

ISSN: 0067-2904

The Intersection Graph of Subgroups of the Dihedral Group of Order $\mathbf{2 p q}$

Peshawa M. Khudhur ${ }^{\mathbf{1} *}$, Rashad R. Haji ${ }^{\mathbf{2}}$, Sanhan M.S. Khasraw ${ }^{\mathbf{3}}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Soran University, Erbil, Kurdistan Region, Iraq
${ }^{2}$ Department of Petroleum and Mining Engineering, Tishk International University, Erbil, Kurdistan Region, Iraq
${ }^{3}$ Department of Mathematics, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
${ }^{4}$ Department of Mathematics, College of Basic Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq

Received: 8/4/2021
Accepted: 19/6/2021

Abstract

For a finite group G, the intersection graph Γ_{G} of G is the graph whose vertex set is the set of all proper non-trivial subgroups of G , where two distinct vertices are adjacent if their intersection is a non-trivial subgroup of G. In this article, we investigate the detour index, eccentric connectivity, and total eccentricity polynomials of the intersection graph Γ_{G} of subgroups of the dihedral group $G=D_{2 p q}$ for distinct primes $p<q$. We also find the mean distance of the graph Γ_{G}.

Keywords: dihedral group, intersection graph of subgroups, detour distance, mean distance.
Mathematics Subject Classification: 05C25, 20F16, 05C10.

$$
\begin{aligned}
& \text { 2pq البيان التقاطعى للزمر الجزئية من زمرة التناضرات من مرتبة } \\
& \text { بيشةوا ححم خضر ¹ *, رشاد رشيد حاجى², صنعان عحل صالح خسرو } 3 \\
& \text { 1القسم الرياضيات، الكلية العلوم، الجامعة سوران، اربيل، حكومة اقليم كردستان، العراق }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2القسم الرياضيات، الكلية التربية، الجامعة صلاح الدين-اربيل، اربيل، حكومة اقليم كردستان، العراق } \\
& \text { ³القس الرياضيات، الكلية التربية الاساس، الجامعة صلاح الدين-اربيل، اربيل، حكومة اقليم كردستان، العراق }
\end{aligned}
$$

للزمرة المنتهية G، البيان التقاطعى ل G هو البيان الذى مجموعة رؤسة عبارة عن جميع الزمر الجزئية الفعلية
غير التافهة من G بحيث ان رأسين من البيان يرتبطان بحافة(متجاوران) اذا كان تقاطعهما الزمرة الجزئية غير
التافهة. فى هذا البحث نتحرى عن دليل اقصى المسافة، مركزية الارتباط و تعددة الحدود للمركزية الكلية للبيان
التقاطعى للزمر الجزئية من زمرة التتاظرات D ${ }^{\text {لتا }}$ حيث p و q عددين أولين مختلفين. وكذللك نقوم بايجاد
معدل المسافة للبيان

[^0]
1. Introduction

The concept of intersection graph of subgroups of a finite group was defined and studied by Csa'ka'ny and Polla'k in 1969 [1]. They found the clique number and degree of vertices of an intersection graph of subgroups of a dihedral group, quaternion group, and quasi-dihedral group.
Let G be a finite non-abelian group. The intersection graph Γ_{G} of G is an undirected simple (without loops and multiple edges) graph whose vertex-set consists of all nontrivial proper subgroups of G, for which two distinct vertices H and K of Γ_{G} are adjacent if $H \cap K$ is a nontrivial subgroup of G. This kind of graph has been studied by researchers; we refer the reader to see [2-6].
Let Γ be any graph. The set of vertices and the set of edges of Γ will be denoted by $V(\Gamma)$ and $E(\Gamma)$, respectively. If there is an edge between vertices u and v, then we write $u v \in E(\Gamma)$. The cardinality of $V(\Gamma)$, denoted by $|V(\Gamma)|$, is called the order of Γ, while the cardinality of $E(\Gamma)$, denoted by $|E(\Gamma)|$, is called the size of Γ. For any vertex v in Γ, the number of edges incident to v is called the degree of v and denoted by $\operatorname{deg}_{\Gamma} v$ [7]. The chromatic number of a graph Γ is $\chi(\Gamma)$, which is the smallest number of colors for $V(\Gamma)$ such that adjacent vertices have different colors.
A $u-v$ path is a walk with no two vertices repeated, for any two distinct vertices u and v in Γ. The shortest $u-v$ path in Γ is called the distance between u and v, denoted by $d(u, v)$, and the longest $u-v$ path in Γ is called the detour distance between u and v, denoted by $D(u, v)$. The eccentricity of a vertex $v \in V(\Gamma)$, denoted by $\operatorname{ecc}(v)$, is the longest distance between v and all other vertices of Γ. The diameter of a graph Γ, denoted by diam (Γ), is defined as $\operatorname{diam}(\Gamma)=\max \{\operatorname{ecc}(v) \mid v \in V(\Gamma)[8]$. The detour index, eccentric connectivity and total eccentricity polynomials are defined by $D(\Gamma, x)=\sum_{u, v \in V(\Gamma)} x^{D(u, v)}[9], \zeta(\Gamma, x)=$ $\sum_{u \in V(\Gamma)} \operatorname{deg}(u) x^{e c c(u)}$ and $\theta(\Gamma, x)=\sum_{u \in V(\Gamma)} x^{e c c(u)}[10]$, respectively. The detour index $d d(\Gamma)$, the eccentric connectivity index and the total eccentricity $\zeta(\Gamma)$ of a graph Γ are the first derivatives of their corresponding polynomials at $x=1$, respectively. The transmission of a vertex v in Γ is $\sigma(\Gamma, v)=\sum_{u \in V(\Gamma)} d(u, v)$. The transmission of a graph Γ is $\sigma(\Gamma)=$ $\sum_{u \in V(\Gamma)} \sigma(\Gamma, v)$. The mean (average) distance of graph Γ is $\mu(\Gamma)=\frac{\sigma(\Gamma)}{p(p-1)}$, where p is the order of $\Gamma[3,1,12]$.
Khasraw [13] studied the intersection graph of subgroups of the group $D_{2 n}$, where $n=p^{2}, p$ is a prime. He found some topological indices of the graph $\Gamma_{D_{2 p^{2}}}$ as well as its metric dimension and resolving polynomial.
In this paper, we consider the graph $\Gamma_{D_{2 p q}}$ of the dihedral group $D_{2 p q}$ where p and q are distinct primes. Some properties of the connected graph $\Gamma_{D_{2 p q}}$ will be presented. The dihedral group $D_{2 p q}$ of order 2 pq is defined by $D_{2 p q}=\left\langle r, s: r^{p q}=s^{2}=1, s r s=r^{-1}\right\rangle$ for prime numbers $p<q$.

2. Some properties of the intersection graph of $\boldsymbol{D}_{\mathbf{2 p q}}$ for prime numbers $\boldsymbol{p}<\boldsymbol{q}$

In order to determine the vertex set of the graph $\Gamma_{D_{2 p q}}$, it is required to list all non-trivial proper subgroups of the dihedral group $D_{2 p q}$ for distinct primes $p<q$. In [6], the set of all non-trivial proper subgroups of the group $D_{2 n}$ are classified for all $n \geq 3$. Here, we only consider the case when $n=p q$ for distinct primes $p<q$.
Lemma 2.1[6]. The non-trivial proper subgroups of the dihedral group $D_{2 p q}$ for distinct primes $p<q$ are:
1- cyclic groups $G_{i}=\left\langle s r^{i}>\right.$ of order 2 , where $i=1,2, \ldots, p q$.
2- dihedral groups $H_{i}^{p}=<r^{p}, s r^{i}>$ of order $2 p$, where $i=1,2, \ldots, p$ and $H_{i}^{q}=<r^{q}, s r^{i}>$ of order $2 q$, where $i=1,2, \ldots, q$.

3- cyclic groups $I_{p}=<r^{p}>$ of order $q, I=<r>$ of order $p q$, and $I_{q}=<r^{q}>$ of order p. According to the above classification of subgroups of the group $D_{2 p q}$ for primes $p<q$, as given in Lemma 2.1, we can determine the structure of the set of vertices of the graph $\Gamma_{D_{2 p q}}$ as the non-trivial proper subgroups by $V\left(\Gamma_{D_{2 p q}}\right)=A \cup B \cup C$, where $A=\left\{G_{1}, G_{2}, \ldots, G_{p q}\right\}$, $B=\left\{H_{i}^{p}, H_{j}^{q} ; 1 \leq i \leq p ; 1 \leq j \leq q\right\}$, and $C=\left\{I_{p}, I, I_{q}\right\}$. So, we can distinguish subgraphs Γ_{A} as complement of the complete graph $K_{p q}, \Gamma_{B \cup\{I\}}$ as the complete graph K_{p+q+1}, and $\Gamma_{C-\{I\}}$ as the complement of the complete graph K_{2}. Through this article, we fixed the sets A, B, and C.
In this section, some basic properties of the intersection graph of $D_{2 p q}$ are investigated, such as the order and chromatic number of the graph $\Gamma_{D_{2 p q}}$.
Theorem 2.2. The order of the graph $\Gamma_{D_{2 p q}}$ is $\left|V\left(\Gamma_{D_{2 p q}}\right)\right|=p q+p+q+3$.
Proof: Since the set of vertices of $\Gamma_{D_{2 p q}}$ are the non-trivial subgroups of $D_{2 p q}$ which are classified in the sets A, B and C, and since $|A|=p q,|B|=p+q$, and $|C|=3$, then $\left|V\left(\Gamma_{D_{2 p q}}\right)\right|=|A|+|B|+|C|=p q+p+q+3$.
Theorem 2.3. The size of the graph $\Gamma_{D_{2 p q}}$ is $\left|E\left(\Gamma_{D_{2 p q}}\right)\right|=\frac{(p+q)^{2}+4(p q+1)+3(p+q)}{2}$.
Proof: It is clear that each vertex of A is adjacent with only two vertices of B. The vertices in the set A are non-adjacent. Also, each vertex of $B \cup\{I\}$ is adjacent with all other vertices of $B \cup\{I\}$; that is, $B \cup\{I\}$ is a complete graph. Moreover, the vertex $I_{p} \in C$ is adjacent with p vertices of B, which are $H_{i}^{p} ; i=1,2, \ldots, p$, and $I_{q} \in C$ is adjacent with q vertices of B which are $H_{j}^{q} ; j=1,2, \ldots, q$. Finally, the vertex $I \in C$ is adjacent with I_{p} and I_{q}. Thus
$\left|E\left(\Gamma_{D_{2 p q}}\right)\right|=2 p q+\frac{(p+q+1)(p+q)}{2}+p+q+2$.
Theorem 2.4. The chromatic number of the graph $\Gamma_{D_{2 p q}}$ is $\chi\left(\Gamma_{D_{2 p q}}\right)=p+q+1$.
Proof: From Theorem 2.2, $c l\left(\Gamma_{D_{2 p q}}\right)=p+q+1$. This means that the graph $\Gamma_{D_{2 p q}}$ is at least $p+q+1$ colorable graph. The vertices $G_{1}, G_{2}, \ldots, G_{p q}$ can be colored with the same color as the vertex I, the vertices I_{p} and H_{i}^{q} can share the same color, and the vertices I_{q} and H_{i}^{p} can share the same color. Thus, the minimum number of colors that can be used to color the graph $\Gamma_{D_{2 p q}}$ is $p+q+1$.
Therefore, $\chi\left(\Gamma_{D_{2 p q}}\right)=p+q+1$.
Theorem 2.5. Let $\Gamma=\Gamma_{D_{2 p q}}$ be the graph of the dihedral group $D_{2 p q}$. Then $\operatorname{diam}(\Gamma)=3$.
Proof: Let u and v be two distinct vertices in Γ. If u and v are joint by an edge, then $d(u, v)=1$. Otherwise, $u \cap v=\{e\}$. There are five cases to consider.
Case 1. If $u=G_{i}$ and $v=G_{j}$, where $i \equiv j(\bmod p)$ or $i \equiv j(\operatorname{modq})$, then there exists $v^{\prime} \in B$ such that $v^{\prime}=H_{k}^{p}$ or $v^{\prime}=H_{k^{\prime}}^{q}$ for some k and k^{\prime}. If $i \equiv k(\bmod p)$ or $j \equiv k^{\prime}(\bmod q)$, then $u v^{\prime}, v^{\prime} v \in E(\Gamma)$ and so $d(u, v)=2$. Otherwise, if $i \not \equiv j(\bmod p)$ and $i \not \equiv j(\operatorname{modq})$, take $v^{\prime}=H_{k}^{p}$, then there exists $w \in B$, where $w=H_{l}^{p}$ such that $k \not \equiv l(\bmod p)$ and $k \not \equiv l(\bmod q)$. Thus, $u v^{\prime}, v^{\prime} w, w v \in E(\Gamma)$ and then $d(u, v)=3$.
Case2. If $u=G_{j}$ and $v=H_{i}^{p}$ or $v=H_{k}^{q}, i=1, \ldots, p ; k=1, \ldots, q$, where $i \not \equiv j(\bmod p)$ and $k \not \equiv j(\bmod q)$, then there exists $v^{\prime} \in B$ such that $v^{\prime}=H_{l}^{p}$ or $v^{\prime}=H_{l}^{q}$, where $j \equiv l(\operatorname{modp})$ or $j \equiv l(\operatorname{modq})$, so $u v^{\prime}, v^{\prime} v \in E(\Gamma)$ and $d(u, v)=2$.
Case3. If $u=I_{p}$ and $v=I_{q}$, then we take $v^{\prime}=I$ so that $u v^{\prime}, v^{\prime} v \in E(\Gamma)$ and $d(u, v)=2$. Case4. If $u=I_{p}$ and $v \in\left\{H_{i}^{q} \mid i=1, \ldots, q\right\}$ (or $u=I_{q}$ and $v \in\left\{H_{i}^{p} \mid i=1, \ldots, p\right\}$), then we take $w=I$, which implies that $u w, w v \in E(\Gamma)$ and so $d(u, v)=2$.

Case5. If $u=G_{j}$ and $v \in C$, then there are three possibilities for v If $v=I_{p}$, then there exists $v^{\prime} \in\left\{H_{i}^{p} \mid i=1, \ldots, p\right\}$ such that $u v^{\prime}, v^{\prime} v \in E(\Gamma)$ if $i \equiv j(\bmod p)$. If $v=I_{q}$, then there exists $v^{\prime} \in\left\{H_{i}^{q} \mid i=1, \ldots, q\right\}$ such that $u v^{\prime}, v^{\prime} v \in E(\Gamma)$ if $i \equiv j(\operatorname{modq})$. Finally, if $v=I$, then there exists $v^{\prime} \in B$ such that $u v^{\prime}, v^{\prime} v \in E(\Gamma)$. In all possibilities, $d(u, v)=2$. As a consequence from the above theorem, we state the following.
Corollary 2.6. Let $\Gamma=\Gamma_{D_{2 p q}}$ be the graph of the dihedral group $D_{2 p q}$. Then

$$
d(u, v)= \begin{cases}1 & \text { if } u=G_{i}, v=H_{j}^{p} \wedge i \equiv j \bmod p, \quad 1 \leq i \leq p q, 1 \leq j \leq p, \\ \text { or } u=G_{i}, v=H_{j}^{q} \wedge i \equiv j \bmod q, 1 \leq i \leq p q, 1 \leq j \leq q, \\ 2 & \text { if } u=G_{i}, v=G_{j},(i \equiv j \bmod p \text { or } q) 1 \leq i, j \leq p q \wedge i \neq j, \\ \text { or } u=G_{i}, v=H_{j}^{p} \wedge i \not \equiv j \bmod p, 1 \leq i \leq p q, 1 \leq j \leq p, \\ \text { or } u=G_{i}, v=H_{j}^{q} \wedge i \not \equiv j \bmod q, 1 \leq i \leq p q, 1 \leq j \leq q, \\ 3 & \text { if } u=G_{i}, v=G_{j},(i \not \equiv j \bmod p \wedge i \not \equiv j \bmod q) 1 \leq i, j \leq p q .\end{cases}
$$

Lemma 2.7. Let $\Gamma=\Gamma_{D_{2 p q}}$ be the intersection graph of subgroups of the dihedral group $D_{2 p q}$ with distinct primes p and q. Then
$\operatorname{deg}_{\Gamma}(v)=\left\{\begin{array}{cl}2 & \text { if } v=G_{i}, \text { for } 1 \leq i \leq p, \\ p+1 & \text { if } v=I_{p}, \\ q+1 & \text { if } v=I_{q}, \\ p+q+2 & \text { if } v=I, \\ p+2 q+1 & \text { if } v=H_{i}^{p}, \text { for } 1 \leq i \leq p, \\ 2 p+q+1 & \text { if } v=H_{i}^{q}, \text { for } 1 \leq j \leq q .\end{array}\right.$
Proof: see [7].
3. Detour index, eccentric connectivity, and tot al eccentricity polynomials of the graph $\boldsymbol{\Gamma}_{D_{2 p q}}$
In this section, we find detour index, eccentric connectivity, and total eccentricity
polynomials of the intersection graph $\Gamma_{\mathrm{D}_{2 \mathrm{pq}}}$ of $D_{2 p q}$.
Theorem 3.1. Let $\Gamma_{D_{2 p q}}$ be the intersection graph of $D_{2 p q}$ with primes $p<q$. Then

Proof: For $D(u, v)=3 p+q-1$, the longest path from H_{i}^{p} to H_{j}^{p} where $1 \leq i, j \leq$ p and $i \neq j$ is the path that starts from H_{i}^{p}, passing alternatively through $2 p-3$ elements of
$A, p+q-1$ elements of B, and I_{p}, I and I_{q} vertices of B, and ending at H_{j}^{p}. So, the path has length
$(2 p-3)+(p+q-1)+3=3 p+q-1$. Hence $D\left(H_{i}^{p}, H_{j}^{p}\right)=3 p+q-1$.
For $\mathrm{D}(\mathrm{u}, \mathrm{v})=3 \mathrm{p}+\mathrm{q}$, there are two cases. Case1, the longest path, that starts from $\mathrm{H}_{\mathrm{i}}^{\mathrm{p}}$ for some $1 \leq i \leq p$ to $S \in\left\{I, I_{q}\right\}$, is the path passing alternatively through $2 p-1$ of vertices of A, $p+q-3$ elements of B, and $\left\{I, I_{q}\right\}$ vertices of B, and ending at $S \in\left\{I, I_{q}\right\}$. So, the length of this path is

$$
[1+(2 p-1)+(p+q-3)+(1+2)]=3 p+q
$$

Thus, $D\left(H_{i}^{p}, X\right)=3 p+q$, for all $1 \leq i \leq p$ and $X \in\left\{I, I_{q}\right\}$.
Case2, the longest path, that starts from H_{i}^{p} for some $1 \leq i \leq p$ to H_{j}^{q}, for some $1 \leq j \leq q$, is the path passing alternatively through $2 p-1$ vertices of $A, p+q-3$ elements of B, and I_{q} and I element of B, and ending at H_{j}^{q}, for some $1 \leq j \leq q$. So, the length of this path is

$$
[1+(2 p-1)+(p+q-3)+(2+1)+1]-1=3 p+q
$$

Thus, $\mathrm{D}\left(\mathrm{H}_{\mathrm{i}}^{\mathrm{p}}, \mathrm{H}_{\mathrm{j}}^{\mathrm{q}}\right)=3 \mathrm{p}+\mathrm{q}$, for all $1 \leq \mathrm{i} \leq \mathrm{p}$ and $1 \leq \mathrm{j} \leq \mathrm{q}$.
For $D(u, v)=3 p+q+1$, the longest path, that starts from G_{i} to H_{j}^{q} for some $1 \leq j \leq p$ for some $1 \leq i \leq p q$, is the path passing alternatively through $p+q-1$ vertices of $B, 2 p-1$ vertices of A, and I and I_{p} vertices of C, and ending at H_{j}^{q} for some $1 \leq j \leq p$. So, the length of the path is
$[1+(p+q-1)+(2 p-1)+2+1]-1=3 p+q+1$.
Thus, $D\left(\mathrm{G}_{\mathrm{i}}, \mathrm{H}_{\mathrm{j}}^{\mathrm{p}}\right)=3 \mathrm{p}+\mathrm{q}+1$, for all $1 \leq \mathrm{i} \leq \mathrm{pq}$ and $1 \leq \mathrm{j} \leq \mathrm{p}$.
The longest path, that starts from H_{i}^{p} to I_{p} for some $1 \leq i \leq p$, is the path passing alternatively through $2 p-1$ vertices of A and $p+q-3$ elements of B with I, and ending at I_{p}. So the length of the path is

$$
[1+(2 p-1)+(p+q-3)+(2+2)+1]-1=3 p+q+1
$$

Hence, $D\left(H_{i}^{p}, I_{p}\right)=3 p+q+1$, for all $1 \leq i \leq p$.
The longest path, that starts from the vertex H_{i}^{q} to I for some $1 \leq i \leq q$, is the path passing alternatively through $2 p$ vertices of $A, p+q-1$ vertices of B, and the vertex I_{q} of C, and ending at I . So the length of the path is

$$
[1+(2 p)+(p+q-1)+1+1]-1=3 p+q+1
$$

Hence, $D\left(H_{i}^{q}, I\right)=3 p+q+1$, for all $1 \leq i \leq q$.
In a similar way, we can prove the detour distance between all other vertices in the graph $\Gamma_{\mathrm{D}_{2 \mathrm{pq}}}$.
Theorem 3.2. Let $\Gamma_{D_{2 p q}}$ be the intersection graph of $D_{2 p q}$ with distinct primes $p<q$. Then
$D\left(\Gamma_{D_{2 p q}}, x\right)=$
$\frac{(p q-1)(p q-2)}{2} x^{3 p+q+3}+\left[p^{2}(q-1)+q+1\right] x^{3 p+q+2}+\frac{4 q(p+1)+2(p+2)+q(q-1)}{2} x^{3 p+q+1}+$ $p(q+2) x^{3 p+q}+\frac{p(p-1)}{2} x^{3 p+q-1}$.
Proof: It follows from Theorem3.1 that
$D\left(\Gamma_{D_{2 p q}}, x\right)=\sum_{u, v \in V(\Gamma)} x^{D(u, v)}=\binom{p q-1}{2} x^{D\left(G_{i}, G_{j}\right)}+(p q)(p) D^{D\left(G_{i}, H_{i}^{p}\right)}+(p q-$
p) $q x^{D\left(G_{i}, H_{j}^{q}\right)}+p q x^{D\left(G_{i}, H_{j}^{q}\right)}+p q x^{D\left(G_{i}, I_{p}\right)}+\mathrm{pq} x^{D\left(G_{i}, I\right)}+p q x^{D\left(G_{i}, I_{q}\right)}+\binom{p}{2} x^{D\left(H_{i}^{p}, H_{i}^{p}\right)}+$
$p q x^{D\left(H_{i}^{p}, H_{j}^{q}\right)}+p x^{D\left(H_{i}^{p}, I_{p}\right)}+p x^{D\left(H_{j}^{p}, I\right)}+p x^{D\left(H_{i}^{p}, I_{q}\right)}+\binom{q}{2} x^{D\left(H_{j}^{q}, H_{j}^{q}\right)}+q x^{D\left(H_{j}^{q}, I_{p}\right)}+$
$p x^{D\left(H_{j}^{q}, I\right)}+q x^{D\left(H_{j}^{q}, I_{q}\right)}+x^{D\left(I_{p}, I\right)}+x^{D\left(I_{p}, I_{q}\right)}+x^{D\left(I, I_{q}\right)}$ where $\binom{p q-1}{2}=\frac{(p q-1)(p q-2)}{2},\binom{p}{2}=$ $\frac{p(p-1)}{2}$ and $\binom{q}{2}=\frac{q(q-1)}{2}$.
Therefore,

$$
D\left(\Gamma_{D_{2 p q}} x\right)=\frac{(p q-1)(p q-2)}{2} x^{3 p+q+3}+\left[p^{2}(q-1)+q+1\right] x^{3 p+q+2}+
$$ $\left[2 p q+p+\frac{q(q-1)}{2}+2 q+2\right] x^{3 p+q+1}+p(q+2) x^{3 p+q}+\frac{p(p-1)}{2} x^{3 p+q-1}$

Corollary 3.3. Let $\Gamma_{D_{2 p q}}$ be the intersection graph of $D_{2 p q}$ with distinct primes $p<q$. Then

$$
\begin{aligned}
d d\left(\Gamma_{D_{2 p q}}\right)= & 3 p^{3} q(q+1)+q^{3}\left(p^{2}+\frac{1}{2}\right)-\frac{3}{2} p^{3}+\frac{3}{2} p^{2} q+\frac{3}{2} q^{2} p+4 p^{2} q^{2}+5 p^{2}+3 q^{2} \\
& +3 p q+\frac{33}{2} p+\frac{17}{2} q+10
\end{aligned}
$$

Proof: The result follows directly by taking the first derivative of $D\left(\Gamma_{D_{2 p q}}, x\right)$ at $x=1$.
Theorem 3.4. Let $\Gamma_{D_{2 p q}}$ be the intersection graph of $D_{2 p q}$ with distinct primes $p<q$. Then $\operatorname{ecc}(v)= \begin{cases}2 & \text { if } v \in B \cup\{I\}, \\ 3 & \text { if } v \in A \cup C-\{I\} .\end{cases}$
Proof: The proof follows directly from Corollary 2.6.
Theorem 3.5. Let $\Gamma_{D_{2 p q}}$ be the intersection graph of $D_{2 p q}$ with distinct primes $p<q$. Then $\zeta\left(\Gamma_{D_{2 p q}}, x\right)=(2 p q+p+q+2) x^{3}+\left[(p+q)^{2}+2(p q+p+q+1)\right] x^{2}$.
Proof: It follows from Lemma 2.7 and Theorem 3.4 that $\zeta\left(\Gamma_{D_{2 p q}}, x\right)=\sum_{u \in V\left(\Gamma_{D_{2 p q}}\right)} \operatorname{deg}(u) x^{e c c(u)}=2 p q x^{3}+(q+2+p+q-1) p x^{2}+$ $(p+2+p+q-1) q x^{2}+(p+1) x^{3}+(p+q+2) x^{2}+(q+1) x^{3}$.
Theorem 3.6. Let $\Gamma_{D_{2 p q}}$ be the intersection graph of $D_{2 p q}$ with distinct primes $p<q$. Then $\theta\left(\Gamma_{D_{2 p q}}, x\right)=(p q+2) x^{3}+(p+q+1) x^{2}$.
Proof: It follows from Theorem 3.4 that $\theta\left(\Gamma_{D_{2 p q}} x\right)=\sum_{u \in V\left(\Gamma_{D_{2 p q}}\right)} x^{e c c(u)}=p q x^{3}+p x^{2}+$ $q x^{2}+x^{3}+x^{2}+x^{3}=(p q+2) x^{3}+(p+q+1) x^{2}$.
Theorem 3.7. Let $\Gamma_{D_{2 p q}}$ be the intersection graph of $D_{2 p q}$ with distinct primes $p<q$. Then $\xi\left(\Gamma_{D_{2 p q}}\right)=2\left(p^{2}+q^{2}\right)+7(2 p q+p+q)+10$.
Proof: From Theorem 3.5, one can see that
$\left.\frac{d}{d x} \zeta\left(\Gamma_{D_{2 p q}} x\right)\right|_{x=1}=3(2 p q+p+q+2)+2\left[(p+q)^{2}+2(p q+p+q+1)\right]$. The result follows.

4. The mean distance of the intersection graph $\Gamma_{D_{2 p q}}$

In this section, we find the mean distance of the intersection graph of subgroups of $D_{2 p q}$ for distinct prime numbers p and q.
Theorem 4.1. The transmission of the graph $\Gamma_{D_{2 p q}}$ is

$$
\sigma\left(\Gamma_{D_{2 p q}}\right)=p^{2}(3 q+1)(q+1)+q^{2}(3 p+1)+q(8 p+7)+7 p+8
$$

Proof: From Corollary 2.6, we have

$$
\begin{aligned}
& \sigma\left(G_{i}\right)=q(2)+(p q-(q+1))(3)+2(1)+(p+q-2)(2)+2(2)+(1)(3) \\
& =3 p q+q+2 p+2, \text { for all } i=1,2, \ldots, p q \\
& \sigma\left(H_{i}^{p}\right)=q(1)+(p q-q)(2)+(p+q-1)(1)+2(1)+(1)(2) \\
& \quad=2 p q+p+3, \text { for all } i=1,2, \ldots, p
\end{aligned} \begin{aligned}
\text { Also, } \sigma\left(H_{i}^{q}\right) & =p(1)+(p q-p)(2)+(p+q-1)(1)+2(1)+(1)(2) \\
& =2 p q+q+3, \text { for all } i=1,2, \ldots, q .
\end{aligned}
$$

Note that the vertices I_{p} and I_{q} are non-adjacent but the vertex I is adjacent to both I_{p} and I_{q}. So, $C=\left\{I_{p}, I, I_{q}\right\}$ induced a path subgraph of $\Gamma_{D_{2 p q}}$.
Thus, $\left(I_{p}\right)=p q(2)+p(1)+q(2)+(1)(1)+(1)(2)=2 p q+p+2 q+3$,
$\sigma(I)=p q(2)+(p+q)(1)+2(1)=2 p q+p+q+2$, and
$\sigma\left(I_{q}\right)=p q(2)+q(1)+p(2)+(1)(1)+(1)(2)=2 p q+2 p+q+3$.
Now, we can find the transmission of the graph $\Gamma_{D_{2 p q}}$ as
$\sigma\left(\Gamma_{D_{2 p q}}\right)=\sum_{i=1}^{p q} \sigma\left(G_{i}\right)+\sum_{i=1}^{p} \sigma\left(H_{i}^{p}\right)+\sum_{i=1}^{q} \sigma\left(H_{i}^{q}\right)+\sigma(I)+\sigma\left(I_{p}\right)+\sigma\left(I_{q}\right)$
$=p q[3 p q+2 p+q+2]+p[2 p q+p+3]+q[2 p q+q+3]+6 p q+4(p+q)+8$
$=p^{2}(3 q+1)(q+1)+q^{2}(3 p+1)+q(8 p+7)+7 p+8$.
Theorem 4.2. The mean distance of the graph $\Gamma_{D_{2 p q}}$ is
$\mu\left(\Gamma_{D_{2 p q}}\right)=\frac{p^{2}(3 q+1)(q+1)+q^{2}(3 p+1)+q(8 p+7)+7 p+8}{(p q+p+q+3)(p q+p+q+2)}$.
Proof: Since the order of the graph $\Gamma_{D_{2 p q}}$ is $p q+p+q+3$ and the transmission of the graph $\Gamma_{D_{2 p q}}$ is given in Theorem 4.1, we can find the mean distance of the graph $\Gamma_{D_{2 p q}}$ as
$\mu\left(\Gamma_{D_{2 p q}}\right)=\frac{p^{2}(3 q+1)(q+1)+q^{2}(3 p+1)+q(8 p+7)+7 p+8}{(p q+p+q+3)(p q+p+q+2)}$, where $p<q$ are prime numbers.

References

[1] B.Csa'ke'an, G. Polla'K, "The graph of subgroups of a finite groups," Czechoslovak Math J., no. 19, pp. 241-247, 1969.
[2] S. Akbari, F. Heydari, and M. Maghasedi, "The intersection graph of a group, , 14 (5), 1550065 (2015).," Journal of Algebera and its applications, vol. 14, no. 5, 2015.
[3] H, J, Bandelt and H. M. Mulder, "Distance-hereditary graphs," Journal of Combinatorial Theory, Series B, vol. 2, no. 41, pp. 182-208, 1986.
[4] B. Zelinka, "Intersection graphs of finite abelian groups," Czechoslovak Mathematical Journal, vol. 25, no. 2, pp. 171-174, 1975.
[5] R. Rajkumar, and P. Devi, "Intersection graph of subgroups of some non-abelian groups," Malaya journal matematik, vol. 4, no. 2, pp. 238-242, 2016.
[6] G. H. Shirdel, H. Rezapour, R. Nasiri, "Lower and Upper Bounds for Hyper-Zagreb Index of Graphs," Iraqi Journal of Science, vol. 61, no. 6, pp. 1401-1406, 2019.
[7] A. Aubad, "A4-Graph of Finite Simple Groups," Iraqi Journal of Science, vol. 62, no. 1, pp. 289294, 2021.
[8] T. Doslic, M. Ghorbani and M. A. Hosseinzadeh, ", Eccentric connectivity polynomial of some graph operations," Util. Math, no. 84, pp. 179-209, 2011.
[9] R. J. Shahkoohi, O. Khomali and A. Mahmiani , "The Polynomial of Detour Index for a Graph," World Applied Sciences Journal, vol. 15, no. 10, pp. 1473-1483, 2011.
[10] I. Althofer, "Average distances in undirected graphs and the removal of vertices," Journal of Combinatorial Theory, Series B, vol. 48, no. 1, pp. 140-142, 1990.
[11] D. Bienstock, E. Györi, "Average distance in graphs with removed elements," Journal of Graph theory, vol. 12, no. 3, pp. 375-390, 1988.
[12] D. Bienstock, E. Györi, "Average distance in graphs with removed elements," Journal of Graph theory, vol. 12, no. 3, pp. 375-390, 1988.
[13] S. Khasraw, " On Intersection Graph of Dihedral Group, : Jornal of Mathematics and Computational Science, Vol.11, no.6, pp. 6714.6728

[^0]: *Email: peshewa.khezer@soran.edu.iq

