) is established to be reliable
and accurate. Three examples are discussed to check the applicability and the
simplicity of this method. Finally, the Numerical results are tabulated and displayed
graphically whenever possible to make comparisons between the AS and exact
solution (ES).
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1. Introduction

Fractional calculus is a branch of mathematics that study the qrows out of the traditional concepts
of calculus integral and derivative operators in much the same way fractional exponents is a
conclusion of exponents with an integer value [1], many researchers have suggested several
applications of fractional calculus in various areas such as, chemistry, physics, plasma physics,
engineering, stochastic dynamical system, turbulence and fluid mechanics, and nonlinear control
problems [2-6]. Several techniques of Numerical and analytical methods have been developed for
solving the application of fractional calculus, some of these methods are, Shifted Jacobi with tau
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method [7], Sinc-Jacobi and Sinc-Legendre with Collocation method [8-9], Chebyshev wavlets [10],
Legendre and Chebyshev wavlets- Collocation method [11], Chebyshev wavelets-Galerkin Method
[12].variational iteration method [13], and homotopy method [14].

Telegraph equations are PDEs have recently been considered by many applications in several fields
such as random walk theory, electrical signals analysis [15-17]....,etc. Various methods are developed
for solving Telegraph equations of fractional order, some of these methods are given by Momani [18],
Yildirim [19], Chen et al. [20], Huang [21], Mohammed et al. [22].

Watugala in 1993[23] proposed a STM which is used to solve an integral transform called the
Sumudu transform (ST) and he used this method in control problems. So far, various methods are used
together with ST, like homotopy analysis SM [24], Sumudu decomposition method (SDM) [25], a
modified homotopy algorithm [26]. STM [27-29] which will be recently submitted to the literature
will be a suitableness technobabble for solving various kinds of ordinary differential equations of
fractional order (DEFO).

2. Preliminaries

The most frequently encountered definition of fractional integration and fractional derivative are
the Riemann-Liouville (RL) fractional integration and Caputo fractional derivative (CFD).
Comparatively, the CFD has certain advantages when trying to model real-world phenomena with
DEFO. Also, we provide some basic definition and properties of STM.

Definition (2.1) [4]

The RL fractional integral operator ¥ of order v > 0, of a function f(t), is the most popular

definition of fractional calculus is defined as:

J'f(®) = 75 Jy (6 =D f(@dr, 1> 0 (1)
J°f () = £(©)

Properties of the operator J”can be found in [4] for v,8 = 0, and y > —1 we have:
JI©) = P f (O = oI f();
JUtY = ry+1) . p+y
r(v+y+1)

Definition (2.2) [4]

The CFD operator D¢ of order v is:
DEF(®) =J""D (D) = s fy (= D" f M (DT, v >0 ©)
Forn—-1<v<n,neN,t>0.
Definition (2.3) [4]

The Mittage Leffler function E, (Z) with v > 0, is definite by the following series:

o zv

E‘U(Z) =Zn=01"(nv+1) ,v>0,Z€C (3)

Definition (2.4) [30]
The ST over the following set of functions, such that:

A={f(x)| IM, &,&, >0, Such that, |f(x) KM exp(lg—_|), if x € (=1))x [0, )} (4)
is define as: ]
HW =S [f(x)] = [;"f(ux) e™dx ,u € (§1,&) Q)
The properties of the ST are given as:
1.5[1]=1
S [r(rtl+1)] =u",n>0;
3. S [exp(at)] = 1_1au.
4.8 [of(x) P g)]=as [f ()] £BS[g ()]
Theorem (2.1) [30]
Let H(u) be the ST of f(x), s.t

H(i/s), is a meromorph function, with singularities Re(s) < y,

2. There exists a circular region I" with radius R and positive constants, M,k > 0 , with |@|<M
Rk,

1.
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So, the Sumudu inverse (SI) of the function f(x) is introduced by:
“HH@S)] = f(x) = i f;/:l:)o exp(sx)H (%) % = Y residues[exp(sx) @]. (6)

Definition (2.5) [30]
The ST § [Dy f(x)] of the fractional derivative using the Caputo idea of the function f(x) is given by:

SIDYFC] = 29 3n=s IO \nere H(w) = S[f(x)] )
Itis easy to understand that:
SDEFOe)] = 2UED) _yna FOC0 g <y<n (®)

3. The direct approach for solving linear TESFO using SDM.
We consider the following linear TESFO of the form:
Diu(x,t) = aup + uy + bu(x, t) + g(x,t) 0<x<1 9)
t=>00<v<2,
Where g (x,t) is the source term and a, b are constants.
With Initial Condition (1.C)

%zum(o,t)h:o =f(t), 7=0,1,2,....— 1. (10)
Now applying the ST into Eq.(9) we have:
S[DYu(x,t)] = S[aus + uge + bul(x, t)] + S[g (x, t)] (1)
Substituting Eq.(8) into Eq.(11) we get:
uS[u(x, )] — It u” @ u® (0, t) = S[auy + ug + bu(x, t)] + S[g (x,t)] (12)
STu(x, )] = TFLuk fi. () + u’S[aus + uge + bu(x, t)] + u?S[g (x,t)] (13)
So, according to SDM we can obtain the solution result u(x , t) as:
ulx,t) = Ypzoun (1, 1) (14)

Now, substituting Eq.(14) into Eq.(13) gives:
[Zn oUn (x, )] =

it u fi(®) + u"S[a(Zrzo un (6 1), + (Erzotn (6, 1)), + b Xioun (1, )] +u¥S[g (x,0)]
(15)

From Eq.(15) we can define all the coefficients of u,, ., (x, t)
So we get the zero coefficients uy(x , t) as:
S [ug(x, )] = ZFso u fie()
The first component u, (x, t) as:
S [ug(x, )] = u¥S[alug(x, ) + (ug (x, )¢ + bug (x,t) + glx,t)]

Finally the remaining coefficients of u, (x,t) can be find in a way like each coefficients is found
by using the coming before components.
S [up+1(x, )] = u"S[alun (x,6))¢ + (un (x,))er + bu, (x,0)],n = 1.
Applying the Sl to the above equations yields the following:
up(x,t) = STHERS u” fie (1))
u(x,t) = ST wVS[alug (x, )¢ + (U (x,1))ee + bug (x,t) + g(x,t)])
Unpr(x,t) = ST WPS[a(uy (x, ) + (up (x, ) + bu, (x,)]),n = 1.
So that, the AS u,, (x, t; v) is given as:

u,(x,t) = ;-‘;& uj (x,t) (16)
Such that
lim, e uy(x,t) = u (x,t) a7

4. Numerical Examples

In this section we shall test three examples using the STM to solve the TESFO and the solutions we
got it by using the present procedure will be comparing with original ES.
Example (1) [22]: consider the following homogeneous TESFO

Diu(x,t) =ug+us+u, x,t 20, 0<v<2, (18)
With the I. C.
u(0,t) =e™t, t=0
{ux(o, H)=et, t=0 (19)
Now applying the ST with Eq.(8) into Egs.(18-19) we get:
Sulx,t)] =e t+xe t +u?S[(u(x,t)e + w(x, ) +ulx, t)] (20)
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So, according to SDM we can obtain the solution result u(x , t) as:
u(x,t) = Ypzoun (x, 1)
Now, substituting Eq.(14) into Eq.(20) gives
S[Eieo tn (x, D]=e ™ + xe T HUTS[(Top tn (1, D),, + (Ticotn (6, 0)), + Do tn (0, 0] (21)
From Eq.(21) we can define all the coefficients of u, 1 (x,t)
So we get the zero coefficients uy(x , t) as:

S[ug(x,t)] = et +xe”t (22)
The first component u, (x, t) as:
STug(x, O] = u”S[(up (x, )¢ + (o (x, )¢ + up(x, t)] (23)

Finally the remaining coefficients of u, (x,t) can be find in a way like each coefficients is found
by using the coming before components.

Slups1(x, 0] = u’S[(up (x, )¢ + (uy (x, 1)) + un(x, O] (24)
So, we can use the Sl in Eq.(22) we get

Ug(x,t) = S e t+xe t]=e t(1+x) (25)
Also,

S[u(x, )] = e t(w” +u*) (26)

Also, by using Sl to Eq.(26) we have:

( t) _ —t xlﬂ xli+1
Uhix,t)=e (F(v+1) F(v+2))
Similarly,

U (x,t) = e Y

2v 2v+1

x x
r(2v+1) TrQv+2)

nv+1

— ot X x
Unsa(x,t) = e (F(nv+1) F(nv+2))

Therefore, the AS by STM is shown as:

_ ¢ xv xv+1 va x217+1 L
Un(x,8) =e (1 txt rv+1) r@+2) rQv+l) rRv+2) + ) (27)
If we put v = 2 in Eq.(27), we can conclude the ES [22].

ze (1 xr  xf xt xS _ ,—t+x 8
u(x,t) =e ( +x+§+§+ﬂ+§+'")_e 28)

The Absolute Error (AE), |u(x,t) —u,(x,t)| betweenthe ESu(x,t) and the AS u,(x,t) by
using 3-term of the STM when v = 1.75, 1.9 by fixing t = 1 and different values of x , are given in
Tables-(1, 2). Also Figures-(1, 2) shows the AS using 3-term of the STM when v = 1.75 and 1.9.

Tablel-The AE for t =1 and x=0.1:0.1:1.0 when v = 1.75.

x u(x,t) u,(x,t) AE
0.100 0.4065697 0.5010931 9.4523405e-02
0.200 0.4493290 0.5530201 1.0369115e-01
0.300 0.4965853 0.6124642 1.1587893e-01
0.400 0.5488116 0.6788092 1.2999758e-01
0.500 0.6065307 0.7516633 1.4513259-01
0.600 0.6703200 0.8307437 1.6042362e-01
0.700 0.7408182 0.9158318 1.7501357e-01
0.800 0.8187308 1.0067508 1.8802005e-01
0.900 0.9048374 1.1033531 1.9851570e-01
1.000 1.0000000 1.2055127 2.0551274e-01
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Table 2-The AE fort =1 and x=0.1:0.1:1.0 when v = 1.9.

X u(x,t) u,(x,t) AE
0.100 0.4065697 0.4822658 7.5696157e-02
0.200 0.4493290 0.5297864 8.0457410e-02
0.300 0.4965853 0.5837051 8.7119841e-02
0.400 0.5488116 0.6437983 9.4986649e-02
0.500 0.6065307 0.7099152 1.03386649e-01
0.600 0.6703200 0.7819428 1.1162278e-01
0.700 0.7408182 0.8597909 1.1897270e-01
0.800 0.8187308 0.9433846 1.2465385e-01
0.900 0.9048374 1.0326600 1.2782260e-01
1.000 1.0000000 1.1275616 1.2756158e-01
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the Approximate solution
the Approximate solution
&

- o
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Figure 1-The surface shows the AS for v =1.9 Figure 2-The surface show AS for v = 1.75

of Example 1. of Example 1

Example (2)[22]: consider the following nonhomogeneous TESFO
D¥u(x,t) =up +us+tu—x>—-t+1,t>0, 0<x<1 0<v<2,
With the 1.C.
u(0,t)=t, t=0
{ux(O, t)=0, t=>0
Now applying the ST with Eq.(8) into Egs.(29-30) we get:
Sulx,t)] =t+u’S[(ulx,t))e + (ulx,t))e +ulx,t) —x? —t+ 1].
So, according to SDM we can obtain the solution result u(x , t) as:
u(x,t) = Ypzoun (x, 1)
Now, substituting Eq.(14) into Eq.(31) gives
S[Ereoun(r, 0] = t + uS[(Tizoun (. 1)),, +
Eroun (6, 0), + Zazoun(x, ) — x* —t +1]
From Eq.(32) we can define all the coefficients of u,, ., (x, t)
So we get the zero coefficients uy(x , t) as:
Slug(x,t)] =t —2u"*"? —tu? +u
The first component u,(x , t) as:
Sug (x, )] = u”S[(uo (x,8)) e + (uo (x, 1)) + up(x, )]

(29)

(30)

(31)

(32)

(33)

(34)

Finally the remaining coefficients of u, (x,t) can be find in a way like each coefficients is found by

using the coming before components.
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Sluns1(x, )] = uS[(Un(x, )i + (W (x, £))¢ + up(x, )] (35)
Now, by using the Sl to Eq.(33) we have:

[N}

the Exact solution
the Approximate solution

(@) (b)
Figure 3-The comparison between (a) the ES and (b) the AS using 3-term of the STM for v = 1.2 of
Example 2.

va+2 th xv

Up(x,t) = t— rw+3) T+ | reeD (36)
Also,
S[u(x, )] = u? —u? + tu¥ — 2u?V*? — tu?’ +uv (37)
Also, by using Sl of Eq.(37) we have:

x'|7 x2'|7 txv 2x217+2 txZV va
1h(x’0-_FW+D-_FQU+D_FFW+D-_F@v+$-_FQu+D_FF@v+D
Similarly,

2x217 x317 txZU 2x317+2 tx3v
up(x,t) = rv+1) rQGv+l) trary r(3v+3) rGv+l)
And so on.
Therefore, the AS by STM is given by:

_ 2x17+2 txv xV xv xZV th 2x217+2 tva
lhix'ﬂ_t__Fw+@-_FW+D-FFW+D rwr1)  T@vrn) T TweD)  ress) el
xZIJ 2x217 x317 txZU 2x317+2 tx3v

reoiD) T rorD)  rGerD) T raerd)  rGers)  reern T (38)

If we put v = 2 in Eq.(38), we get the required ES [22].
2 4 4 6 6 8 8 8
uCe,t) = (e+5 -2 2 B B B B B ) =4 a? (39)
2! 4! 4! 6! 6! 8! 8! 8!
Table-3 show the AE between the ES u(x,t) and the AS u,(x,t) using 3-term of the STM when
v = 1.9 by fixing t = 1 and different values of x.
Figures-(3, 4 and 5) shows the comparison between the ES u(x,t) and the AS u, (x,t) using 3-
term of the STM when v = 1.2,1.5 and 1.9.
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Table 3-The Absolute error for t =1 and x=0.1:0.1:1.0 when v = 1.9

X ulx,t) u,(x,t) AE
0.100 1.0100 1.01377 3.779642¢-3
0.200 1.0400 1.05145 1.14520e-02
0.300 1.0900 1.11112 2.12469e-02
0.400 1.1600 1.19232 3.23258e-02
0.500 1.2500 1.29413 4.41316e-02
0.600 1.3600 1.41622 5.62230e-02
0.700 1.4900 1.55581 6.81921e-02
0.800 1.6400 1.71960 7.96092¢-02
0.900 1.8100 1.89997 8.99776e-02
1.000 2.0000 2.09869 9.86922e-02

the Exact solution
the Approximate solution

t 0 o X

(@)

(b)

Figure 4-The comparison between (a) the ES and (b) the AS using 3-term of the STM for v = 1.5 of
Example 2

the Exact solution

the Approximate solution

@ (b)

Figure 5-The comparison between (a) the ES and (b) the AS using 3-term of the STM for v = 1.9 of
Example 2.

Example (3)[31]: consider the following homogeneous TESFO

D2u(x,t) = uy +4u,+4u,t >0, 0<x,<1, 0<v<1, (40)
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With the I.C.
u(0,t)=e 2 +1, t=>0
{ux(O, t) =2, t>0 (41)
Now applying the ST with Eq.(8) into Eqgs.(40-41) we get:
Sulx,0)] =e 2+ 1+ 2u+u?”S[(u(x,t)) + 4u(x, 1)) + 4u(x, t)] (42)
So, according to SDM we can obtain the solution result u(x , t) as:
u(x,t) = Ypzoun (1, 1)
Now, substituting Eq.(14) into Eq.(42) gives
S[Eoun (6, D=t S [(Tio tn (1,0) , + 4(Tiotn (1,1)), + 4 Do un(x, )] (43)
From Eq.(43) we can define all the coefficients of u,,(x,t)
So we get the zero coefficients uy(x , t) as:
Slug(x,t)] =e 2+ 1+ 2u (44)
The first component u, (x ,t) as:
S[uy (x, )] = w?¥S[(uo(x, )i + +4(uo(x, £)); + 4uo(x, t)] (45)

Finally the remaining coefficients of u, (x,t) can be find in a way like each coefficients is found by
using the coming before components.

Suns1 (e, )] = uS[(Un(x, ))er + 4(un(x, )¢ + 4un(x, )] (46)
So, by using the Sl in Eq.(44) we have:
ug(x,t) =e 2t + 1+ 2x (47)
Also,
S[uy(x,t)] = 4u?v + 8u?vtt (48)
Also, by using Sl of Eq.(48) we have:
4x2v 8x2v+1
u(x,t) = rv+1)  rv+2)
Similarly,
16X4V 32x4—v+1
up(x,8) = r@v+1) ' r@av+2)
And so on.

Therefore, the AS by STM is given by:

8x217+1 16x417 32x4v+1

— -2t 4x?
un(x,8) =e™™ + 1+ 2x + rv+1) + rzv+2) + r(4v+1) + r(4v+2) + (49)
If we put v = 1 in Eq.(49), we get the required ES [31].
- x)?* | (203 | @0* | @0° @
u(x,t)=e 2f+(1+2x+ t ettt +"'+T+“')

The graph of ES u(x,t) and the AS u,,(x,t) using 3-term of the STM when v = 0.8, 0.9 and
1, are shown in Figures-(6, 7 and 8).

the Exact solution
S~ o ©

N
the Approximate solution
IS

(a) (b)
Figure 6: The comparison between (a) the ES and (b) the AS using 3-term of the STM for v = 1 of
Example 3.
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®

@
L
o

IN

[N

the Exact solution
B
N

the Approximate solution

o
X

(@) (b)

Figure 7-The comparison between (a) the ES and (b) the AS using 3-term of the STM for v = 0.9 of
Example 3.

®
o

the Exact solution
> o

N
the Approximate solution

- o

Figure 8-The comparison between (a) the ES and (b) the AS using 3-term of the STM for v = 0.8 of
Example 3.

Conclusion

The application of STM was extended successfully for solving the TESFO. The STM was clearly

very efficient and powerful technique in finding the AS of the proposed equations. In order to check
the effectiveness of the introduced procedure, three numerical examples are tested, by comparing the
AS with the ES. A critical advantage of the new approach will be about its low computational load.
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