
AL-Safi et al.                                          Iraqi Journal of Science, 2018, Vol. 59, No.3A, pp: 1301-1311 

                                                                     DOI:10.24996/ijs.2018.59.3A.18 

___________________________________ 

*Email: mohammed.ghazi@esraa.edu.iq,   

1301 

 
A new approximate solution for the Telegraph equation of space-fractional 

order derivative by using Sumudu method 
 

Mohammed G. S. AL-Safi
 *1

, Wurood R. Abd AL-Hussein
1
, Ayad Ghazi Naser Al-

Shammari
2 

 

1
Department of Accounting- Al-Esraa University College, Baghdad, Iraq 

2
Ministry of Education-General Directorate of Vocational Education 

 

Abstract: 

     In this work, we are concerned with how to find an explicit approximate solution 

(AS) for the telegraph equation of space-fractional order (TESFO) using Sumudu 

transform method (STM). In this method, the space-fractional order derivatives are 

defined in the Caputo idea. The Sumudu method (SM) is established to be reliable 

and accurate. Three examples are discussed to check the applicability and the 

simplicity of this method. Finally, the Numerical results are tabulated and displayed 

graphically whenever possible to make comparisons between the AS and exact 

solution (ES). 
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 سومودو طريقة باستخدام الكسرية الفراغ رتبة لمعادلة تمغراف ذات التقريبي الحل
 

 2، اياد غازي ناصر الشمري1 عبد الحسينرياض ورود  ،1الصافي صبري غازي محمد

 راقالع ، بغداد ، الجامعة الاسراء كمية ، المحاسبة قسم1
 المهني، العراق. لمتعميم المديرية العامة، وزارة التربية2

 

 الخلاصة
في هذا العمل ، كان الاهتمام هو كيفية العثور عمى حل تقريبي صريح لمعادلة التمغراف ذات رتبة الفراغ      

باستخدام الكسرية باستخدام طريقة تحويل سومودو. في هذه الطريقة ، يتم وصف مشتقات رتب الفراغ الكسرية 
مفهوم كابوتو.وجدنا بان طريقة سومودو لها موثوقية ودقيقة. تم مناقشة ثلاثة أمثمة لمتحقق من قابمية وبساطة 
هذه الطريقة. وأخيرًا ، يتم جدولة النتائج العددية وعرضها بيانياً كمما أمكن ذلك لإجراء مقارنات بين الحمول 

 التقريبية والحقيقية.
 

1. Introduction   

     Fractional calculus is a branch of mathematics that study the qrows out of the traditional concepts 

of calculus integral and derivative operators in much the same way fractional exponents is a 

conclusion of exponents with an integer value [1], many researchers have suggested several 

applications of fractional calculus in various areas such as, chemistry, physics, plasma physics, 

engineering, stochastic dynamical system, turbulence and fluid mechanics, and nonlinear control 

problems [2-6]. Several techniques of Numerical and analytical methods have been developed for 

solving the application of fractional calculus, some of these methods are, Shifted Jacobi with tau 
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method [7], Sinc-Jacobi and Sinc-Legendre with Collocation method [8-9], Chebyshev wavlets [10], 

Legendre and Chebyshev wavlets- Collocation method [11], Chebyshev wavelets-Galerkin Method 

[12].variational iteration method [13], and homotopy method [14]. 

     Telegraph equations are PDEs have recently been considered by many applications in several fields 

such as random walk theory, electrical signals analysis [15-17],…,etc. Various methods are developed 

for solving Telegraph equations of fractional order, some of these methods are given by Momani [18], 

Yildirim [19], Chen et al. [20], Huang [21], Mohammed et al. [22]. 

     Watugala in 1993[23] proposed a STM which is used to solve an integral transform called the 

Sumudu transform (ST) and he used this method in control problems. So far, various methods are used 

together with ST, like homotopy analysis SM [24], Sumudu decomposition method (SDM) [25], a 

modified homotopy algorithm [26]. STM [27-29] which will be recently submitted to the literature 

will be a suitableness technobabble for solving various kinds of ordinary differential equations of 

fractional order (DEFO).  

2. Preliminaries 

     The most frequently encountered definition of fractional integration and fractional derivative are 

the Riemann-Liouville (RL) fractional integration and Caputo fractional derivative (CFD). 

Comparatively, the CFD has certain advantages when trying to model real-world phenomena with 

DEFO. Also, we provide some basic definition and properties of STM.  

Definition (2.1) [4] 

     The RL fractional integral operator    of order     , of a function     , is the most popular 

definition of fractional calculus is defined as:  

       
 

    
∫          

 
      , t > 0                                                                                              (1) 

             

Properties of the operator   can be found in [4] for      , and      we have: 

                            ; 

      
      

         
     . 

Definition (2.2) [4] 

     The CFD operator   
  of order   is: 

  
                  

 

      
∫            

 
          ,   > 0                                                    (2) 

For 𝑛 −1 <   ≤ 𝑛, 𝑛 ∈ ℕ, t > 0. 

Definition (2.3) [4] 

     The Mittage Leffler function       with    , is definite by the following series: 

      ∑
  

       
       ∈   

                                                                                                       (3) 

Definition (2.4) [30] 

     The ST over the following set of functions, such that: 

  {     ⎸∃ Μ,       > 0, Such that,⎹  (x) ⎹<      
   

  
 , if x ∈      × [0, ∞)}  (4) 

is define as: 

                  ∫  
 

 
            ,  ∈                                                                                    (5) 

The properties of  the ST are given as: 

1.   [1] = 1. 

2.   [
  

      
] =   , 𝑛 > 0; 

3.   [        ] = 
 

    
. 

4.   [α  ( ) ±β g ( )] = α   [  ( )] ± β   [g ( )]. 

Theorem (2.1) [30] 

     Let      be the ST of     , s.t  

1. 
      

 
, is a meromorph function, with singularities Re(s) < 𝛾, 

2. There exists a circular region Γ with radius R and positive constants,        , with  |
      

 
|<M 

   , 
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So, the Sumudu inverse (SI) of the function  (x) is introduced by: 

               
 

   
∫           

 

 
 

    

    

  

 
 ∑        [       

      

 
].                               (6)                  

Definition (2.5) [30] 

The ST      
       of the fractional derivative using the Caputo idea of the function      is given by:  

   [  
        

    

   ∑
       

    
   
   , where                                                                             (7) 

It is easy to understand that: 

              [  
  ( ,t)] = 

           

   ∑
          

    
   
    ,  𝑛−1 <   ≤ 𝑛                                                            (8) 

3. The direct approach for solving linear TESFO using SDM. 

     We consider the following linear TESFO of the form: 

  
                                                                                                           (9)  

         . 

Where           is the source term and     are constants.  

With Initial Condition (I.C) 

   
          

             )          ,    = 0, 1, 2,…, ‒ 1.                                                                    (10)   

Now applying the ST into Eq.(9) we have: 

    
                                                                                                            (11) 

Substituting Eq.(8) into Eq.(11) we get: 

              ∑           
                                                                  (12)                                                                                                                                                                                                                  

             ∑      
                                                                             (13) 

So, according to SDM we can obtain the solution result         as:   

             ∑   
 
     , t)                                                                                                                  (14) 

Now, substituting Eq.(14) into Eq.(13) gives: 

  ∑   
 
          

∑      
              (∑   

 
        )

 
 (∑   

 
        )

  
  ∑   

 
                                                                                         

(15) 

     From Eq.(15) we can define all the coefficients of             

So we get the zero coefficients          as: 

                 ∑      
            

The first component           as: 

                                                                         
     Finally the remaining coefficients of          can be find in a way like each coefficients is found 

by using the coming before components. 

                                                             𝑛      
Applying the SI to the above equations yields the following:  

             (∑      
          

                                                                         

                                                              𝑛    .    

So that, the AS           is given as: 

         ∑   
   
                                                                                                                            (16) 

Such that  

                                                                                                                                       (17) 

4. Numerical Examples 

     In this section we shall test three examples using the STM to solve the TESFO and the solutions we 

got it by using the present procedure will be comparing with original ES. 

Example (1) [22]: consider the following homogeneous TESFO 

  
                ,                                                                                             (18) 

With the I. C. 

{
                     

                    
                                                                                                                      (19) 

     Now applying the ST with Eq.(8) into Eqs.(18-19) we get: 

                       +    [                             ]                                              (20)  
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So, according to SDM we can obtain the solution result         as:   

             ∑   
 
     , t)                                                                                        

     Now, substituting Eq.(14) into Eq.(20) gives 

 [∑         
   ]=        +   [(∑   

 
        )

  
 (∑   

 
        )

 
  ∑         

   ]       (21) 

From Eq.(21) we can define all the coefficients of             

So we get the zero coefficients          as: 

                                                                                                                                       (22) 

The first component           as: 

                [                                  ]                                                             (23) 

     Finally the remaining coefficients of          can be find in a way like each coefficients is found 

by using the coming before components. 

                  [                                 ]                                                         (24) 

So, we can use the SI in Eq.(22) we get 

                         =                                                                                               (25) 

Also, 

                                                                                                                                   (26) 

Also, by using SI to Eq.(26) we have: 

             
  

      
 

    

      
   

Similarly,  

             
   

       
 

     

       
   

       ⋮                                                                                          

               
   

       
 

     

       
    

Therefore, the AS by STM is shown as: 

          =    (    
  

      
 

    

      
 

   

       
 

     

       
  )                                                (27) 

 If we put     in Eq.(27), we can conclude the ES [22].  

           =    (    
  

  
 

  

  
 

  

  
 

  

  
  )                                                                     (28) 

     The Absolute Error (AE),                       between the ES          and the AS          by 

using 3-term of the STM when             by fixing     and different values of   , are given in 

Tables-(1, 2). Also Figures-(1, 2) shows the AS using 3-term of the STM when                 . 

 

Table1-The AE for t =1 and x=0.1:0.1:1.0 when        . 

                    AE 

0.100 0.4065697 0.5010931 9.4523405e-02 

0.200 0.4493290 0.5530201 1.0369115e-01 

0.300 0.4965853 0.6124642 1.1587893e-01 

0.400 0.5488116 0.6788092 1.2999758e-01 

0.500 0.6065307 0.7516633 1.4513259e-01 

0.600 0.6703200 0.8307437 1.6042362e-01 

0.700 0.7408182 0.9158318 1.7501357e-01 

0.800 0.8187308 1.0067508 1.8802005e-01 

0.900 0.9048374 1.1033531 1.9851570e-01 

1.000 1.0000000 1.2055127 2.0551274e-01 
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Table 2-The AE for t =1 and x=0.1:0.1:1.0 when       . 

                    AE 

0.100 0.4065697 0.4822658 7.5696157e-02 

0.200 0.4493290 0.5297864 8.0457410e-02 

0.300 0.4965853 0.5837051 8.7119841e-02 

0.400 0.5488116 0.6437983 9.4986649e-02 

0.500 0.6065307 0.7099152 1.03386649e-01 

0.600 0.6703200 0.7819428 1.1162278e-01 

0.700 0.7408182 0.8597909 1.1897270e-01 

0.800 0.8187308 0.9433846 1.2465385e-01 

0.900 0.9048374 1.0326600 1.2782260e-01 

1.000 1.0000000 1.1275616 1.2756158e-01 

 

 

Figure 1-The surface shows the AS for                Figure 2-The surface show AS for           
of Example 1.                                                           of Example 1 

 

Example (2)[22]: consider the following nonhomogeneous TESFO 

  
                       ,                      ,                                      (29) 

With the I.C. 

{
                   

                  
                                                                                                                         (30) 

Now applying the ST with Eq.(8) into Eqs.(29-30) we get: 

                +    [                                    ].                                       (31) 

So, according to SDM we can obtain the solution result         as:   

             ∑   
 
     , t)                                                                                        

Now, substituting Eq.(14) into Eq.(31) gives 

  ∑         
     =   +    [(∑   

 
        )

  
  

(∑   
 
        )

 
 ∑         

           ]                                                                              (32) 

From Eq.(32) we can define all the coefficients of             

So we get the zero coefficients          as: 

                                                                                                (33) 

     The first component           as: 

                [                                  ]                                                             (34) 

Finally the remaining coefficients of          can be find in a way like each coefficients is found by 

using the coming before components. 
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                  [                                ]                                                          (35) 

Now, by using the SI to Eq.(33) we have: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            (a)                                                                               (b) 

Figure 3-The comparison between (a) the ES and (b) the AS using 3-term of the STM for        of 

Example 2. 

 

             
     

      
 

   

      
 

  

      
                                                                                            (36) 

Also, 

                                                                                                           (37) 

Also, by using SI of Eq.(37) we have: 

         
  

      
 

   

       
 

   

      
 

      

       
 

    

       
 

   

       
  

Similarly, 

         
    

       
 

   

       
 

    

       
 

      

       
 

    

       
  

And so on. 

Therefore, the AS by STM is given by: 

                  =   
     

      
 

   

      
 

  

      
 

  

      
 

   

       
 

   

      
 

      

       
 

    

       
 

   

       
 

    

       
 

   

       
 

    

       
 

      

       
 

    

       
                                                           (38) 

 If we put     in Eq.(38), we get the required ES [22].  

         (  
   

  
 

   

  
 

   

  
 

   

  
 

   

  
 

   

  
 

   

  
 

   

  
  )                                     (39) 

                          

Table-3 show the AE between the ES          and the AS          using 3-term of the STM when 

       by fixing     and different values of  . 

     Figures-(3, 4 and 5) shows the comparison between the ES          and the AS           using 3-

term of the STM when             and    . 
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Table 3-The Absolute error for t =1 and x=0.1:0.1:1.0 when        

                    AE 

0.100 1.0100 1.01377 3.779642e-3 

0.200 1.0400 1.05145 1.14520e-02 

0.300 1.0900 1.11112 2.12469e-02 

0.400 1.1600 1.19232 3.23258e-02 

0.500 1.2500 1.29413 4.41316e-02 

0.600 1.3600 1.41622 5.62230e-02 

0.700 1.4900 1.55581 6.81921e-02 

0.800 1.6400 1.71960 7.96092e-02 

0.900 1.8100 1.89997 8.99776e-02 

1.000 2.0000 2.09869 9.86922e-02 

                          

(a)     

  (b)     

 

Figure 4-The comparison between (a) the ES and (b) the AS using 3-term of the STM for        of 

Example 2 

    

 

      

 (a) (b) 

 

Figure 5-The comparison between (a) the ES and (b) the AS using 3-term of the STM for        of 

Example 2. 

Example (3)[31]: consider the following homogeneous TESFO 

  
                    ,                                                                           (40) 
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With the I.C.  

{
                        
                                 

                                                                                                           (41) 

Now applying the ST with Eq.(8) into Eqs.(40-41) we get: 

                         +     [                               ]                                 (42) 

So, according to SDM we can obtain the solution result         as:   

             ∑   
 
     , t)  

Now, substituting Eq.(14) into Eq.(42) gives 

   ∑         
    = +     (∑   

 
        )

  
  (∑   

 
        )

 
  ∑          

      (43) 

From Eq.(43) we can define all the coefficients of             

So we get the zero coefficients          as: 

                                                                                                                                   (44) 

The first component           as: 

                 [                                   ]                                                     (45) 

Finally the remaining coefficients of          can be find in a way like each coefficients is found by 

using the coming before components. 

                   [                                  ]                                                   (46) 

So, by using the SI in Eq.(44) we have: 

                                                                                                                                     (47) 

Also, 

                                                                                                                                    (48) 

Also, by using SI of Eq.(48) we have: 

         
    

       
 

      

       
  

Similarly,  

         
     

       
 

       

       
  

And so on. 

Therefore, the AS by STM is given by: 

            =           
    

       
 

      

       
 

     

       
 

       

       
                                          (49) 

 If we put     in Eq.(49), we get the required ES [31]. 

              (     
     

  
 

     

  
 

     

  
 

     

  
   

     

  
  )   

                                                                                                                                                 (50) 

     The graph of ES          and the AS           using 3-term of the STM when             and 

 , are shown in Figures-(6, 7 and 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                         (b) 

Figure 6: The comparison between (a) the ES and (b) the AS using 3-term of the STM for      of 

Example 3. 
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(a)      (b) 

Figure 7-The comparison between (a) the ES and (b) the AS using 3-term of the STM for        of 

Example 3. 

 

 

Figure 8-The comparison between (a) the ES and (b) the AS using 3-term of the STM for        of 

Example 3. 

 

Conclusion 
     The application of STM was extended successfully for solving the TESFO. The STM was clearly 

very efficient and powerful technique in finding the AS of the proposed equations. In order to check 

the effectiveness of the introduced procedure, three numerical examples are tested, by comparing the 

AS with the ES. A critical advantage of the new approach will be about its low computational load. 
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