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Abstract 

      In many areas, such as simulation, numerical analysis, computer programming, 

decision-making, entertainment, and coding, a random number input is required. The 

pseudo-random number uses its seed value. In this paper, a hybrid method for 

pseudo number generation is proposed using Linear Feedback Shift Registers 

(LFSR) and Linear Congruential Generator (LCG). The hybrid method for 

generating keys is proposed by merging technologies. In each method, a new large 

in key-space group of numbers were generated separately. Also, a higher level of 

secrecy is gained such that the internal numbers generated from LFSR are combined 

with LCG (The adoption of roots in non-linear iteration loops). LCG and LFSR are 

linear structures and outputs of these Random Number Generators (RNGs) are 

predictable, while the proposal avoids this predictable nature. The results were 

tested in terms of randomness, in terms of the correlation between the keys and the 

effect of changing the initial state on the generated keys and the results of the tests 

showed that they had successfully passed the tests and resist brute force and 

differential attack. 
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اختبار الشتائج من حيث العذهائية ، من حيث الارتباط بين السفاتيح وتأثيخ تغييخ الحالة الأولية عمى السفاتيح 
ج الاختبارات أنيا نجحت في اجتياز الاختبارات ومقاومة السياجسة التي تجخب كل الستهلجة وأعيخت نتائ

 (.Differential Attackواليجهم التفاضمي ) ( Brute Forceالاحتسالات )
1. Introduction 

       In communication and digital computing applications, pseudo-random number sequences 

are usually used. Bits pattern must never be replicated in a completely random sequence. 

However, such a sequence of practical systems is extremely difficult to generate. Many apps 

need random yet user-predictable disappearance [1]. A pseudo-random sequence complies 

with the random requirements; moreover, the whole sequence is continuously repeated. The 

Linear Congruential Generator (LCG) which can be used to produce such sequences, 

minimum memory (usually 32 or 64 bits) is required to retain the state. For multiple 

independent streams, this makes it valuable [2]. Linear Feedback Shift Register (LFSR) is a 

shift register with a feedback path linearly related to the nodes using XOR gates. LFSRs are 

more popular because of their compactness and simple design [3]. Many previous works 

related to the topic of generating random numbers based on LFSR and LCG. The proposed 

generator in paper [4] is based on LFSR and extracts entropy from sound sources. PRNG is 

impervious to large-scale attacks on pseudo-random number generators. The research 

presented in [5] is a comparison between pseudo-random number generators (PRNGs) such as 

LFSR, LCGs, and combined LFSR and Cellular Automata Shift Register (CASR). The last 

one used to avoid the predictable nature of the PRNGs, it considered a non-linear combination 

generator which is combined the LFSR and CASR. It generates random numbers better than 

LFSR and LCG separately. A simple method is proposed in [6] for designing the Chaotic 

Linear Feedback Register (CLFSR). The key concept of the proposed method is the LFSR 

output modified by a stream bit with exclusively-or (XOR) to reduce the linearity and the 

repetition of the LFSR output using a chaotic map system. Paper [7] propose a method of the 

coupling of two newly formed variable input LCGs that generates pseudo-random bit at every 

uniform clock rate, which attains maximum length sequence, and reduces one comparator 

area as compared to the dual coupled-linear congruential generator Dual CLCG architecture. 

It is the replacing of constant parameters with variable inputs in the LCG equation and further 

used the concept of coupling as post-processing between two variable-input LCG (Vi-LCGs) 

for generating pseudorandom bit at every iteration. 

  In this paper, a hybrid algorithm is proposed to generate random numbers based on 

combining the technique LFSR with LCG to generate a new random number. The main 

contribution of the proposal is mixing  interior numbers of LFSR with LCG (variables a and b 

be not constants), root value of LCG is used for increasing complexity (the security is 

increasing). It also does not require large material resources in terms of storage and 

processing so it is suitable for smart device applications. 

2. Generators of Linear Congruential: 

The LCG proposed by Lehmer referred to as the linear congruential technique [8], is widely 

used method for generating pseudorandom numbers. The method is parametrized with the 

following four numbers: 

The modulus m where m > 0, the multiplier 0 < a < m, c the increment 0 <= c < m, X0 the 

starting value, or seed 0 <= X0 < m. The arrangement of arbitrary numbers {Xn} is obtained 

through the following iterative equation: 

     (     )      … (1)                   

This technique generates a string of integers with each integer falling within the range 0 <= 

Xn < m if m, a, c, and X0 are all integers. To build a good random number generator, the 

values for a, c, and m are critical. 

3. Linear Feedback Shift Registers: 

  The input bit of an LFSR shift register is the output of a linear function of two or more of  
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its previous states. An LFSR of length m is made up of m stages numbered 0, 1, ..., m, each of 

which may store one bit, and a clock that controls data interchange. The shift register would 

be initialized with a vector with the elements s0, ..., sm. the steps are as follow: the output 

includes si (the content of stage 0), the content of stage I is transferred to stage i1, for 1im1, 

by XORing a subset of the content of m stages, the new content (the feedback bit) of stage m1 

would be produced. There are many conceivable setups; in Figure 1 shows a simple one that 

starts with an input of all 1s and is very simple to implement in software and hardware. An 

LFSR of this type will never contain only 0s and will stop if a binary string containing only 0s 

is input into it.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1- Linear feedback shift register simple example 

 

4. Methodology: 

       In this paper, a hybrid algorithm was proposed to generate random numbers based on 

combining the technique LFSR with LCG and generating a new series whose randomness is 

satisfying the randomness requirement and gives high flexibility through controlling the 

elementary parameters. To generate a complex random number generator, a mixture of LFSR 

and updated LCG is proposed in this work and denoted as the LFSR-LCG method. For 

generating numbers, LFSR provides a sequence with a cycle length of 2
N
-1 bits and LCG will 

have the same maximum or less than the LFSR cycle length. LFSR will be run twice in 

parallel to generate two Key vectors that have been used as the multiplier factor (a) and the 

increment (c) in the general recurrence formula to generate the final key vector by LCG. The 

fundamental equation of LCG has been updated in the proposed form by applying the square 

root for the starting value (seed) as shown in equation (2): 

     (   √     )                                        ………. (2) 

Where: a is the multiplier; 0 ≤ an < m, c, the increment; 0 ≤ cn < m, m, the modulus; m > 0, Xn, 

the starting value; 0 ≤ Xn < m, the mod m notation implies that the right-hand expression of 

the equation is divided by m, and the remainder is substituted. The characteristics of the 

random number generator are determined by parameters a, c and m, a and b, are two LFSRs 

required two seeds of bits denoted by X0. (This seed obtained the same generator if running 

with the same parameter values and with the same seed). LFSR are periodic so the proposed 

method tries to produced pseudo-random numbers. The equation of LCG applied on each 

number result in each stage of LFSR and the number is square rooted break the linearity.  

Whereas, by taken random and different values for the parameters a and c will improve the 

statistical performance of the generated sequence. Usually, LCG provides sequences "get into 
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a loop"; i.e., there is ultimately a cycle of numbers that are repeated endlessly. The repeating 

cycle is called the period. The Proposed generated sequence will have a relatively long period. 

      The range of the random numbers that will be generated using the proposed relation is 

from 0 to m-1. Applying the square root for the starting value (seed) will terminate the (linear) 

lattice construction and give a nonlinear performance to the proposed generator. Figure 2 

illustrates the Flowchart of the LFSR-CG method. 

 
 

                                                 Figure 2- Flowchart of LFSR-CG method. 

 

The total steps of the proposed method are mention in the algorithm (1).   
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An example of generation number is explained in Table 1 where no. of bits=11 and 

Modulus=10000.  

Table 1-Samples of the generated number using LFSR-CG  

# a c 
Key 

Vector 
# a c 

Key 

Vector 

1 1745 1557 7075 7 1883 1496 4771 

2 872 778 4125 8 941 748 5742 

3 1460 1413 5188 9 470 1398 7013 

4 730 1730 4312 10 235 699 378 

5 1389 1889 3102 11 1141 349 2539 

6 1718 944 6626 12 1594 1198 1513 

 

4. Experimental Results: 

The quality of the sequences produced by LFSR-CG is should be tested. The sequences 

should have a high degree of randomness and be decorrelated to one another.  

4.1. Statistical analysis: This type contains many tests that show the statistical characteristics 

of the results, including: 

4.1.1 Randomness evaluation 

     NIST (National Institute of Standards and Technology of the U.S. Government) is used 

tests that can be applied on binary sequences. Here, the sequences are evaluated through 

statistical tests suite NIST [9]. Such a suite consists of a statistical package of fifteen tests 

developed to quantify and assess the randomness of binary sequences, produced by pseudo-

random number generators. The result of the frequency test explains in Table 2 using the 

length of sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are 

passed the frequency test. 

    

 Algorithm (1): Proposed Hybrid LFSR-CG:  

 Input: Modulus 𝑚 and seed Xo, Y0. 

Output: Key vector   X. 

 Step1: Run LFSR for a predetermined number of bits to generate the multiplier (a) 

             based on X0. 

 Step2: Rerun LFSR to generate increment (c) based on Y0. 

 Step3: Convert a and c to floating numbers  

 Step4: For n ←1 to 𝑚−1  

 Step 5:            Xn+1 ← (𝑎n Sqrt (Xn)+ 𝑐n) 𝑚𝑜𝑑 𝑚  

 Step 6:            Output Xn+1 

 Step5: END For n 

 Step6: END Algorithm 
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Table 2-The p-value of Frequency Test 

Sequences 512 1024 1536 2048 2560 

1 0.79088 0.31731 0.35833 0.65853 0.65853 

2 0.11161 0.03359 0.05248 0.08203 0.03359 

3 0.21592 0.08012 0.05248 0.06836 0.08012 

4 0.15730 0.34850 0.79860 0.56561 0.56561 

5 0.53610 0.13361 0.04123 0.03779 0.03779 

The result of frequency within the block test explains in Table 3  using the length of 

sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the 

frequency within the block test.  

 

Table 3-The p-value of frequency within a block test 

Sequences 512 1024 1536 2048 2560 

1 0.57363 0.17182 0.22157 0.29200 0.52793 

2 0.01326 0.01526 0.02396 0.13261 0.31542 

3 0.39761 0.59141 0.71357 0.19338 0.21742 

4 0.58968 0.70650 0.45324 0.60570 0.30918 

5 0.86455 0.66123 0.32529 0.39989 0.16893 

The result of the cumulative sum forward test explains in Table 4 using the length of 

sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the 

run test. 

  

Table 4-The p-value of Cumulative sum forward test 

Sequences 512 1024 1536 2048 2560 

1 0.59075 0.59094 0.69817 0.73635 0.69809 

2 0.55060 0.53975 0.65807 0.73328 0.78025 

3 0.54129 0.56578 0.66041 0.67949 0.67194 

4 0.55471 0.50115 0.69560 0.76426 0.69842 

5 0.56266 0.58830 0.69556 0.69419 0.65815 

The result of the cumulative sum reverse test explains in Table 5 using the length of 

sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the 

run test.  
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Table 5-The p-value of Cumulative sum reverse test 

Sequences 512 1024 1536 2048 2560 

1 0.58124 0.61188 0.75933 0.76670 0.77180 

2 0.57554 0.63441 0.68805 0.76023 0.73136 

3 0.57742 0.58870 0.73047 0.71731 0.73523 

4 0.57044 0.66980 0.67556 0.78717 0.77541 

5 0.64476 0.59542 0.68226 0.84543 0.80324 

The result of the Run test explains in Table 6 using the length of sequences 512, 1024, 1536, 

2048, and 2560 respectively. All resulted p-values are passed the run test.  

 
Table 6-The p-value of Run Test 

Sequences 512 1024 1536 2048 2560 

1 0.79325 0.92523 0.85504 0.96819 0.57519 

2 0.23866 0.05750 0.05982 0.05635 0.06167 

3 0.36424 0.97656 0.84266 0.63202 0.91414 

4 0.28696 0.73366 0.30663 0.10992 0.05591 

5 0.9160 0.52595 0.91510 0.85392 0.86466 

The result of the longest run of one test explains in Table 7 using the length of sequences 512, 

1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the test.  

 

Table 7-The p-value of the longest run of ones in a block test 

Sequences 512 1024 1536 2048 2560 

1 0.14209 0.27188 0.19857 0.62350 0.21497 

2 0.50523 0.41485 0.19601 0.41282 0.09245 

3 0.48421 0.18896 0.43826 0.27813 0.21003 

4 0.64462 0.67440 0.61710 0.77006 0.53682 

5 0.12468 0.06469 0.07087 0.12535 0.07317 

The result of the binary matrix rank test explains in Table 8 using the length of sequences 

512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the test except 

the sequence of 512-length. It may be a shorter length than required the test the p-values are 

less than the threshold.    

 

Table 8-The p-value of binary matrix rank 

Sequences 512 1024 1536 2048 2560 

1 Fail 0.69372 0.69372 0.48125 0.40125 

2 Fail 0.29189 0.29189 0.74191 0.71191 

3 Fail 0.69372 0.69372 0.48125 0.48125 

4 Fail 0.03910 0.03910 0.52812 0.44763 

5 Fail 0.69372 0.69372 0.74191 0.70804 

The result of the discrete Fourier Transform test explains in Table 9 using the length of 

sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the 

test.  
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Table 9-The p-value of discrete Fourier Transform test 

Sequences 512 1024 1536 2048 2560 

1 0.74560 0.01365 0.30190 0.96765 0.46816 

2 0.01866 0.32955 0.39927 0.33039 0.14679 

3 0.93535 0.10829 0.70793 0.51641 0.14679 

4 0.37228 0.86339 0.92538 0.20868 0.85608 

5 0.46539 0.30190 0.70793 0.57019 0.85608 

The result of the non-overlapping template matching test explains in Table 10  using the 

length of sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are 

passed the test. 

  
Table 10-The p-value of non-overlapping template matching 

Sequences 512 1024 1536 2048 2560 

1 0.99925 0.06988 0.27084 0.41284 0.52158 

2 0.99925 0.98609 0.27084 0.85603 0.83937 

3 0.08933 0.62326 0.81922 0.41901 0.25890 

4 0.99925 0.98609 0.27084 0.41901 0.05429 

5 0.99925 0.98609 0.00545 0.03589 0.08824 

The result of the overlapping template matching test explains in Table 11 using the length of 

sequences 512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the 

test except the lengths 512 and 1024. The p-value in the lengths 512 and 1024 are less than 

the required threshold.  

 

Table 11-The p-value of overlapping template matching test 

 Sequences 512 1024 1536 2048 2560 

1  Fail   Fail  0.28276 0.28276 0.50121 

2  Fail   Fail  0.88659 0.88659 0.70253 

3  Fail   Fail  0.28276 0.28276 0.02857 

4  Fail   Fail  0.28276 0.28276 0.02857 

5  Fail   Fail  0.88659 0.88659 0.49644 

The result of the universal test explains in Table 12 using the length of sequences 512, 1024, 

1536, 2048, and 2560 respectively. All resulted p-values are passed the test. 

 

Table 12-The p-value of Universal test 

Sequences 512 1024 1536 2048 2560 

1 0.64507 0.73854 0.79694 0.87150 0.78471 

2 0.63120 0.65463 0.81593 0.78180 0.84350 

3 0.66677 0.74329 0.73042 0.90105 0.86948 

4 0.70742 0.62776 0.75118 0.86013 0.89396 

5 0.70915 0.71770 0.77851 0.90991 0.82961 

The result of the approximate entropy test explains in Table 13 using the length of sequences 

512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the test.  
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Table 13-The p-value of approximate entropy test  

Sequences 512 1024 1536 2048 2560 

1 1.00000 0.99990 0.29371 0.00106 0.00011 

2 1.00000 0.99956 0.51138 0.01239 0.00026 

3 1.00000 0.99964 0.08497 0.00059 0.00000 

4 1.00000 0.99999 0.46355 0.00598 0.00039 

5 1.00000 0.99383 0.09368 0.00016 0.00001 

The result of the random excursion test explains in Table 14 using the length of sequences 

512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the test.  

 

Table 14- The p-value of random excursion test 

Sequences 512 1024 1536 2048 2560 

1 0.67702 0.76726 0.78783 0.77603 0.86433 

2 0.67822 0.66563 0.74793 0.73808 0.88619 

3 0.75925 0.72391 0.79800 0.78257 0.83818 

4 0.71561 0.70934 0.77836 0.74594 0.92550 

5 0.67126 0.66337 0.79458 0.80957 0.82258 

The result of the linear complexity test explains in Table 15 using the length of sequences 

512, 1024, 1536, 2048, and 2560 respectively. All resulted p-values are passed the test.  

 

Table 15-The p-value of Linear complexity test 

Sequences 512 1024 1536 2048 2560 

1 0.31550 0.34496 0.32881 0.42352 0.50332 

2 0.32905 0.22125 0.36025 0.34021 0.39968 

3 0.26491 0.31807 0.32263 0.37845 0.48389 

4 0.24368 0.29621 0.36166 0.36795 0.34147 

5 0.27012 0.26703 0.37015 0.30047 0.39101 

 

The result of the serial test explains in Table 16 using the length of sequences 512, 1024, 

1536, 2048, and 2560 respectively. All resulted p-values are passed the test.  

 

Table 16-The p-value of serial test 

Sequences 512 1024 1536 2048 2560 

1 0.54002 0.46654 0.58387 0.61780 0.62344 

2 0.44214 0.44161 0.59624 0.53340 0.60028 

3 0.45242 0.56010 0.51750 0.52321 0.69178 

4 0.45975 0.51647 0.55081 0.56788 0.59137 

5 0.47734 0.45870 0.54219 0.62917 0.61233 
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4.1.2 Hamming distance 
Hamming distance is part of the correlation assessment that is made by using it for each pair 

of sequences generated. It is analyzed based on the bits of pseudo-alterations made. The 

Hamming distance is the number of positions where two binary sequences are with same 

length. If the binary sequences are truly random, the value should be around half the overall 

length of the sequence, corresponding to 0.50 [10]. This distance is calculated from each pair 

of sequences generated as addressed in Table 17. 
 
Table 17-Hamming Distance 

Sequences Length of 512 Length 1024 Length 1536 Length 2048 Length 2560 

1 and 2 241 494 756 1008 1267 

1 and 3 261 502 764 1022 1270 

1 and 4 243 493 751 1003 1254 

1 and 5 262 514 772 1031 1276 

2 and 3 246 482 740 1008 1273 

2 and 4 244 507 769 1017 1263 

2 and 5 263 512 766 1017 1277 

3 and 4 248 491 735 993 1248 

3 and 5 243 512 752 1003 1258 

4 and 5 247 509 741 1028 1262 

 

4.1.3 Pearson’s Correlation Coefficient 

Pearson’s correlation coefficient is the second method used to analyze the correlation between 

the pseudo-random sequences [10]. The analyses consist to compute Pearson’s correlation 

coefficient between each pair of sequences and presenting the distribution of the values 

through a histogram. Consider a pair of sequences. The corresponding correlation coefficient 

is shown in Figure 3. The mean values of S1 and S2, respectively. Two uncorrelated sequences 

are approximated to zero. The closer the value of correlation to one represents the stronger 

correlation between the two sequences. In the case of two independent sequences, the value of 

correlation is equal to zero. The coefficients have an absolute value in [-0.05, 0.05] then only 

a small correlation is detected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-The correlation test of each sequence’s pear 
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4.2. Security Analysis   

    There are several points concerning the safety of the proposed LFSR-CG, including the size 

of the seed space, the length of the period of the process, and some fundamental attacks 

(differential attack and brute-force attack). The seed space is associated with computer 

resources.  

4.2.1 Seed Space 

A seed space of size smaller than 2
128 

is not secure enough. A broad key space is essential for 

a robust PRBG to have a wide range of pseudo-random number generation options. The 

LFSR-CG has a large keyspace depend on the size of the initial number generator and the 

LCG generation. Each number is initialized with a seed corresponding to a binary 64 floating-

point number. Thus, the total number of choices for the three initial seeds is 128 plus the 

initial value of the LFSR which is about {11, 13, 17, 19, 23, etc.}. 

4.2.2 Attack of Brute Force  

In theory, because it is not laid back to detect any flaw in the proposal which will make the 

job easier, a brute-force attack that can be used against is usually used. The attack strategy is 

straightforward: search all possible keys systematically before the original key is discovered. 

To find the initial seeds, just half of the keyspace must be tested on average. Such an attack 

can be thwarted by a large keyspace. A keyspace with a size greater than 2
128

 is secure 

computationally stable to resist such an attack. The range of LFSR is (high size of seed could 

be used) and the LCG could also apply to the output of LFSR.   

4.2. Differential attack 

The theory of such a cryptanalysis strategy, like a chosen-plaintext attack, is to examine the 

influence of a minor variation in input pairs (i.e., seeds) on the difference of corresponding 

output pairs (i.e., sequences) [12]. The most likely key that was used to produce the pseudo-

random sequence can be obtained using this technique. The initial variance may be an XOR 

difference, with the diffusion aspect being determined by a differential probability. The 

proposed algorithm is intended to protect against such attacks. Those were the initial seeds. 

The statistical study also revealed that, even though the seeds are slightly different, the 

pseudo-random sequences are strongly decorrelated from one another, as seen in Fig. (4). As a 

result, we believe that the proposed approach would be resistant to differential cryptanalysis. 

There are week correlations between the sequences generated from the proposed method.   

   

 
Figure 4-The correlation test of differential-attack each sequence’s pear 
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5. Conclusions:  

An effective pseudo-random number generator is resistant to major PRNG attacks, uses less 

memory and CPU power, and simpler to implement. The suggested generator has passed most 

of the checks in the NIST SP 800-22 statistical evaluation suite. In the presented algorithm, 

we have modulated the random sequences generated from combining the operation of the 

LFSR and LCG equation to obtain efficient keystream sequences for encryption. All the 

simulation and experimental analyses show that the proposed method has a high sensitivity to 

initial conditions and has a large keyspace, which is by far very safe for encryption 

applications. The method is also resistant to a differential analysis by generating a correlated 

sequence when no significant change in initial values. 
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