Iraqi Journal of Science, 2022, Vol. 63, No. 3, pp: 1200-1207 DOI: 10.24996/ijs.2022.63.3.25

ISSN: 0067-2904

s-Compressible and s-Prime Modules

Asaad M. A. Alhossaini

Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Iraq

Received: 31/3/2021

Accepted: 17/5/2021

Abstract

Let *R* be a ring with identity and *A* a left *R*-module. In this article, we introduce new generalizations of compressible and prime modules, namely s-compressible module and s-prime module. An *R*-module *A* is s-compressible if for any nonzero submodule *B* of *A* there exists a small *f* in Hom_{*R*}(*A*, *B*). An *R*-module *A* is s-prime if for any submodule *B* of *A*, ann_{*R*} (*B*) *A* is small in *A*. These concepts and related concepts are studied in as well as many results consist properties and characterizations are obtained.

Keywords: critically s-compressible module, retractable module s-compressible module, s-rime module, small submodule.

الموديولات المضغوطة من النمط عوالاولية من النمطs

اسعد الحسينى

قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة

لتكن R حلقة مع محايد وA مقاس ايسر على الحلقة R. في هذا البحث ، تم تقديم تعميمات جديدة للمقاسات القابلة للانضغاط والمقاسات الأولية هي المقاس القابل للانضغاط من النمط S والمقاس الاولي من النمط S. حيث يكون المقاس A قابل للانضغاط من النمط S إذا كان لأي مقاس جزئي غير صفري B يوجد هومومورفزم صغير f من A الىB. ويكون المقاس A اولي من النمط S إذا كان لأي مقاس جزئي B، فأن (ann_R (B) A) يكون صغيرا في A. كذلك تمت دراسة هذه المفاهيم والمفاهيم ذات الصلة وتم الحصول على العديد من النتائج من الخصائص والتوصيفات.

1. Introduction

Compressible module was introduced by Zelmanowitz [1] simultaneous with introducing the concept of weakly primitive ring in the way of generalizing the Jacobson density theorem. He also introduced critically compressible module. In[2], the author studied those concepts in details. A left *R*-module is compressible if it can be embedded in any of its nonzero submodule[1]. A compressible module *A* is critically compressible if it cannot be embedding in any factor A/B, where *B* is a nonzero submodule of *A*. In[1], Zelmanowitz defined a ring to be weakly primitive if it possesses a faithful critically compressible module. In[3]–[6], authors have been extensively studied compressible, critically compressible and prime modules. By using small submodules one direction of generalizations of compressible and prime modules e appeared in [7]–[9]. A small compressible module is defined as a module that can be embedded in its small submodules, as well as small prime module is defined as a

^{*}Email: asaad_hosain@itnet.uobabylon.edu.iq

module *A* in which $\operatorname{ann}_R B = \operatorname{ann}_R A$ for each small submodule *B* of *A*. Note that a module *A* is prime, if $\operatorname{ann}_R B = \operatorname{ann}_R A$ for each nonzero submodule *B* of *A* [7].

Throughout this work, we use the notion of small submodule . Different generalizations are given. We recall that, an *R*-homomorphism in Hom(A, B) is said to be small if its kernel is small in A[10]. In the new generalization the zero kernel will be replaced by small kernel. An *R*-module *A* is said to be s-compressible if for each nonzero submodule *B* of *A* there exists a small element *f* in Hom(A, B), that is ker*f* is small in *A*. Note that this definition is also appeared in [11] with different abbreviation, sk-compressible.

An s-compressible module A is critically s-compressible if Hom(A, A/B) has no small element for any non-small submodule B of A. A module A is s-prime if $(\text{ann}_R B) A$ is small in A for any nonzero submodule B of A. These concepts are studied, and their relationships among them and with other related concepts are discussed. Some properties and characterizations are obtained. Firstly, it is shown that s-compressible with small compressible modules are independent, as well as the s-prime and small prime modules are also independent. The class of compressible modules contains both classes of s- compressible and small prime modules. As well as the class of prime modules contains both classes of s- prime and small prime modules.

Throughout this article some definitions and notations are given. A module is a left unitary module over a ring *R* with identity. A submodule *B* of a module *A* will be abbreviated by $B \le A$. A submodule *B* of a module *A* is said to be small in *A*(abbreviated by B << A) if it is proper and its sum with any other proper submodule of *A* is again proper, "in other word if B + C = A, where $C \le A$, then C = A [10]. A is said to be hollow if all its proper submodules are small. Hom_{*R*}(*D*, *E*) denotes the set of all *R*-homomorphisms from *D* into *E*. If $f \in \text{Hom}(D, E)$, then ker $f = \{d \in D | f(d) = 0\}$, *f* is a monomorphism if kerf = 0 and it is small if kerf << D[10].

If $B \subseteq A$, then $\operatorname{ann}_R B = \{r \in R | rb=0 \text{ for all } b \in B\}$ which is called the annihilator of *B* in *R* and it is a left ideal of *R* if $b \in B$, then $\operatorname{ann}_R b = \operatorname{ann}_R \{b\}$. If $B \leq A$, then $[B:_R A] = \{r \in R | rA \subseteq B\}$ is a left ideal of *R*. An *R*-module *A* is multiplication if for any submodule *B* of *A* there exists an ideal *I* of *R* such that B = IA, in this case $I = [B:_R A]$ [12]. An *R*-module *A* is retractable if $\operatorname{Hom}_R(A, B) \neq 0$ for any nonzero submodule *B* of *A* [13].

In Section 2 s-compressible and critically s-compressible modules are introduced and investigated. The notion s-compressible is appeared in [11]. It is abbreviated by sk-compressible. In this work this notion is studied in details and more results are given. Section 3 devotes to introduce s-prime module and study the relationships between the present notions and old related notions.

2. s-Compressible and Critically s-Compressible Modules

Definition (2.1): A nonzero R-module A is called s-compressible if for any nonzero submodule B of A there exists a small R-homomorphism from A into B.

Remark (2.2): Any compressible module is s-compressible, however the converse is not true. *Remark* (2.3): Any simple module is s-compressible.

Example (2.4): Consider the \mathbb{Z} - module \mathbb{Z}_n , if $n=mp^k$ where p is a prime which is not dividing m, thus if $s\mathbb{Z}_n$ is a small submodule of \mathbb{Z}_n , then s=pt for some t.

Note that, in a R -module A, the submodule Ra is small in A if and only if a belongs to all maximal submodules of A [10].

Now, if $f: \mathbb{Z}_n \to p^k \mathbb{Z}_n$ is a \mathbb{Z} -homomorphism such that ker $f = s \mathbb{Z}_n$ small in \mathbb{Z}_n , then $|\ker f| = n/s$, so that $|\mathbb{Z}_n/\ker f| = s = pt$, while $|p^k \mathbb{Z}_n| = m$, this gives a contradiction with the fact that $\mathbb{Z}_n/\ker f$ is isomorphic to a submodule of $p^k \mathbb{Z}_n$. Therefore, there is no small \mathbb{Z} -homomorphism from \mathbb{Z}_n into $p^k \mathbb{Z}_n$, that is, \mathbb{Z}_n is not s-compressible if $n = mp^k$ and p is a prime which is not dividing m.

On the other hand $n=p^k$, the \mathbb{Z} -module \mathbb{Z}_n is hollow, all its proper submodules are small. it is easy to see that it is s-compressible. Therefore the \mathbb{Z} - module \mathbb{Z}_n is s-compressible if and only if $n=p^k$ where *p* is prime.

We note that the two notions small compressible and s-compressible are independent. For example \mathbb{Z}_6 is small compressible \mathbb{Z} - module which is not s-compressible, while \mathbb{Z}_4 is s-compressible that is not small compressible \mathbb{Z} - module[8]. Both of two \mathbb{Z} - modules are not compressible. The two classes of small and s-compressible modules contain the class of compressible modules.

Remark 2.5: It is clear that any s-compressible module is retractable. However the converse is not true to see that \mathbb{Z}_6 as a \mathbb{Z} -module is retractable but not s-compressible.

Next proposition gives However, a condition can be added to a retractable module to get s-compressible module, see the following.

Proposition 2.6: Any hollow retractable module is s-compressible.

Proof: Assume that *A* is hollow retractable module, and *B* is a nonzero submodule of *A*, then there exists $0 \neq f \in \text{Hom}(A, B)$ such that kerf is a proper submodule of *A*, hence small in *A*. Therefore *A* is s-compressible.

This proposition can be applied to example 2.4 so that \mathbb{Z}_{p^k} is s-compressible.

We note that the \mathbb{Z} -module \mathbb{Z} is s-compressible but not hollow, and this proves that the converse of proposition 2.6 is not true.

Proposition 2.7: If *B* is a submodule of an s- compressible module *A* such that J(B)=J(A), then *B* is s-compressible.

Proof: Assume that *B* is a submodule of an s- compressible module *A* and J(B)=J(A). If $K \le B$, then $K \le A$, hence there exists $f \in \text{Hom}(A, K)$ with kerf << A. Now if $g=f|_B$ then $g \in \text{Hom}(B, K)$, and ker $g=B \cap \text{ker} f \subseteq B \cap J(A)=B \cap J(B) \le J(B)$, so that kerg << B. Therefore *B* is s-compressible. \Box

Example 2.8:

(i) Consider $A = \mathbb{Q} \oplus \mathbb{Z}_p$, where *p* is prime, as a \mathbb{Z} -module and $B = \mathbb{Q} \oplus \mathbf{0}$,

then $B \leq A$ and $J(B)=J(A)=\mathbb{Q}\oplus 0$.

(ii) Let $A = \mathbb{Z}$ as a \mathbb{Z} -module and $B = n \mathbb{Z}$, then J(B)=J(A)=0.

Corollary 2.9: If J(A)=0 and A is an s-compressible module, then any submodule of A is s-compressible.

Proposition 2.10: If A is an s-compressible module and B is a nonzero submodule of A, then $(\operatorname{ann} B) A \ll A$.

Proof: Since A is an s-compressible, then there exists $f \in \text{Hom}(A, B)$ with ker $f \ll A$. Let $r \in$ ann B, so that for each $m \in A$, f(rm)=rf(m)=0, then $rm \in \text{ker}f \ll A$, this implies that (ann B) $A \subseteq \text{ker}f \ll A$. Therefore (ann B) $A \ll A$. \Box

The converse of Proposition 2.10 is not true, for example if *A* is a torsion free *R*-module, then ann *B* =0 for any non zero submodule *B* of *A*, hence $(\operatorname{ann} B) A = 0 << A$. While there are many torsion free modules not s-compressible, e.g. the \mathbb{Z} -module \mathbb{Q} .

Proposition 2.11: If A is an R- module with J(A)=0, then A is s- compressible if and only if it is compressible.

Proof: The sufficiency is clear. Conversely, J(A)=0 implies that A has no nonzero small submodule, so, if A is s-compressible, there exists $f \in \text{Hom}(A, B)$ with kerf small in A which implies kerf=0 and f is a monomorphism. \Box

It is well known that a nonzero submodule of a compressible module is compressible. In the following this property will be discussed under certain condition for s-compressibility.

Recall that, an *R*- module *A* is said to be fully stable, if for each submodule *B* of *A* and for each $f \in \text{Hom}(B, A)$, it follows $f(B) \subseteq B$ [12]. In fact *A* is fully stable if and only if Hom(B, A)=End(B) for each submodule *B* of *A* and more details about fully stable modules can be found in [12]. For completeness a proof will be given.

Lemma 2.12: If *A* is a fully stable module, $B = B_1 \oplus B_2$ and *K* are submodules of *A*, then $K \cap B = (K \cap B_1) \oplus (K \cap B_2)$.

Proof: The natural projections of *B* onto *B*₁ and *B*₂, respectively π_1 , π_2 are elements of Hom(*B*, *B*)= End(*B*), in fact, $\pi_1 \in \text{Hom}(B, B_1)$ and $\pi_2 \in \text{Hom}(B, B_2)$. On the other hand $\pi_1 + \pi_2 = 1_B$, so, $K \cap B = \pi_1(K \cap B) + \pi_2(K \cap B)$. Since *A* is fully stable, $\pi_i(K \cap B_i) \subseteq K \cap B_i$, (*i*=1, 2) but $\pi_i(K \cap B) \subseteq B_i$ so $\pi_i(K \cap B) \subseteq K \cap B_i$. Hence $K \cap B \subseteq (K \cap B_1) \bigoplus (K \cap B_2) \subseteq K \cap B$.

It is known that any small submodule of a module is contained in its Jacobson radical, while a submodule that contained in the Jacobson radical of the module is small if it is finitely generated [10].

Proposition 2.13: A finitely generated direct summand of a fully stable s-compressible module is s-compressible.

Proof : Assume that $A = A_1 \oplus A_2$ is an s-compressible module and *B* is a submodule of A_1 , then *B* is a submodule of *A*, by assumption there exists *f* ∈ Hom(*A*, *B*) with ker*f*<< *A*. Let $g=f|_{A_1}$, then ker $g=A_1 \cap$ ker*f*. It is known that $J(A)=J(A_1)\oplus J(A_2)$. But ker*f*⊆ $J(A)=J(A_1)$ $\oplus J(A_2)$ implies $A_1 \cap$ ker*f* ⊆ $A_1 \cap (J(A_1)\oplus J(A_2) = J(A_1))$ (by full stability) so that ker*g*⊆ $J(A_1)$ and ker*g*<< A_1 . Therefore A_1 is s-compressible. □

Remark 2.14: The converse of Proposition 2.13 is not true to see that let $\mathbb{Z}_6 = \langle \overline{2} \rangle \oplus \langle \overline{3} \rangle$ is fully stable [11] and both $\langle \overline{2} \rangle$ and $\langle \overline{3} \rangle$ are s-compressible ,however \mathbb{Z}_6 is not s-compressible, as we have seen in Example2.4.

Remark 2.15: It is clear that a homomorphic image of an s-compressible module need not be s-compressible. For instance \mathbb{Z} is an s-compressible \mathbb{Z} -module, however $\mathbb{Z}/6\mathbb{Z}$ is not.

Proposition 2.16: If A_1 and A_2 are two isomorphic modules, then A_1 is s-compressible if and only if A_2 is s-compressible.

Proof: Assume that $\varphi: A_1 \to A_2$ is an isomorphism and A_1 is s-compressible. Let *B* be a nonzero submodule of A_2 . Then $\varphi^{-1}(B)$ is a nonzero submodule of A_1 , by assumption there exists $\alpha: A_1 \to \varphi^{-1}(B)$ with ker $\alpha << A_1$. Let $\delta = j\alpha \varphi^{-1}$, where $j = \varphi | \varphi^{-1}(B)$, then $\delta \in \text{Hom}(A_2, B)$ and ker $\delta = \varphi(\ker \alpha) << A_2$. Hence A_2 is s-compressible. The proof of the other direction is similar. \Box

Lemma 1.17: If *A* is a multiplication module and $A = A_1 \bigoplus A_2$, then $\operatorname{ann}_R A_i = [A_j; A], i \neq j, i, j=1, 2$.

Proof: Let $r \in \operatorname{ann}_{\mathcal{R}} A_1$, then for each $m=m_1+m_2$, $r(m_1+m_2)=r$ $m_2 \in A_2$, so that

 $r \in [A_2; A]$. Conversely, The $r \in [A_2; A]$ implies that for each $m_1 \in A_1$, if m_2 is any element of A_2 , then $m_1 + m_2 \in A$ and $r(m_1 + m_2) \in A_2$, which implies $rm_1 \in A_1 \cap A_2$, hence $rm_1=0$ and $r \in ann_R A_1$. This proves $ann_R A_1=[A_2; A]$. By the same manner the other case can be proved.

Proposition 2.18: If A is a multiplication and s-compressible R-module then it is indecomposable.

Proof: Assume that $A = A_1 \bigoplus A_2$, since A is multiplication, we have $A_1 = [A_1: A] A$ and $A_2 = [A_2: A] A$. By Lemma 1.17, $A_1 = (\operatorname{ann}_R A_2) A$ and $A_2 = (\operatorname{ann}_R A_1) A$, then $A = (\operatorname{ann}_R A_2) A \bigoplus (\operatorname{ann}_R A_1) A$. But by Proposition 2.3 $(\operatorname{ann}_R A_1) A$ and $(\operatorname{ann}_R A_2) A$ are both small in A, which is a contradiction. Therefore A is indecomposable. \Box

An *R*-module *A* is said to be duo if any submodule of *A* is full invariant, that is, for each $f \in \text{End}(A)$ and for each $B \leq A$, $f(B) \subseteq B''$ [14], and it is said to be torsion free if $rm \neq 0$ whenever $0 \neq r \in R$ and $0 \neq m \in A$, or equivalently $0 \neq m \in A$ and rm = 0 implies r = 0

Next theorems give a characterization of Duo modules, we will start with the following lemma.

Lemma 2.19: "An *R*-module *A* is duo if and only if for each $f \in \text{End}(A)$ and for each $m \in A$ there exists $r \in R$ such that f(m)=rm"[14].

Theorem 2.20: Let A be a duo torsion free R-module. Then A is compressible if and only if it is retractable.

Proof: (\Longrightarrow) It is clear so that it is omitted.

(\Leftarrow) Assume that *A* is a duo torsion free *R*-module and retractable, let $0 \neq B \leq A$, then there exists $0 \neq f \in \text{Hom}(A, B)$, it can be considered that $f \in \text{End}(A)$. By Lemma2.19, for each $m \in A$ there exists $r \in R$ such that f(m) = rm. So ker $f = \{ m \in A | rm = 0 \text{ for some } r \in R \}$, as *A* is torsion free and $0 \neq f$, it follows kerf = 0, that is *A* embed in *B*. Therefore *A* is compressible.

A compressible module is said to be critically compressible if it cannot be embedded in any of its proper factors[2]. This notion was generalized in [7] using small submodule this way gives that a small compressible module A is called small critically compressible if A cannot be embedded in any proper quotient module A/B with $0 \neq B \ll A''$.

Another generalization will be given by using small submodule.

Definition 2.21: An *R*-module *A* is called critically s-compressible if it is s-compressible and for any not small submodule *B* of *A*, Hom(A, A/B) contains no small element.

Remark 1.22: The two classes small critically compressible modules, and critically scompressible modules are different (see Example2.23(ii)), and their intersection contains the class of critically compressible modules.

Example 2.23: (i) The \mathbb{Z} - module \mathbb{Z}_n is critically s-compressible if and only if $n = p^k$ where p is a prime.

Proof: In Example 2.4, we proved that \mathbb{Z}_n is s-compressible if and only if $n = p^k$ where p is a prime. Since \mathbb{Z}_{p^k} has no proper submodule which is not small, so it is critically s-compressible.

(ii) \mathbb{Z}_{p^k} , is not small critically compressible module for k>1. While \mathbb{Z}_6 is small critically compressible \mathbb{Z} -module but not critically s-compressible.

(iii) The \mathbb{Z} - module \mathbb{Z} , also is critically s-compressible.

(iv) Any critically compressible module is critically s-compressible. But the converse is not true.

(v) Any simple module is critically s-compressible.

By partial endomorphism of a module A it means an element of Hom(B, A) where B is a submodule of A.

Proposition 2.24: If A is a critically s-compressible module, then any nonzero partial endomorphism of A has kernel small in A.

Proof: Assume that *A* is a critically s-compressible module and $0 \neq f \in \text{Hom}(B, A)$, where $B \leq A$, suppose that ker*f* is not small in *A*. Then $\text{Im}f \neq 0$ and there exists $0 \neq g \in \text{Hom}(A, \text{Im}f)$ such that ker*g*<< *A* since *A* is s-compressible. On the other hand $\text{Im}f \cong N/\text{ker}f \leq A/\text{ker}f$, let *h*: $\text{Im}f \rightarrow B/$ ker*f* be an isomorphism and *i*: $B/\text{ker}f \rightarrow /\text{ker}f$ be the inclusion map. Then $ihg \in \text{Hom}(A, A/\text{ker}f)$ and ker ihg = kerg << A. This contradicts the assumption that *A* is critically s-compressible.

To prove the converse of Proposition 2.24, we need a condition this is given in next proposition.

Proposition 2.25: Let *A* be an s-compressible module such that for any $L \le A$ and $K \ll A$, any element of Hom(L, A/K) has kernel small in *A*. Then *A* is critically s-compressible.

Proof: Assume that *A* is an s-compressible module satisfying the above condition. Let *B* be a submodule of *A* which is not small and $f \in \text{Hom}(A, A/B)$ and kerf << A. Then *A* /ker $f \cong L/B$, where *L* is a submodule of *A* containing *B*. Let $v: L \rightarrow L/B$ be the natural epimorphism and

 $\varphi: L/B \to A$ /kerf be an isomorphism, then $\varphi \nu \in \text{Hom}(L, A/\text{kerf})$ and ker $\varphi \nu = B$ which is not small in *A*, a contradiction with the assumed condition. Therefore, the kernel of any element of Hom(*A*, *A/B*) is not small in *A*, that is, *A* is critically s-compressible.

3. s-Prime Modules

Prime modules are defined and investigated in the literatures see [3][4][15]. An *R*-module *A* is said to be prime if for any nonzero submodule *B* of *A*, $\operatorname{ann}_R B = \operatorname{ann}_R A$. This notion is generalized in[7] using the concept of small submodules in this way an *R*-module *A* is a small prime module if $\operatorname{ann}_R A = \operatorname{ann}_R B$ for each non-zero small submodule *B* of *A*. We also use small submodules to give a different generalization for prime module, its properties, and characterizations as well as relations with s-compressible is also studied.

Definition 3.1: A nonzero *R*-module *A* is called s-prime if for any nonzero submodule *B* of *A*, $(\operatorname{ann}_R B) A \ll A$.

Remark 3.2:

(i) The two notions small prime, and s-prime are independent. For example the Z-module \mathbb{Z}_4 is an s-prime but not small prime (can be easily checked), while the Z-module \mathbb{Z}_{24} is small prime, this is also shown in[7], However it is not s-prime since $(ann_{\mathbb{Z}}(\langle \overline{8} \rangle) \mathbb{Z}_{24}=3\mathbb{Z}(\mathbb{Z}_{24})=\langle \overline{3} \rangle$ not small in \mathbb{Z}_{24} .

(ii) We have seen that any torsion free R -module is s-prime.

(iii) It is clear that any prime module is s-prime. However the converse is not true, for example the \mathbb{Z} -module \mathbb{Z}_8 is not prime since $ann_{\mathbb{Z}}(4\mathbb{Z}_8)=2\mathbb{Z}$, while $ann_{\mathbb{Z}}(\mathbb{Z}_8)=8$. But \mathbb{Z}_8 is s-prime \mathbb{Z} -module (can be easily checked).

Proposition 3.3: An s-compressible module is s-prime. *Proof:* See Proposition 2.10. □

It is clear the converse of Proposition 3.3 is not true, the \mathbb{Z} -module \mathbb{Q} is s-prime since it is torsionfree (Remark 3.2(ii)) but not s-compressible since Hom(\mathbb{Q} , \mathbb{Z})=0.

Proposition 3.4: A nonzero *R*-module *A* is s-prime if and only if $(\operatorname{ann}_R Rx) A \ll A$ for each $0 \neq x \in A$.

Proof: (\Longrightarrow) It is clear.

(\Leftarrow) Assume that $(\operatorname{ann}_R Rx) A \ll A$ for each $0 \neq x \in A$, and let $0 \neq B \leq A$, then there exists $0 \neq x \in B$ and $(\operatorname{ann}_R B) \subseteq (\operatorname{ann}_R Rx)$ which implies $(\operatorname{ann}_R B) A \subseteq (\operatorname{ann}_R Rx) A \ll A$, hence $(\operatorname{ann}_R B) A \ll A$. Therefore *A* is s-prime.

Proposition 3.5: A nonzero *R*-module *A* is s-prime if and only if for each $0 \neq B \leq A$ and for each ideal *I* of *R*, *I B* =0 implies *I A* << *A*.

Proof: It is clear that IB = 0 means $I \subseteq (\operatorname{ann}_R B)$.

Theorem 3.6: Let *A* be a multiplication retractable *R*-module, then *A* is s-compressible if and only if it is s-prime.

Proof: (\Longrightarrow) See Proposition 3.3.

(\Leftarrow)Assume that *A* is a multiplication retractable *R*-module and $0 \neq B \leq A$.

Then, there exists $0 \neq f \in \text{Hom}(A, B)$, since A is retractable, that is $\text{Im}f \neq 0$. As A is s-prime, it follows $(\text{ann}_R \text{Im}f) A \ll A$.

Now, $\operatorname{ann}_R(\operatorname{Im} f) = \{r \in R | rf(m) = 0, \forall m \in A \} = \{r \in R | f(rm) = 0, \forall m \in A \} = \{r \in R | rm \in \ker f \forall m \in A \} = [\ker f: A].$ Hence $(\operatorname{ann}_R \operatorname{Im} f) A = [\ker f: A] A = \ker f$, since A is multiplication. Therefore, we have $\ker f << A$, and A is s-compressible.

In [16] author proved that a faithful multiplication R-module is retractable according to this result Theorem 3.6 can be rewritten as following.

Corollary 3.7: Let A be a faithful multiplication R-module, then A is s-compressible if and only if it is s-prime.

Recall that a ring *R* is called left duo if any left ideal is two sided ideal [14].

Proposition 3.8: Let *R* be a left duo ring. A nonzero *R*-module *A* is s-prime if and only if for each $0 \neq x \in A$ and for each ideal *I* of *R*, *Ix*=0 implies *I A* << *A*.

Proof: (\Rightarrow) Assume that $0 \neq x \in A$ and Ix=0, then IRx=RIx=0 where $0 \neq Rx << A$ and by assumption IA << A.

(\Leftarrow) Let $0 \neq B \leq A$ and IB=0, if $0 \neq x \in B$, then Ix=0, by assumption $IA \ll A$, therefore A is sprime.

Remark 3.9: The \mathbb{Z} - module \mathbb{Z}_n is s-prime if and only if $n = p^k$ where p is a prime number.

Proof: If $n = p^k$, then \mathbb{Z}_n is s-compressible (see Example 2.4), and by Proposition 3.3, it is sprime. If n = mk with (m, k) = 1, then $ann_{\mathbb{Z}} \langle \overline{m} \rangle = k \mathbb{Z}$, $(k \mathbb{Z}) \mathbb{Z}_n = \langle \overline{k} \rangle$ which is not small in \mathbb{Z}_n since $\langle \overline{m} \rangle + \langle \overline{k} \rangle = \mathbb{Z}_n$.

Proposition 3.10: Let *B* be a finitely generated submodule of an *R*-module *A* and J(B)=J(A). If *A* is s- prime then *B* is also s-prime.

Proof: Assume that *A* is s-prime and $K \leq B$, then $K \leq A$ and $(\operatorname{ann}_R K) A \ll A$.

Now, $(\operatorname{ann}_R K) B \leq (\operatorname{ann}_R K) A$ and $(\operatorname{ann}_R K) A \ll A$ implies $(\operatorname{ann}_R K) A \subseteq J(A) = J(B)$. Therefore $(\operatorname{ann}_R K) B \subseteq J(B)$, that is, $(\operatorname{ann}_R K) B \ll B$. \Box

It is known that, if *R* is a commutative ring and $0 \neq x \in A$, where *A* is an *R*-module, then $\operatorname{ann}_R x$ is an ideal of *R* and $\operatorname{ann}_R Rx = \operatorname{ann}_R x$. The following lemma is needed to get the next result.

Lemma 3.11: Let *R* be a commutative ring with identity and *A* a finitely generated faithful multiplication *R*-module. If *I* is any ideal of *R*, then I << R if and only if I A << A.

Proof: (\Rightarrow) Assume that *I*<< *R* and *I A* + *B* = *A* where *B* ≤ *A*. Since *A* is multiplication, *B*=*J A* for some ideal *J* of *R*, then *I A* + *JA* = *A*, hence (*I*+ *J*) *A* = *A*. This implies *I*+ *J*= *R* (see Theorem 3.1,[16]), then *J*=*R* (since *I*<< *R*).Therefore, *B*=*A*, that is *IA* << *A*.

(\Leftarrow) Assume that $IA \ll A$ and I+J=R for some ideal J of R, then IA + JA = RA = A, and so, JA = A since $IA \ll A$. Again, by (Theorem 3.1,[17]) J=R, hence $I\ll R$.

Theorem 3.12: Let *R* be a commutative ring with identity and *A* a finitely generated faithful multiplication *R*-module. Then, *A* is s-prime if and only if $(\operatorname{ann}_R x) \ll R$ for each $0 \neq x \in A$. *Proof*:See Proposition 3.4 and Lemma3.11.

Corollary 3.13: Let R be a commutative ring with identity and A a finitely generated faithful multiplication R-module, then, A is s-compressible.

Proof: Let *A* be a finitely generated faithful multiplication *R*-module. By (Lemma4.1,[17]), faithful multiplication modules are torsion free, then

 $(ann_R x)=0$, then $(ann_R x) \ll R$ for all $0 \neq x \in A$. By Theorem 3.12, A is s-prime. Then by Corollary 3.7, A is s-compressible.

4. REFERENCES

- [1] J. Zelmanowitz, "An Extension of The Jacobson Density Theorem," *Bull. Am. Math. Soc.*, vol. 82, no. 4, pp. 551–553, 1976, doi: 10.1090/S0002-9904-1976-14093-1.
- [2] J. Zelmanowitz, "Weakly Primitive Rings," *Commun. Algebr.*, vol. 9, no. 1, pp. 23–45, 1981, doi: 10.1080/00927878108822561.
- Y. Zhou, "Strongly Compressible Modules and Semiprime Right Goldie Rings," *Commun. Algebr.*, vol. 21, no. 2, pp. 687–698, 1993, doi: 10.1080/00927879308824590.
- [4] C. Lomp and A. J. Pe, "A Note on Prime Modules," *Divulg. Mat.*, vol. 8, no. 1, pp. 31– 42, 2000.
- [5] M. Baziar, "Semi-Essentially Compressible Modules and Rings," *Int. J. Algebr.*, vol. 3, no. 14, pp. 685–692, 2009.
- [6] C Çelik, "Completely slightly compressible modules," *Thai J. Math.*, vol. 10, no. 1, pp. 137–145, 2012.
- [7] L. S. Mahmood, "Small Prime Modules and Small Prime Submodules," J. Al-Nahrain Univ. Sci., vol. 15, no. 4, pp. 191–199, 2012, doi: 10.22401/jnus.15.4.28.
- [8] L. S. Mahmood and I. H. Muslem, "Small Compressible Modules and Small Retractable Modules," Int. J. Appl. Math. Stat. Sci., vol. 5, no. 2, pp. 15–28, 2016, [Online].

http://www.iaset.us/view_archives.php?year=2016&jtype=2&id=45&details=archives.

- [9] M. A. H. Inaam and Hassan K. Marhun, "Small Monoform Modules," *Ibn AL-Haitham J. pure Appl. Sci.*, vol. 27, no. 2, pp. 229–240, 2014.
- [10] F. Kasch, *Modules and rings*. Inc-London: Academic Press, 1982.
- [11] S. N. Al-Aeashi and F. H. Al-Bakaa, "Essentially Compressible Modules Relative to A Submodule," *Asian J. Appl. Sci.*, vol. 8, no. 5, 2020.
- [12] M. S. Abbas, "On Fully Stable Modules," Thesis, University of Baghdad. Iraq, 1990.
- [13] V. S. Rodrigues and A. A. Sant'Ana, "A Note on A Problem Due to Zelmanowitz," *Algebr. Discret. Math.*, no. 3, pp. 85–93, 2009.
- [14] A.Ozcan, A.Harmanci, and P. F. Smith, "Duo Modules," *Glas. Math. J.*, vol. 48, no. 3, pp. 533–545, 2006, doi: 10.1017/S0017089506003260.
- [15] S. Limarenko, "Compressible Modules," Math. Bull, vol. 60, no. 3, pp. 26–29, 2005.
- [16] H. I. Muslem, "Some types of Retractable and Compressible Modules," University of Baghdad, 2016.
- [17] P. P. El-Bast, Zeinab Abd and Smith, "Multiplication modules," *Commun. Algebr.*, vol. 16, no. 4, pp. 755–779, 1988.