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Abstract

In many areas, such as simulation, numerical analysis, computer programming,
decision-making, entertainment, and coding, a random number input is required. The
pseudo-random number uses its seed value. In this paper, a hybrid method for
pseudo number generation is proposed using Linear Feedback Shift Registers
(LFSR) and Linear Congruential Generator (LCG). The hybrid method for
generating keys is proposed by merging technologies. In each method, a new large
in key-space group of numbers were generated separately. Also, a higher level of
secrecy is gained such that the internal numbers generated from LFSR are combined
with LCG (The adoption of roots in non-linear iteration loops). LCG and LFSR are
linear structures and outputs of these Random Number Generators (RNGs) are
predictable, while the proposal avoids this predictable nature. The results were
tested in terms of randomness, in terms of the correlation between the keys and the
effect of changing the initial state on the generated keys and the results of the tests
showed that they had successfully passed the tests and resist brute force and
differential attack.

Keywords: LFSR, LCG, pseudo number generator, NIST, Hamming distance
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1. Introduction
In communication and digital computing applications, pseudo-random number sequences
are usually used. Bits pattern must never be replicated in a completely random sequence.
However, such a sequence of practical systems is extremely difficult to generate. Many apps
need random yet user-predictable disappearance [1]. A pseudo-random sequence complies
with the random requirements; moreover, the whole sequence is continuously repeated. The
Linear Congruential Generator (LCG) which can be used to produce such sequences,
minimum memory (usually 32 or 64 bits) is required to retain the state. For multiple
independent streams, this makes it valuable [2]. Linear Feedback Shift Register (LFSR) is a
shift register with a feedback path linearly related to the nodes using XOR gates. LFSRs are
more popular because of their compactness and simple design [3]. Many previous works
related to the topic of generating random numbers based on LFSR and LCG. The proposed
generator in paper [4] is based on LFSR and extracts entropy from sound sources. PRNG is
impervious to large-scale attacks on pseudo-random number generators. The research
presented in [5] is a comparison between pseudo-random number generators (PRNGS) such as
LFSR, LCGs, and combined LFSR and Cellular Automata Shift Register (CASR). The last
one used to avoid the predictable nature of the PRNGs, it considered a non-linear combination
generator which is combined the LFSR and CASR. It generates random numbers better than
LFSR and LCG separately. A simple method is proposed in [6] for designing the Chaotic
Linear Feedback Register (CLFSR). The key concept of the proposed method is the LFSR
output modified by a stream bit with exclusively-or (XOR) to reduce the linearity and the
repetition of the LFSR output using a chaotic map system. Paper [7] propose a method of the
coupling of two newly formed variable input LCGs that generates pseudo-random bit at every
uniform clock rate, which attains maximum length sequence, and reduces one comparator
area as compared to the dual coupled-linear congruential generator Dual CLCG architecture.
It is the replacing of constant parameters with variable inputs in the LCG equation and further
used the concept of coupling as post-processing between two variable-input LCG (Vi-LCGs)
for generating pseudorandom bit at every iteration.

In this paper, a hybrid algorithm is proposed to generate random numbers based on
combining the technique LFSR with LCG to generate a new random number. The main
contribution of the proposal is mixing interior numbers of LFSR with LCG (variables a and b
be not constants), root value of LCG is used for increasing complexity (the security is
increasing). It also does not require large material resources in terms of storage and
processing so it is suitable for smart device applications.

2. Generators of Linear Congruential:
The LCG proposed by Lehmer referred to as the linear congruential technique [8], is widely
used method for generating pseudorandom numbers. The method is parametrized with the
following four numbers:
The modulus m where m > 0, the multiplier 0 < a < m, ¢ the increment 0 <= ¢ < m, X, the
starting value, or seed 0 <= X, < m. The arrangement of arbitrary numbers {X,} is obtained
through the following iterative equation:
Xpy1 = (aX, + ¢c) mod m... (1)
This technique generates a string of integers with each integer falling within the range 0 <=
Xn <mifm, a, c, and Xq are all integers. To build a good random number generator, the
values for a, ¢, and m are critical.
3. Linear Feedback Shift Registers:

The input bit of an LFSR shift register is the output of a linear function of two or more of
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its previous states. An LFSR of length m is made up of m stages numbered 0, 1, ..., m, each of
which may store one bit, and a clock that controls data interchange. The shift register would
be initialized with a vector with the elements s, ..., Sm. the steps are as follow: the output
includes s; (the content of stage 0), the content of stage | is transferred to stage i1, for lim1,
by XORing a subset of the content of m stages, the new content (the feedback bit) of stage m1
would be produced. There are many conceivable setups; in Figure 1 shows a simple one that
starts with an input of all 1s and is very simple to implement in software and hardware. An
LFSR of this type will never contain only Os and will stop if a binary string containing only 0s
is input into it.

Figure 1- Linear feedback shift register simple example

4. Methodology:

In this paper, a hybrid algorithm was proposed to generate random numbers based on
combining the technique LFSR with LCG and generating a new series whose randomness is
satisfying the randomness requirement and gives high flexibility through controlling the
elementary parameters. To generate a complex random number generator, a mixture of LFSR
and updated LCG is proposed in this work and denoted as the LFSR-LCG method. For
generating numbers, LFSR provides a sequence with a cycle length of 2"-1 bits and LCG will
have the same maximum or less than the LFSR cycle length. LFSR will be run twice in
parallel to generate two Key vectors that have been used as the multiplier factor (a) and the
increment (c) in the general recurrence formula to generate the final key vector by LCG. The
fundamental equation of LCG has been updated in the proposed form by applying the square
root for the starting value (seed) as shown in equation (2):

Xpe1 = (an \/X—n + cn)mod m n=0 ... (2)
Where: a is the multiplier; 0 < a, <m, c, the increment; 0 < ¢, <m, m, the modulus; m >0, X,
the starting value; 0 < X, < m, the mod m notation implies that the right-hand expression of
the equation is divided by m, and the remainder is substituted. The characteristics of the
random number generator are determined by parameters a, ¢ and m, a and b, are two LFSRs
required two seeds of bits denoted by X,. (This seed obtained the same generator if running
with the same parameter values and with the same seed). LFSR are periodic so the proposed
method tries to produced pseudo-random numbers. The equation of LCG applied on each
number result in each stage of LFSR and the number is square rooted break the linearity.
Whereas, by taken random and different values for the parameters a and ¢ will improve the
statistical performance of the generated sequence. Usually, LCG provides sequences “get into
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a loop™; i.e., there is ultimately a cycle of numbers that are repeated endlessly. The repeating
cycle is called the period. The Proposed generated sequence will have a relatively long period.

The range of the random numbers that will be generated using the proposed relation is
from 0 to m-1. Applying the square root for the starting value (seed) will terminate the (linear)
lattice construction and give a nonlinear performance to the proposed generator. Figure 2
illustrates the Flowchart of the LFSR-CG method.

yes

no |

Figure 2- Flowchart of LFSR-CG method.

The total steps of the proposed method are mention in the algorithm (1).
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Algorithm (1): Proposed Hybrid LFSR-CG:

Input: Modulus m and seed X,, Yo

Output: Key vector X.

Stepl: Run LFSR for a predetermined number of bits to generate the multiplier (a)
based on X.

Step2: Rerun LFSR to generate increment (c) based on Y.

Step3: Convert a and c to floating numbers

Step4: Forn <1 tom-1

Step 5: Xn+1 < (an Sqrt (Xn)+ cn) mod m

Step 6: Output Xnq

Step5: END For n

Step6: END Algorithm

An example of generation number is explained in Table 1 where no. of bits=11 and
Modulus=10000.
Table 1-Samples of the generated number using LFSR-CG

# a ¢ Vzgﬁr # a ¢ vzﬁ%r
1 1745 1557 7075 7 1883 1496 4771
2 872 778 4125 8 941 748 5742
3 1460 1413 5188 9 470 1398 7013
4 730 1730 4312 10 235 699 378
© 1389 1889 3102 11 1141 349 2539
6 1718 944 6626 12 1594 1198 1513

4. Experimental Results:
The quality of the sequences produced by LFSR-CG is should be tested. The sequences
should have a high degree of randomness and be decorrelated to one another.
4.1. Statistical analysis: This type contains many tests that show the statistical characteristics
of the results, including:
4.1.1 Randomness evaluation

NIST (National Institute of Standards and Technology of the U.S. Government) is used
tests that can be applied on binary sequences. Here, the sequences are evaluated through
statistical tests suite NIST [9]. Such a suite consists of a statistical package of fifteen tests
developed to quantify and assess the randomness of binary sequences, produced by pseudo-
random number generators. The result of the frequency test explains in Table 2 using the
length of sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are
passed the frequency test.
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Table 2-The p-value of Frequency Test

Sequences 512 1024 1536 2048 2560
1 0.79088 0.31731 0.35833 0.65853 0.65853
2 0.11161 0.03359 0.05248 0.08203 0.03359
3 0.21592 0.08012 0.05248 0.06836 0.08012
4 0.15730 0.34850 0.79860 0.56561 0.56561
5 0.53610 0.13361 0.04123 0.03779 0.03779

The result of frequency within the block test explains in Table 3 using the length of
sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the
frequency within the block test.

Table 3-The p-value of frequency within a block test

Sequences 512 1024 1536 2048 2560
1 0.57363 0.17182 0.22157 0.29200 0.52793
2 0.01326 0.01526 0.02396 0.13261 0.31542
3 0.39761 0.59141 0.71357 0.19338 0.21742
4 0.58968 0.70650 0.45324 0.60570 0.30918
5 0.86455 0.66123 0.32529 0.39989 0.16893

The result of the cumulative sum forward test explains in Table 4 using the length of
sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the

run test.

Table 4-The p-value of Cumulative sum forward test

Sequences 512 1024 1536 2048 2560
1 0.59075 0.59094 0.69817 0.73635 0.69809
2 0.55060 0.53975 0.65807 0.73328 0.78025
3 0.54129 0.56578 0.66041 0.67949 0.67194
4 0.55471 0.50115 0.69560 0.76426 0.69842
5 0.56266 0.58830 0.69556 0.69419 0.65815

The result of the cumulative sum reverse test explains in Table 5 using the length of
sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the

run test.
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Table 5-The p-value of Cumulative sum reverse test

Sequences 512 1024 1536 2048 2560
1 0.58124 0.61188 0.75933 0.76670 0.77180
2 0.57554 0.63441 0.68805 0.76023 0.73136
3 0.57742 0.58870 0.73047 0.71731 0.73523
4 0.57044 0.66980 0.67556 0.78717 0.77541
5 0.64476 0.59542 0.68226 0.84543 0.80324

The result of the Run test explains in Table 6 using the length of sequences 512, 1024, 1536,

2048, and 2560 respectively. All resulted p-values are passed the run test.

Table 6-The p-value of Run Test

Sequences 512 1024 1536 2048 2560
1 0.79325 0.92523 0.85504 0.96819 0.57519
2 0.23866 0.05750 0.05982 0.05635 0.06167
3 0.36424 0.97656 0.84266 0.63202 0.91414
4 0.28696 0.73366 0.30663 0.10992 0.05591
5 0.9160 0.52595 0.91510 0.85392 0.86466

The result of the longest run of one test explains in Table 7 using the length of sequences 512,
1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the test.

Table 7-The p-value of the longest run of ones in a block test

Sequences 512 1024 1536 2048 2560
1 0.14209 0.27188 0.19857 0.62350 0.21497
2 0.50523 0.41485 0.19601 0.41282 0.09245
3 0.48421 0.18896 0.43826 0.27813 0.21003
4 0.64462 0.67440 0.61710 0.77006 0.53682
5 0.12468 0.06469 0.07087 0.12535 0.07317

The result of the binary matrix rank test explains in Table 8 using the length of sequences
512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the test except
the sequence of 512-length. It may be a shorter length than required the test the p-values are
less than the threshold.

Table 8-The p-value of binary matrix rank

Sequences 512 1024 1536 2048 2560
1 Fail 0.69372 0.69372 0.48125 0.40125
2 Fail 0.29189 0.29189 0.74191 0.71191
3 Fail 0.69372 0.69372 0.48125 0.48125
4 Fail 0.03910 0.03910 0.52812 0.44763
5 Fail 0.69372 0.69372 0.74191 0.70804

The result of the discrete Fourier Transform test explains in Table 9 using the length of
sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the

test.
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Table 9-The p-value of discrete Fourier Transform test

Sequences 512 1024 1536 2048 2560
1 0.74560 0.01365 0.30190 0.96765 0.46816
2 0.01866 0.32955 0.39927 0.33039 0.14679
3 0.93535 0.10829 0.70793 0.51641 0.14679
4 0.37228 0.86339 0.92538 0.20868 0.85608
5 0.46539 0.30190 0.70793 0.57019 0.85608

The result of the non-overlapping template matching test explains in Table 10 using the
length of sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are

passed the test.

Table 10-The p-value of non-overlapping template matching

Sequences 512 1024 1536 2048 2560
1 0.99925 0.06988 0.27084 0.41284 0.52158
2 0.99925 0.98609 0.27084 0.85603 0.83937
3 0.08933 0.62326 0.81922 0.41901 0.25890
4 0.99925 0.98609 0.27084 0.41901 0.05429
5 0.99925 0.98609 0.00545 0.03589 0.08824

The result of the overlapping template matching test explains in Table 11 using the length of
sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the
test except the lengths 512 and 1024. The p-value in the lengths 512 and 1024 are less than

the required threshold.

Table 11-The p-value of overlapping template matching test

Sequences | 512 1024 1536 2048 2560
1 Fail Fail 0.28276 0.28276 0.50121
2 Fail Fail 0.88659 0.88659 0.70253
3 Fail Fail 0.28276 0.28276 0.02857
4 Fail Fail 0.28276 0.28276 0.02857
5 Fail Fail 0.88659 0.88659 0.49644

The result of the universal test explains in Table 12 using the length of sequences 512, 1024,
1536, 2048, and 2560 respectively. All resulted p-values are passed the test.

Table 12-The p-value of Universal test

Sequences 512 1024 1536 2048 2560
1 0.64507 0.73854 0.79694 0.87150 0.78471
2 0.63120 0.65463 0.81593 0.78180 0.84350
3 0.66677 0.74329 0.73042 0.90105 0.86948
4 0.70742 0.62776 0.75118 0.86013 0.89396
5 0.70915 0.71770 0.77851 0.90991 0.82961

The result of the approximate entropy test explains in Table 13 using the length of sequences

512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the test.
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Table 13-The p-value of approximate entropy test

Sequences 512 1024 1536 2048 2560
1 1.00000 0.99990 0.29371 0.00106 0.00011
2 1.00000 0.99956 0.51138 0.01239 0.00026
3 1.00000 0.99964 0.08497 0.00059 0.00000
4 1.00000 0.99999 0.46355 0.00598 0.00039
5 1.00000 0.99383 0.09368 0.00016 0.00001

The result of the random excursion test explains in Table 14 using the length of sequences

512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the test.

Table 14- The p-value of random excursion test

Sequences 512 1024 1536 2048 2560
1 0.67702 0.76726 0.78783 0.77603 0.86433
2 0.67822 0.66563 0.74793 0.73808 0.88619
3 0.75925 0.72391 0.79800 0.78257 0.83818
4 0.71561 0.70934 0.77836 0.74594 0.92550
5 0.67126 0.66337 0.79458 0.80957 0.82258

The result of the linear complexity test explains in Table 15 using the length of sequences

512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the test.

Table 15-The p-value of Linear complexity test

Sequences 512 1024 1536 2048 2560
1 0.31550 0.34496 0.32881 0.42352 0.50332
2 0.32905 0.22125 0.36025 0.34021 0.39968
3 0.26491 0.31807 0.32263 0.37845 0.48389
4 0.24368 0.29621 0.36166 0.36795 0.34147
5 0.27012 0.26703 0.37015 0.30047 0.39101

The result of the serial test explains in Table 16 using the length of sequences 512, 1024,
1536, 2048, and 2560 respectively. All resulted p-values are passed the test.

Table 16-The p-value of serial test

Sequences 512 1024 1536 2048 2560
1 0.54002 0.46654 0.58387 0.61780 0.62344
2 0.44214 0.44161 0.59624 0.53340 0.60028
3 0.45242 0.56010 0.51750 0.52321 0.69178
4 0.45975 0.51647 0.55081 0.56788 0.59137
5 0.47734 0.45870 0.54219 0.62917 0.61233
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4.1.2 Hamming distance

Hamming distance is part of the correlation assessment that is made by using it for each pair
of sequences generated. It is analyzed based on the bits of pseudo-alterations made. The
Hamming distance is the number of positions where two binary sequences are with same
length. If the binary sequences are truly random, the value should be around half the overall
length of the sequence, corresponding to 0.50 [10]. This distance is calculated from each pair
of sequences generated as addressed in Table 17.

Table 17-Hamming Distance

Sequences Length of 512 Length 1024 Length 1536 Length 2048 Length 2560
land?2 241 494 756 1008 1267
land 3 261 502 764 1022 1270
land 4 243 493 751 1003 1254
land 5 262 514 772 1031 1276
2and 3 246 482 740 1008 1273
2and 4 244 507 769 1017 1263
2and 5 263 512 766 1017 1277
3and 4 248 491 735 993 1248
3and 5 243 512 752 1003 1258
4and5 247 509 741 1028 1262

4.1.3 Pearson’s Correlation Coefficient

Pearson’s correlation coefficient is the second method used to analyze the correlation between
the pseudo-random sequences [10]. The analyses consist to compute Pearson’s correlation
coefficient between each pair of sequences and presenting the distribution of the values
through a histogram. Consider a pair of sequences. The corresponding correlation coefficient
is shown in Figure 3. The mean values of S; and S,, respectively. Two uncorrelated sequences
are approximated to zero. The closer the value of correlation to one represents the stronger
correlation between the two sequences. In the case of two independent sequences, the value of
correlation is equal to zero. The coefficients have an absolute value in [-0.05, 0.05] then only
a small correlation is detected.

Correlation Test

0.04000
0.03000
0.02000
0.01000
0.00000
-0.01000
-0.02000
-0.03000
-0.04000
-0.05000

CORRELATION VALUE

land land land 1land 2and 2and 2and 3and 3and 4and
2 3 4 5 3 4 5 4 5 5

e Correlation 0.0025 -0.003 -0.039 0.0026 -0.026 0.0291 0.0312 0.0276 0.0029 -0.007

Figure 3-The correlation test of each sequence’s pear
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4.2. Security Analysis

There are several points concerning the safety of the proposed LFSR-CG, including the size
of the seed space, the length of the period of the process, and some fundamental attacks
(differential attack and brute-force attack). The seed space is associated with computer
resources.
4.2.1 Seed Space
A seed space of size smaller than IS not secure enough. A broad key space is essential for
a robust PRBG to have a wide range of pseudo-random number generation options. The
LFSR-CG has a large keyspace depend on the size of the initial number generator and the
LCG generation. Each number is initialized with a seed corresponding to a binary 64 floating-
point number. Thus, the total number of choices for the three initial seeds is 128 plus the
initial value of the LFSR which is about {11, 13, 17, 19, 23, etc.}.
4.2.2 Attack of Brute Force
In theory, because it is not laid back to detect any flaw in the proposal which will make the
job easier, a brute-force attack that can be used against is usually used. The attack strategy is
straightforward: search all possible keys systematically before the original key is discovered.
To find the initial seeds, just half of the keyspace must be tested on average. Such an attack
can be thwarted by a large keyspace. A keyspace with a size greater than 2'?® is secure
computationally stable to resist such an attack. The range of LFSR is (high size of seed could
be used) and the LCG could also apply to the output of LFSR.
4.2. Differential attack
The theory of such a cryptanalysis strategy, like a chosen-plaintext attack, is to examine the
influence of a minor variation in input pairs (i.e., seeds) on the difference of corresponding
output pairs (i.e., sequences) [12]. The most likely key that was used to produce the pseudo-
random sequence can be obtained using this technique. The initial variance may be an XOR
difference, with the diffusion aspect being determined by a differential probability. The
proposed algorithm is intended to protect against such attacks. Those were the initial seeds.
The statistical study also revealed that, even though the seeds are slightly different, the
pseudo-random sequences are strongly decorrelated from one another, as seen in Fig. (4). As a
result, we believe that the proposed approach would be resistant to differential cryptanalysis.
There are week correlations between the sequences generated from the proposed method.

128
2

0.04

0.03

0.02

0.01

0

CORRELATION

-0.01
-0.02
-0.03
-0.04

land l1and land land 2and 2and 2and 3and 3and 4and
2 3 4 5 3 4 5 4 5 5

e correlation -0.003 -0.006 -0.035 -0.027 -0.004 -0.001 0.03290.0275 -0.006 -0.031

Figure 4-The correlation test of differential-attack each sequence’s pear
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5. Conclusions:

An effective pseudo-random number generator is resistant to major PRNG attacks, uses less
memory and CPU power, and simpler to implement. The suggested generator has passed most
of the checks in the NIST SP 800-22 statistical evaluation suite. In the presented algorithm,
we have modulated the random sequences generated from combining the operation of the
LFSR and LCG equation to obtain efficient keystream sequences for encryption. All the
simulation and experimental analyses show that the proposed method has a high sensitivity to
initial conditions and has a large keyspace, which is by far very safe for encryption
applications. The method is also resistant to a differential analysis by generating a correlated
sequence when no significant change in initial values.
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