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Abstract

In this work, we introduce a new convergence formula. We also define cluster
point , 3-Cauchy sequence, d-convergent, 3-completeness , and define sequentially
contraction in approach space. In addition, we prove the contraction condition is
necessary and sufficient to get the function is sequentially contraction as well as we
put a new structure for the norm in the approach space which is called approach —
Banach space, we discuss the normed approach space with uniform condition is a
Hausdorff space. Also, we prove a normed approach space is complete if and only if
the metric generated from approach space is complete as well as prove every finite —
dimensional approach normed space is 3-complete. We prove several results and
properties in this field.

Keywords: Approach space, contraction, approach- metric space, approach vector
space.
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1.INTRODUCATION
In ( 1989), R.Lowen [4] studied a distance between points and sets in a metric space. In
topological space one analogously has that the closure operator gives a distance between
points and sets. In (1994), R. Baekeland and R. Lowen [7] studied the measures of Lindelof
and separability in approach spaces. In (1996), R. Lowen [13] studied the development of the
fundamental theory of approximation. In (1999), R.Lowen, Y. Jinlee [2] defined the notions

of approach Cauchy structure and ultra-approach Cauchy structure. In (2000) and (2003) R.
Lowen and M. Sioen [8,10] introduced definitions of some separation axioms in the approach
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spaces and found the relationship between them. In (2000), R. Lowen and B. Windels [14]
defined an approach groups spaces, semi-group spaces, and uniformly convergent. In(2003)
R. Lowen, M. Sion and D. Vaughan [3] defined a complete theory for all approach spaces
with an underlying topology that agrees with the usual metric completion theory for metric
spaces. In (2004), R. Lowen and S. Verwuwlgen [5] studied approach vector spaces. In
(2004), R. Lowen, C. Van Olmen, and T. Vroegrijk [9] found the relationship between
Functional ideas and Topological Theories. In (2006), G. C. L. Brummer, M, Sion
[16]developed abicompletion theory for the category of approach spaces in sense of Lowen
[20]which extends the completion theory obtained in [14]. In(2009) J.Martnez-Moreno, A.
Roldan and C. Roldan [17] defined the notion of Fuzzy approach spaces generalization of
Fuzzy metric spaces and proved some properties of Fuzzy approach spaces. In (2009), R.
Lowen and C.Van Olmen [11] discussed some notions and relations in approach
Theory.In(2013) G. Gutierres. D. Hofmann [12] studied the notion of cocompleteness for
approach spaces and proved some properties in cocompleteness approach space.In (2013)
K.Van Opdenbosch [18] gave new isomorphic characterizations of approach spaces,pre-
approach spaces, convergence approach spaces, uniform gauge spaces, topological spaces and
convergence spaces, topological spaces, metric spaces, and uniform spaces.In (2014)
R.Lowen, S.Sagiroglu [22] studied in this paper the possibility to weak the concept of
approach spaces to incorporate not only topological and metric spaces but also closure
spaces.In (2015)R.Lowen[6] in this book approach theory completely solves this by
introducing precisely those two new types of numerically structured spaces which are
required: approach spaces on the local level and uniform gauge spaces on the uniform level.
In (2016) . R. Malceski, A.Ibrahimi[21]In this paper is proven several generalizations of
known theorems of fixed point, and theorems for common fixed points of mapping to 2-
Banach space. In (2017) E.Colebunders, M. Sion[1] prove some important consequences on
real-valued contractions. In (2017)and (2019), M. Baran and M. Qasim [20,22] characterized
Local to distance-approach spaces, Approach spaces, and gauge-approach spaces and
compared them with usual approach spaces. In (2018), W. Li, Dexue Zhang [21] introduced
the Smyth complete.

We start from a normed approach space, so Banach approach space structure on X is
introduced and its properties are investigated . Quantitative results are obtained, which
imply their classical qualitative counterparts. These results provide an introduction to
approach Banach spaces, which are complete normed approach vector spaces. All vector
spaces are assumed to be over the real numbers. This paper is also introduced the concept of
an approach to Banach space, and studied its category-theoretic properties. The extension
Banach space by complete approach-normed space is also introduced. This leads to expand
the space of the norm though. In addition, an additional condition on the norm structure is
made, that is &) ;;(X,A):= supyex infaeallx — all . This means the distance generated by norm
function between a point in approach space and a subset of power set. In this case, conditions
and the function have been fulfilled, we have to find any Cauchy sequence convergent in
approach space and the space has become approach Banach space. Some properties of
Banach space are studied. The main goal of this paper is to find and to prove new results
in convergent sequences in Approach spaces. We prove approach space is § —complete if and
only if (X,ds) is complete, we also define sequentially contraction and prove that it is
equivalent contraction. Normed Approach Space is defined, and we prove many results such
that every uniform app-normed space (X, [|.[|,d;,) is a Hausdorff, app-metric of weak
approach distance &y~ is d;; ,and if a sequence in normed approach & —convergent
sequence in X implies the sequence is bounded. Also, some new results in normed approach
Space and Banach approach space are discussed. Futhermore, in this work, a new definition
of convergent of cluster point in approach space, § —Cauch sequence, § —convergent
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and § —complete are introduced. We prove that A function f:(X,8) = (Y, §') between
approach spaces is a contraction if and only if f sequentily contraction, we also discussed
every finite —dimensional app-normed space is § —complete and consequent app-Banach
space. Also, the metric app-space (X, ds) is not to be approach-normed space. A normed
Approach space (X, || [, &) is complete if and only if a metric approach space (E,d,) is
complete by means every uniform app-normed space (X, [|. |, ;) is a Hausdorff space. If
(X, lI-1I, 8y ) is normed Approach space, and {x,,} isa § —convergent sequence in X, then the
sequence {x,}in X is norm bounded. New results in normed approach space and convergent
are given.

This paper is divided into six sections: Section one introduces the introduction of the
research. In section two, preliminaries with basic definitions are given. In section three, new
results in convergent sequences in approach spaces are proved. We also explain the
relationship complete and § —complete in approach space. In section four, we introduce the
definition of normed approach space and prove some results in normed approach Space. In
section five, we introduce some results of normed approach space. Section six, we discuss the
important conclusions of the research.

2. PRELIMINARIES

The metric space (X, d) is a distance between pairs of a given points, and the distance

between  points and sets is given by the following formula:

85(x,A) :=inf,c,d(x,a) forallx € X forallA € 2%,

For any subset A of X and any € € [0, ], A%is definedby A%:={x € X|d(x,A) < €}
Definition 2.1[13] Let X be a non-empty set. A function §: X x 2¥ — [0, 00] is called
distance on X if the following properties are satisfied:

(D Vx € X:6(x,{x}) =0,

(D2)Vx € X:6(x,0) = oo,

(D3)Vx € X: VA,B € 2% : § (x, AUB) = min{6(x, A), 5(x, B)},

(D4)Vx € X:V A €2% Ve € [0,0]:6(x,4) < 6(x,A®) +&.

A pair (X, 9) is called an approach space and denoted by app-spaces, where 9 is a distance.
Instead of (D4') for all X€ X and A, B € 2%, 5(x,A) < §(x,B) + suppecp 6(b, A)

(D4") is equivalent to (D4).

Definition 2.2 [4] Let( X,6) and (X', 8") are App- spaces. A function f: X =Y iscalled
contraction if forall x € X, forall 4 € 2%: §'(f((x), f(A)) < &(x, A).

Definition 2.3 [14] A triple (X, &, +) is called an approach semi-group if and only if

1. (X,6) is an approach space .

2. (X,*) is a semi-group.

3.« X®X - X:(x,y)~ x*yisacontraction.

Definition 2.4 [14] A triple (X, &, +) is called an approach group if it satisfies the following:
(@) (X,8) is an approach space.

(b) (X,+) is agroup.

() +:X® X - X:(x,y) » x + y is contraction.

(d)-:X—= X : X—> —X is contraction .

3. Some Properties of Convergent Sequences in Approach spaces.

Definition 3.1. If (X, d) is a metric space, then a sequence {x,},—; in X is said to be a left
Cauchy sequence if for all € > 0, there exists k € Z*such that
d(Xpm, x) <& forallm,n = N,m < n. Right Cuachy sequence if for all &>
0, there exists k € Z*such that d(x,, x,,) < &, for allm,n = N,n < m. If a sequence is
left and right Cauchy, then it is called Cauchy sequence.

Definition 3.2. A set A € P(X) is said to be cluster point in an approach space (X, ¢) if and
only if there exists a sequence {x,}n,=; in X such that {x,},=; = A: where {x,};=; = A if
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and only if inf,c4 6(x,, A) = 0, we denoted the set of all cluster point in approach space by
I'(X).

Definition 3.3. A sequence {x,};=; in X is said to be Cauchy sequence in app space or
Cauchy distance or § —Caushy if:for every cluster point A : lim inf 6(xn,A)

n—o xm€EA
A sequence {x,}n=, In X is said to be § —convergent sequence in app-space if: There
existsx € X,VA € T'(X),: §(x,, A) =0.
Proposition 3.4. Let (X,8) be an approach space. Then the following statements are
equivalent:

1- & —Convergent sequence in app-space.
2- lim,,_, 00 iNfyeq 6 (xp, A)=0 and lim sup,ec, 6(x,, A) = 0.
n—->oo
x€X

Such that for all A € T'(X), we have : 6(x,,A) = 0.

VA € T(X),: infrea 6(xy, A) = 0and Sup,eys 6(x,, A) =0

VA € T(X), lim,_ e infieq 6(xp, A)=0 and lim sup,ec4 6 (x,, A)=0.
n—-oo

Conversely, suppose that {x,},—, IS convergent sequence
lim,,_, 0 iNfyreq 6 (xp, A)=0 and lim sup,ec4 6 (x,, A)=0.
n—oo

Then, A is cluster set, that is inf,cs 6(x,,A) =0. Ax € X,VAE€ I'X): 6(x,,A) = 0.
Thus, {x,}n=1 IS § —CONnvergent sequence in app-space.

Remark 3.5. Every § —convergent sequence is Cauchy approach space (6 —Cauchy).
Proposition 3.6 If X is an approach space the properties are equivalent;

(1) {xn}n=1isa & —convergent sequence in app-space.

(2)supaerx) infrea ds(xn, x) = 0.

Proof: It follows that from definition of § —convergent sequence

Proposition 3.7 If (X, §,) is a app-metric space then § is a Cauchy distance if and only if it is

a Cauchy distance in (X, d).

Proof: Let {x,},—;be a & — Caushy sequence in (X,ds) so that we have that
inf 8(xn, A)=0

Thls implies that inf,. ¢4 6 (xp, {x;n}) = mf inf d(x,, xm) =0
Xn

x €A
, that is d (x,,, x,,) = 0, then {x, }p=q IS Ieft Cuachy sequence.
Also infy, cq 8 (xm, {x,}) = 1nf inf d(xm, x,) = 0,that is d(xp, x,) =0, {x,}n=q is right

x €A
Cuachy sequence.

Thus, {x, }m=1 IS Cuachy sequencein (X, d).

Conversely, if {x,}n=, isCauchy distance in (X,d).Then, it is left and right Cauchy
sequence,
for all € > 0,there exists k € Z*such that d(x,,, x,) < €, forallm,n = N,m <n, and
forall € > 0, there exists k € Z*such that d(x,, x,,) < &, for allm,n > N,n < m.

1nf 6(xn,A) = mf inf d(x;,, x,) = 0. Hence{x,, }oet is & —Cuachy sequence in

X¥m€A x, €A
approach space.
Theorem 3.8. A function f: (X,8) — (Y, &) between approach spaces is a contraction map
if and only if for every § —convergent sequence {x,},—; in X and x € Xif x, -
x then f(x,) = f(x).
Proof: If this map is a contraction then

8'(f (xa), f(A)) < 6(xy, A).

To prove the condition if x,, = x ,then f(x,,) = f(x)
Suppose that {x,} is a sequence in approach space (X,d) such that
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8" (f(x), f(A)) < 6(xy, A).
Letx, - x = lim 1nf6(xn,A) =0and §(x,,,A) =0

n—-oo x

Then lim§(x,, A) = 0. 8'(f (xn, f(A)) < 6(xn, A) = 0, we have
n—-oo

limsup8' (f (x,, f(A)) < limsup$ (x,, A)=0. Thus f(x,) > f(x) ,n >

N=0 xeq =% xed .

Conversely, suppose that f is not contraction

Then 8'(f (x), f(A)) > 8(xn, 4), ne€Z

Since f(x,) = f(x) ,n - oo, liminfd'(f(x,), f(4)) = 0 and limsupd'(f(xy), f(A)) =
Nn—00,cg N0 xeq

0

Since x,, - x, liminfd'(f (x,), f(4)) = limsupS'(f (x,), f(A)) =0

N>yl Nn—=0 yeq

Whenever
liminfé(x,,A) =0 and limsupd(x,, A) =0 that contradiction.

N—=>0yxeAg n—>0xeh

Some important properties of Convergent Approach space are given in the following
theorem:
Theorem 3.9. Let (X, §)be an app-space. {x,},and {y,} isan app-converge sequence to X,
y respectively. Then :
1. {x, + y,} app- convergencetox +y .
2. {Ax,,} app- convergence to Ax.
3. {x,-y,} app- convergenceto x.y.
Proof :
1- Since {x,}, {y,} areapp-convergence to x, y.
Thus lim,,_,o infieq 6 (xy, A) = 0and lim,,_,, SUpyeq 6(x,,A) = 0.
So limy,_,e infyeq 6 (¥, A) = 0 and lim,,_, o, Supy e 6 (v, B) = 0. Then,
lim,,_,00 6 (¥, {y}) = 0, that is lim,,_,, infd(y,,y) = 0, lim,_,, infd(x,,x) =0
limy, o infx,yEA 8(xn + yn A) =
limy,_, infx,yeA 5(xn + Yo {x}u {J’}) =lim,,_,0 infx,yeAmin{d(xn' {x}), (Y, {y}) =0
lirnn—mo infx,yEA 6(xn + yn'A) = lirnn—mo infxEA 6(xn: A) + lirnn—»oo innyA 6(ynrA) =
0, and
lirnn—mo Supx,yEA 6(xn + Yn, A) = lirnn—>oo SUPxea S(XnﬂA) + lirnn—mo SupyEA S(yn'A) =0
lim,, 0 infy yea 6 (Xy + Y, A) =0, and lim,,, o SUPyyea 6(Xy + yn, A) =0
limy,_, infy yea 6((xn + yn),A) =0 and lim,_ e SUPyxyea 6((xn + yn),A) = 0.
Then, {x,, + y,} is app -convergence sequence to X +y.
2-Since{x,} is app-converge sequencetox A € F .
Sothat lim 1nf5(xn, A) = 0 and limsup(x,,A) =0.If1 € F and

Nn—0XE N—0 yep
A lim 1nf6(xn,A) = 0and A. limsupé(x,,A) = 0. Then
n—-oox n—->oo XEA

lim inf §(Ax,, AA) = llmd(lxn,l{x}) = le mfd(/lxn,lx) = A leLnfd(xn, x) =

n—wXEAA

A liminfé(x,, A) =0, and lim sup 6(Axn,AA) = Allm sup6(xn, {x}) =10=0

n—oox€eA Nn—->0,c)4
Then {4x,,} isapp-convergence sequence to Ax.
3: Let{x,}, {y.} beapp-convergent sequence to X,y.
Thus lim 1nf5(xn, A) =0, li_z(r)toji/relfﬁ(yn,A) =0

n—ooxe

llmsupS(xn,A) =0, limsupdé(y,,A) =0,

N=0 xeA n—=>%0 xeA

liminfd(x,,x) =0,and liminfd(y,,y) = 0.
n—oo n—oo
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Then Tllilgoinfd(xnyn, xy) = 0.

lirzlo inf (S(xn,A).S(yn, A)) =0and lim sup (S(xn, A). 5 (v, A)) =0

lim 1nf 6((xn Yn),A) = 0 and lim sup 6((xn yn),A) = 0.

n—oox N—=>0yx yeA

Then {xn. v} IS app-convergence sequence to X, y .

Definition 3.10. An approach space is called & —complete if every & —Cauchy is

& —convergent in (X, §)

Theorem 3.11. Approach space (X, §) is & —complete if and only if (X,ds) is complete .

Proof: Let {x,},—, be a Caushy sequence in (X,d), then it is § —Cauchy sequence in (X, §)

Since (X, §) is complete, there exists x € A, forall T'(X),: 6(x,, A) = 0.

SUPaer(x) iNfrea ds(xy, x) = 0. Thends(x,, x) = 0, that is (X, ds) is complete.

Conversely, Let {x,},=, be a § —Caushy sequence in (X, d) so that it is Cauchy sequence in

(X,ds). The sequence {x,} is left and right sequence in (X,ds). (X,d) is complete, that is

lim, . ds(x,,x) =0, that is lim,_,inf ds(x,, x) = 0,and lim,_,sup ds(x,,x) =0
XEA X€EA

5(xn'A) = SUPper(x) Nfyeads (xn: x)=0

limy, o iNfrex 6(,A)= Al_r)go infrex SUPAer(x) infreads (xn: x) =0, and
rlli_{lgosuprX 6 (xn, A):Ai_r,{;lo SUPxex SUDAer(x) Nfxea ds (xn,x) =0

thatis3x € X,VA € T'(X),: 6(x,, A) = 0.

Thus, {x, }m=4 is convergent in an approach space (X, 6).

Example. 3.12. Let E = R be a set of all real numbers. Define §z: R x 2R— [0,00]

0 A unbounded
Se(x, A) = 0 A bounded
inf|x — a x < oo
a€A

This function is distance on [ 0, o] and we will prove that (E, §) is § —complete approach
space.

0 A unbounded
Proof: Forn € Z*, §e(x,, , A) := 0 A bounded
inflxn—al Xp < 00

Let {x,,}n=1 be a § — Cuachy sequence so that lim inf S(xn,A)

n—o x;,€EA

That is there exist many cases:
First : If AcRis unbounded, therefore &g (X, A)=0, limirelAf(S(an)=0,
n—>o0x ’

and lim,,_, o, SUp,eq 6(x,,4) = 0.
If Xy < oo ,then lim inf S(xn,A) =infy _calx, — x,»] = 0, there exists ke Z* such that

n—oo x;,€A
|, — %] = 0 forall m, n >k, that is {x, },—is Cuachy sequence in (E, d).
Since R is complete, then {x, },—, convergent sequence in R.
There exist xe A, forall A € P(X), |x, — x| =0,

then lim,,_ Aérr}(%) Jggﬂ(xn —x)|=0

and lim sup inf|X, —a|l =0
n—»oerF(R) XEA

Then &g is convergent on App-space.

4. New structure for Normed Approach Space.

Definition 4.1 A triple (X,d, +) is called an approach semi-group if and only if the following
statements are satisfied

1. (X, ) is an approach space .

2. (X,*) is a semi-group.
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3:X®X - X:(x,y)» x=*yis contraction map.

Definition 4.2 A triple (X, &, +) is called an approach group if it satisfies the following:

a) (X,8) is an approach space .

b) (X,+) is a group.

C) HX®X - X:(x,y) » x+yiscontraction

d) -+ X - X : X-> —X is contraction map.

Definition 4.3 A quadruple (X, §,+,-) is said to be Approach vector space if it satisfies the
following:

(1) (X, 8, +) is approach group.

(2) (X,6,) is approach semi-group.

3)A(a+b)=2Aa+Ab ,VAEF,Va,be€X.

4)(a+b)A=a.A+b.A ,VAEF,Va,b€X.

(5)1.X =X forall x € X.

Definition 4.4: Let X be app-vector space. A triple (X,||. ||, 8;) said to be normed approach
space if it satisfies the following :

(Dlx]|=0 if and only if x = 0, forall x € X.
). x||=]A). Nlx]I VAEF,xeX
@llx+yll < llxll + [yl vx,y € X.
Dllx|l =0 ,Vx € X

(5) &) (%, A)=supxex infaeallx — all AE 27,

Remark 4.5. every normed space is not necessary to be normed approach space. The
following example shows that: Let C [-1, 1] be a set of all continuous functional on [-1, 1], a
vector space C [-1, 1] is normed space under the norm define:

BY If Il = subxeapm{lf I}, when f(x) = x =1 forallx € X

. However it is not normed app-vector space because:

Since first condition: for A = {—1,0,1}

dsy (x,y) = supinf sup {|f(x) = f(a)l} = sup infllf(x) - f(a)]| = 1

X€EX a€A x€[0,:] XEX a€A

But dy (X, Y)=llx — all = sup {|f(x) fla)| = 2.

x€[a,b]
Definition 4.6. Every Banach approach space is complete normed approach space.
Proposition 4.7. Every finite —dimensional app-normed space is § —complete and consequent
app-Banach space.
Proof: Assume that dim (X) = n >0, {ey, ey, ..., e,} is app-basis of X. Let{x,}n=, be a
& —Cauchy sequence in X, lim inf 6(xm, A) =0. For x,, =X aime; , X; = Nieq X1

n—00 xy,EA
0=lim inf 6, aime; ,A) = lim inf Lnf yeafds ”(Z?zlaimei ,Y)
n—oo Zl 1 @16 €A n—-oo 21 1 Q1€ € '
n n — i
—rlll_fgo E?=110—'r:zf€i A inf yEAfd6|| ||(Zi=1 Aim€i , Ni=1 A1€;) = }LL_{&
inf inf yEAianZ?:l Aim€; — ?zlailel ” that is Z =1 ”alm ail”:O- Then {aim} is

Y e €A
Cauchy sequence in real field R or complex field C, since real field R or complex field C are
complete, therefore for all | there exists a; € F such that lim,, ., a;;, = @;, put x = Y71 a;e;
There exists x € A, for all A € P(X),Tlli_)rrolo . ig-fe-EA6(Z?=1 ame; ,A) =0

i=1"1%1
Thus X is —complete
This follows , because of both R and C are complete and every finite —dimentional is
isomorphism to R™or C™ for some N.
Remark 4.8.The metric app-space (X,ds) is not app-normed space. Let X be a set of all

complex sequence {x;} , and let §: X x 2% — [0, co] defined by
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(0 if x; = y;, A bounded
S d) =47 if x; # y;, A unbounded
n YR ] l ounde

(2, 7)=000, {y)) = infl e, Nty & (R

1+|xi—yi
forallxe X,y€Aand Ac2¥X ,i=1,..,n
(X,dg) is a metric app-space but it is not normed app- space .
5. Main Result
In this section, we introduce some important results ,and we also give the proof between
App-normed spaces and other spaces.
Proposition 5.1. If E; and E, are normed approach spaces, and f: E; — E,Is a surjective
linear function, then the following properties are equivalent:
@) f: (Ey, NI-ll, 81) = (E; |l ll2, &) is contraction.
(2) E; Banach app- space if and only if (E;, &) is complete.
Proof: If f: E; — E, is contraction. Then for every X€ E; and each subset Ac E| .
§(f(x), f(A)) < 6(x, A)
If (E;,|l-]l2) is Banach app-space.
Then A normed approach space is complete .
Let {y,} be a § —caushy sequence in E, , then there exists {x,,} such that f (x,) = y,
lim inf §(y,,A) =0, rllg?o xinefBé(f(xn),f(B)) = 0, Since f is contraction map , we have

n—oo X, €A
lim inf 6(f(x,), f(B)) < lim inf §(x,, A) .Hence lim inf &(x,, A)=0.
n—oo X, EB n—oo x;€EA n—oo x;€EA
That is {x,} is 6§ — Caushy sequence in E; , E; is complete app-space. There exists x € B, for
all B € f(E; ) such that lim irelgd(xn,BFO
n—-oo x

&' (f(xy), f(B)) < 6(x,, B) = 0. Therefore §'(f(x,), f(B)) =0

There exists y=f(x)€A=f(B),forall A€ f(E,)such
that 6’ (v, A)=6"(f (x;,), f(B)) = 0, and hence {y,} be a § —convergent sequence in E, .
There is {x,,} § —Cauchy sequence in E; such that:

,00(xp, ) =0 x,—->x Vx€E;

Since f contraction map, then we get

82(f (xn), f(A)) < 81(xn, A)

&, (f (xp), f(A)) <O, thus f(x,,) = f(x), forall x € E,

Then limn—mo inferZ 82 (f(xn): f(A)) =0 and liInn—wo Superz 62(f(xn)' f(A)) =0

Then (E,, || ll2, 85) is complete.

Conversely, suppose that f is not contraction map that means

6, (f (%), f(B)) > 61(x, B).

Let {x,,} be a § —convergent sequence in E; , that is {x,} isa § — Cauchy sequence in E; ,
{f(x,)}is a§ — Cauchy sequence in E, . The condition holds, then there is f(x,) in E, such
that f(x,,) - f(x). There exists y = f(x) € f(B) = A € f(E,) such that §,(f (x,,), f(B)) =
0, that is 6;(x,, B)< 0, this is impossible

Since E; Banach app- space there is {x,,} in E; such that {x,} — x and

61 (xp, A)=0, that is contradiction.

Then f is contraction map.

Proposition 5.2. A normed Approach space (X, ||. |, §;)is complete if and only if a metric
approach space (E,d ) is complete.
Proof: let E be a normed app- space and that § is generated by the ||.]|. let {x,,) be Cauchy

sequence in (E,d; ) so that, we have d (xp, x,,) =0, forallneZz*
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this implies that 5”_” (xn, A) = SUPx, ex infxmeA d”.“ (xn,xm) =0
inf 6 (x,A) = 0, {x,}is § —Cauchy in (E,5;, Il Il) by proposition 2.(2).

XmEA

Since E is § —complete this implies that there exists xe X for all A € P(X),such that
8y (xn, A) = 0,forall n € z*, d(x,, x) = 6(xp, {x}) = 0. That is {x,} - x.

Conversely; suppose that (E,d ) is complete and let {x,} be & — Cauchy sequence in
normed app-space.

Then &) (xn, A) = inf &) (xp, {xn}) = sup infy_eallxy — x|l = 0.
Xm€EA XEX

)y X)) = infyea O (X, {xm}) = 0. That is (x,,) is Cauchy sequence in (X, d; ) . (X,
dj ) is complete, therefore {x,} is convergent sequence , there exists x € X such that
lim,_,, x, = x.

djGen, ) = infy, ca 6 (xn, {x}) = 0. There exists x € A,for all A € P(X) such that
5”'”()6”, A) = SUPx, ex infxeA d”'” (xn,x) = 0. Hence (E, 6||.||, [l ”) isd —complete.
Corollary 5.3. A normed app-vector space is Banach app-space if and only if (X, dg) is
Banach space.

Proof: It follows from proposition (4.1) and proposition (4.2)

Proposition 5.4. If (X, ||.|I,d8,) is a normed app-vector space, then the following are
equivalent:

(1) X, I 11, y.)is a Banach app-space.

(2) (X,8) is complete.

Proof: That is clear by previous corollary.

Proposition 5.5. If (X, || |I, 8;)is app-normed space ,then we have

(1)- The function f:(x,y )= x + y is contraction.

(2)- The function f:(x,y)— ax is contraction.

Proof:

(1) Let{(xn, y»)} be a convergent sequence in X, there exists x,y € X, forall A,B €
I'(X) (respectively)such that 6(x,,A) = 0,6(y,,B) =0

since 8||.|| (xn: A) = SUPxex ianCX”xn - X”:SUP infdtﬁ(xn' X) =0

. .xeX AcX
5||.|| (Vn, A) = supyex lancX")’n =yl :Slg? Zn§d6(yn’ y)=0
x c
5|I|.||( f(xnf yn)’f(Ai B)) = 6|,|.||(xn +yn’ A+ B) = Supx,yEX ian,BcX“xn + Yn — (x + Y)” <
SUPyx,yex ian,BcX ds(Xn + Y, X +¥) < SuPyex ianchlxn - xll + Slg? ;n];llyn - Y|| =0
y (e

Then £ is sequentialy contraction and therefore f is contraction.

(2) Let {(an, x,,)} be a convergent sequence in F X X, then Let x € X, for all A € T'(X) such
that §(x, A)=0,5 ||_”(f(xn),f(A)) = O (ax,, ad)
=Supyex infacxllanxy, — axl|=supyex infacxllanx, — ax, + ax, — ax|| = 0.

Thus f(a, x) = ax is sequentially contraction

Theorem 5.6. If M = (X, ds) metric app-space. Then M is a Hausdorff space.

Proof: Let x,y € X:x # y so that from distinct points in Metric app-space have disjoint
open-balls exists open € —balls B.(x)and B.(y) which are disjoint open sets containing x and
y respectively. Hence the result by the definition of Hausdorff space.

Proposition 5.7. Every uniform app-normed space (X, [. ||, §;)is a Hausdorff space.

Proof: suppose that X* be a topological duall of X. that is

X" = {f t (X, Tqy, ) = (R, Tg)| fis linear and continuous functionals },

Let J% is the set of all non — negative closed unit ball in X*, so J={feX™:

|7l <13
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and the norm on duall is defined by ||f]l. = inf [|f(x)]|

xCJ

it is clear that (X*,||f||.) is Banach space. TXhe dual of (X*|IfIl,) is called biduall of
Xwhich is denoted by X**
Let W be a non-empty subset of X*, for each the functional ||x|[y: X — R as followes:
lx]| = Supfew| f(x)| is a semi-norm on X, we have Ny~ = {|[x|ly | ¥ S Ik} and Dy =
{d)x)e|¥ S I%}. Then a basis for the weak topology o(x x+) on X is given by:
{({beX|VfeW:|f(x—Db)| <e}®+W¥cXe>0}forx€X.
Define &y- : X x 2%X — [0,00] by 8x+(x,A) = supy cy; infeq [lx —ally . It is clear that
Oy~ satisfies the condition of approach distance is said to be weak distance or weak approach
distance. Since x-is the uniform app-space. Generated by Dy- , an app-basis for the 75, is
Ny = {llx|lp ¥ S J%} which equals a basis for a weak topology o(x x+) which is given
as: {{beX|VfeW:|f(x—Db)| <e}|@ #W¥ S X*, & > 0} that is equally a basis for the weak
the weak topology o(x x+y is Housdorff that is the normed app-space is Housdorff space.
Proposition 5.8 . If (X, || ]I, ;) is normed app-space, then the app-metric of weak approach
distance &x- isd).
Proof: For all a,b € X, ds,.(a,b) = max{8y-(a,{b}), 5x+(b,{a})}
= Sup Sup| f(a —b)|

W Iy feW
= Sup |f(a—Db)| = Illa—Dll

| ey
Theorem 5.9. If (X, || ]I, §;) be normed App- space, and{x,,} a § —convergent sequence in
X. Then asequence {x,}in X is norm bounded.
Proof: Suppose that M:= sup ey lim sup,|f (a — x,,)| < o0
For some a € X.then we have that
Vf € Wang, vn >npi|f(a) — f(xp)| <M +1,
f

We have for every f € X* and every |f(x,)| < (||f||+1).(|”f||+1 (x)| + M + 1. Which shows

that (f(x,)), is bounded sequence for every f € X*. Applying a well-known consequence of
the Banach —stenin haus theorem (see e.g.Brezis (2011). Now, this yields that (x,), iS norm
bounded ,
Conversely, Let 3= 1. Note that for each xe X.
8 G, A) = 8 (%n, A)=IIM supllxc — x|l < [lx]] + supp|lx,l.
6. CONCLUSIONS

In this paper, we proved that every uniform app-normed space (X, ||. ||, &) is a Hausdorff
space and app-metric of weak approach distance &y is d . Also, we show that normed app-
space (X, |I. 1, 6y,) is complete if and only if a metric approach space (E,d; ;) is complete. An
example is given to show that the metric app-space (X, ds) is not app-normed space. We
proved every finite —dimensional app-normed space is § —complete.Also, the necessary and
sufficient conditions are found to prove (X, ds) is Banach space. Some other results that
relate to the convergent in approach space and normed approach space are proved.
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