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Abstract

Let R be a ring with identity and 4 a left R-module. In this article, we introduce
new generalizations of compressible and prime modules, namely s-compressible
module and s-prime module. An R-module A is s-compressible if for any nonzero
submodule B of A there exists a small f in Homg(A, B). An R-module A is s-prime if
for any submodule B of A, anng (B) A is small in A. These concepts and related
concepts are studied in as well as many results consist properties and
characterizations are obtained.

Keywords: critically s-compressible module, retractable module s-compressible
module, s-rime module, small submodule.
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1. Introduction
Compressible module was introduced by Zelmanowitz [1] simultaneous with introducing the
concept of weakly primitive ring in the way of generalizing the Jacobson density theorem. He
also introduced critically compressible module. In[2], the author studied those concepts in
details. A left R-module is compressible if it can be embedded in any of its nonzero
submodule[1]. A compressible module A is critically compressible if it cannot be embedding
in any factor A/B, where B is a nonzero submodule of A . In[1], Zelmanowitz defined a ring to
be weakly primitive if it possesses a faithful critically compressible module. In[3]-[6],
authors have been extensively studied compressible, critically compressible and prime
modules. By using small submodules one direction of generalizations of compressible and
prime modules e appeared in [7]-[9]. A small compressible module is defined as a module
that can be embedded in its small submodules, as well as small prime module is defined as a
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module A in which anngB=anngA for each small submodule B of A. Note that a module A is
prime, if anngB=anngA for each nonzero submodule B of A [7].

Throughout this work, we use the notion of small submodule . Different generalizations

are given. We recall that, an R-homomorphism in Hom(A, B) is said to be small if its kernel is
small in A[10]. In the new generalization the zero kernel will be replaced by small kernel. An
R-module A is said to be s-compressible if for each nonzero submodule B of A there exists a
small element f in Hom(A, B), that is kerf is small in A. Note that this definition is also
appeared in [11] with different abbreviation, sk-compressible.
An s-compressible module A is critically s-compressible if Hom(A, A/ B) has no small
element for any non-small submodule B of A. A module A is s-prime if (anngB) A is small in
A for any nonzero submodule B of A. These concepts are studied, and their relationships
among them and with other related concepts are discussed. Some properties and
characterizations are obtained. Firstly, it is shown that s-compressible with small
compressible modules are independent, as well as the s-prime and small prime modules are
also independent. The class of compressible modules contains both classes of s- compressible
and small compressible modules. As well as the class of prime modules contains both classes
of s- prime and small prime modules.

Throughout this article some definitions and notations are given. A module is a left unitary

module over a ring R with identity. A submodule B of a module A will be abbreviated by B <
A. A submodule B of a module A is said to be small in A(abbreviated by B << A) if it is proper
and its sum with any other proper submodule of A is again proper, "in other word if B + C= A,
where C< A, then C= A [10]. A is said to be hollow if all its proper submodules are small.
Homg( D, E) denotes the set of all R-homomorphisms from D into E. If feHom(D, E), then
kerf={deDIf(d)=0}, f is a monomorphism if kerf=0 and it is small if kerf<<D[10].
If B € A, then anngB={r €R| rb=0 for all be B} which is called the annihilator of B in R and
itis a left ideal of R if beB, then anngb= anng{b}. If B<A, then [B:r A]={re R|FAS B} isa
left ideal of R. An R-module A is multiplication if for any submodule B of A there exists an
ideal I of R such that B = | A, in this case I=[B: g A] [12]. An R-module A is retractable if
Homg (A, B)#£0 for any nonzero submodule B of A [13].

In Section 2 s-compressible and critically s-compressible modules are introduced and
investigated. The notion s-compressible is appeared in [11]. It is abbreviated by sk-
compressible. In this work this notion is studied in details and more results are given. Section
3 devotes to introduce s-prime module and study the relationships between the present
notions and old related notions.

2. s-Compressible and Critically s-Compressible Modules

Definition (2.1): A nonzero R-module A is called s-compressible if for any nonzero
submodule B of A there exists a small R-homomorphism from A into B.

Remark (2.2): Any compressible module is s-compressible, however the converse is not true.
Remark (2.3): Any simple module is s-compressible.

Example (2.4): Consider the Z- module Z, , if n=mp* where p is a prime which is not dividing
m, thus if sZ, is a small submodule of Z,, then s=pt for some t.

Note that, in a R -module A, the submodule Ra is small in A if and only if a belongs to all
maximal submodules of A [10].

Now, if f: Z, — pk Z is a Z -homomorphism such that ker f = s Z, small in Z,, then |ker f|=
n/s, so that | Zi/ker fl=s=pt , while | p* Z,|= m, this gives a contradiction with the fact that
Zo/ker f is isomorphic to a submodule of p* Z, Therefore, there is no small Z -
homomorphism from Z, into p* Z,, that is, Z, is not s-compressible if n=mp* and p is a prime
which is not dividing m.
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On the other hand n=p*, the Z-module Z, is hollow, all its proper submodules are small. it is
easy to see that it is s-compressible. Therefore the Z- module Z, is s-compressible if and only
if n= p“ where p is prime.

We note that the two notions small compressible and s-compressible are independent. For
example Zs is small compressible Z- module which is not s-compressible, while Z, is s-
compressible that is not small compressible Z- module[8]. Both of two Z- modules are not
compressible. The two classes of small and s-compressible modules contain the class of
compressible modules.

Remark 2.5: It is clear that any s-compressible module is retractable. However the converse is
not true to see that Zg as a Z-module is retractable but not s-compressible.

Next proposition gives However, a condition can be added to a retractable module to get s-
compressible module, see the following.

Proposition 2.6: Any hollow retractable module is s-compressible.

Proof: Assume that A is hollow retractable module, and B is a nonzero submodule of A, then
there exists 0ZeHom(A, B) such that kerf is a proper submodule of A, hence small in A.
Therefore A is s-compressible.

This proposition can be applied to example 2.4 so that Z« is s-compressible.

We note that the Z-module Z is s-compressible but not hollow, and this proves that the
converse of proposition 2.6 is not true.
Proposition 2.7: If B is a submodule of an s- compressible module A such that J(B)=J(A), then
B is s-compressible.
Proof: Assume that B is a submodule of an s- compressible module A and J(B)=J(A). If K<B,
then K< A, hence there exists feHom(A, K) with kerf << A. Now if g=f|z then geHom(B, K),
and kerg= BNkerf € BNJ(A)= BNJ(B) < J(B), so that kerg<< B. Therefore B is s-
compressible. O
Example 2.8:
(i) Consider A = Q®Z,, where p is prime, as a Z-module and B = Q&O0,
then B < A and J(B)=J(A)= Q&O0.
(if) Let A=7Z as a Z-module and B= n Z, then J(B)=J(A)= 0.
Corollary 2.9: If J(A)=0 and A is an s-compressible module, then any submodule of A is s-
compressible.
Proposition 2.10: If A is an s-compressible module and B is a nonzero submodule of A, then
(ann B) A << A.
Proof: Since A is an s-compressible, then there exists feHom(A, B) with kerf << A. Let re
ann B, so that for each me A, f(rm)=rf(m)=0, then rme kerf<< A, this implies that (ann B)
AC kerf<< A. Therefore (ann B) A<<A. O
The converse of Proposition 2.10 is not true, for example if A is a torsion free R-module,
then ann B =0 for any non zero submodule B of A, hence (ann B) A =0<< A. While there are
many torsion free modules not s-compressible, e.g. the Z-module Q.
Proposition 2.11: If A is an R- module with J(A)=0, then A is s- compressible if and only if it
is compressible.
Proof: The sufficiency is clear. Conversely, J(A)=0 implies that A has no nonzero small
submodule, so, if A is s-compressible, there exists feHom(A, B) with kerf small in A which
implies kerf=0 and f is a monomorphism. m
It is well known that a nonzero submodule of a compressible module is compressible. In
the following this property will be discussed under certain condition for s-compressibility.
Recall that, an R- module A is said to be fully stable, if for each submodule B of A and for
each fe Hom(B, A), it follows f(B) € B [12], In fact A is fully stable if and only if Hom(B,
A)=End(B) for each submodule B of A ,and more details about fully stable modules can be
found in [12]. For completeness a proof will be given.
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Lemma 2.12: If A is a fully stable module, B = B;@® B, and K are submodules of A, then KN B
=(KN B)®(KN By).
Proof: The natural projections of B onto B; and B,, respectively m;, m, are elements of
Hom(B, B)= End(B), in fact, m; eHom(B, B;) and m, € Hom(B, B,). On the other hand w1+
= 1g, s0, KN B = m1(KNB)+ m2(KNB). Since A is fully stable, 7j(KN B;) € KN B;, (i=1, 2) but
mi(KNB) €B; so j(KNB) €KNB;. Hence KNBS(KNB;)®(KNB,) €KNB. O

It is known that any small submodule of a module is contained in its Jacobson
radical,while a submodule that contained in the Jacobson radical of the module is small if it is
finitely generated [10].
Proposition 2.13: A finitely generated direct summand of a fully stable s-compressible
module is s-compressible.
Proof : Assume that A = A1 A, is an s-compressible module and B is a submodule of A;,
then B is a submodule of A, by assumption there exists f eHom(A, B) with kerf<< A. Let
g=f|4,, then kerg= A;N kerf. It is known that J(A)= J(A 1)®J(A »). But kerfcJ(A)=J(A1)
@DI(A2) implies A; N kerf € A1N( I(41)DBI(A2) =J(A1)(by full stability) so that kerg< J(A1)
and kerg<< A;. Therefore A; is s-compressible. O
Remark 2.14: The converse of Proposition 2.13 is not true to see that let Zg= (2)@(3) is fully

stable [11] and both (2) and (3) are s-compressible ,however Zs is not s-compressible, as
we have seen in Example2.4.
Remark 2.15: It is clear that a homomorphic image of an s-compressible module need not be
s-compressible. For instance Z is an s-compressible Z-module, however Z/6Z is not.
Proposition 2.16: If Ajand A; are two isomorphic modules, then A; is s-compressible if and
only if Ay is s-compressible.
Proof: Assume that ¢: A;— A, is an isomorphism and A; is s-compressible. Let B be a
nonzero submodule of A,. Then ¢™*(B) is a nonzero submodule of A;, by assumption there
exists a: A; = ¢ *(B) with ker a<< A;. Let §=ja ¢, where j= ¢| ¢™(B), then § EHom(A;, B)
and ker 6= @(ker a) << A,. Hence A; is s-compressible. The proof of the other direction is
similar. O
Lemma 1.17: If A is a multiplication module and A = A; @ Ay, then anng A=[ A;: 4], i4, i,
=1, 2.
Proof: Let re anng Ay, then for each m=ms+ my, r(m:+ my)=r my€ Ay, so that
re[ Az A]. Conversely, The re[ Ay A] implies that for each my€ A; if my is any element of
A,, then mi+ mye A and r(mi+ my) € Ay, which implies rmie AN Az, hence rm;=0 and re
anng As. This proves anng A1=[ A,: A]. By the same manner the other case can be proved.
Proposition 2.18: If A is a multiplication and s-compressible R-module then it is
indecomposable.
Proof: Assume that A = A; @ Ay, since A is multiplication, we have A;= [A1: A] A and A=
[A2: A] A. By Lemma 1.17, A;= (anng A) A and A,= (anng Az) A, then A = (anng Az) A® (anng
A1) A. But by Proposition 2.3 (anng A;) A and (anng A;) A are both small in A, which is a
contradiction. Therefore A is indecomposable. O

An R-module A is said to be duo if any submodule of A is full invariant, that is, for each f
€ End(A) and for each B< A, f(B) < B" [14].,.and it is said to be torsion free if rm#0
whenever 0#£r€R and 0#me A, or equivalently 0£#me A and rm=0 implies r=0
Next theorems give a characterization of Duo modules, we will start with the following
lemma.
Lemma 2.19: "An R-module A is duo if and only if for each f € End(A) and for each me A
there exists reRr such that f(m)=rm"[14].
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Theorem 2.20: Let A be a duo torsion free R-module. Then A is compressible if and only if it
is retractable.
Proof: (=) Itis clear so that it is omitted .
(<) Assume that A is a duo torsion free R-module and retractable, let 0#B< A, then there
exists 0AeHom(A, B), it can be considered that f € End(A). By Lemma2.19, for each me A
there exists reR such that f(m)=rm. So kerf= { me A| rm=0 for some reR}, as A is torsion free
and 0#f, it follows kerf=0, that is A embed in B. Therefore A is compressible. m

A compressible module is said to be critically compressible if it cannot be embedded in any
of its proper factors[2]. This notion was generalized in [7] using small submodule this way
gives that a small compressible module A is called small critically compressible if A cannot
be embedded in any proper quotient module A/ B with 0# B« A".

Another generalization will be given by using small submodule.
Definition 2.21: An R-module A is called critically s-compressible if it is s-compressible and
for any not small submodule B of A, Hom(A, A/B) contains no small element.
Remark 1.22: The two classes small critically compressible modules, and critically s-
compressible modules are different (see Example2.23(ii)), and their intersection contains the
class of critically compressible modules.
Example 2.23: (i) The Z- module Z, is critically s-compressible if and only if n= p* where p is
a prime.
Proof: In Example 2.4, we proved that Z, is s-compressible if and only if n= p* where p is a
prime. Since Z,xhas no proper submodule which is not small, so it is critically s-

compressible.
(i) Zyk, is not small critically compressible module for k>1.While Zg is small critically

compressible Z-module but not critically s-compressible.
(i) The Z- module Z, also is critically s-compressible.
(iv) Any critically compressible module is critically s-compressible. But the converse is not
true.
(v) Any simple module is critically s-compressible.

By partial endomorphism of a module A it means an element of Hom(B, A) where B is a
submodule of A.
Proposition 2.24: If A is a critically s-compressible module, then any nonzero partial
endomorphism of A has kernel small in A.
Proof: Assume that A is a critically s-compressible module and 0#€ Hom(B, A), where B< A,
suppose that kerf is not small in A. Then Imf #£0 and there exists 0Z9€ Hom(A, Imf) such that
kerg<< A since A is s-compressible. On the other hand Imf= N/ kerf< A /kerf, let h: Imf— B/
kerf be an isomorphism and i: B/ kerf—/kerf be the inclusion map. Then ihge Hom(A, A /kerf)
and ker ihg= kerg<< A. This contradicts the assumption that A is critically s-compressible.
To prove the converse of Proposition 2.24, we need a condition this is given in next
proposition.
Proposition 2.25: Let A be an s-compressible module such that for any L< A and K << A, any
element of Hom(L, A/K) has kernel small in A. Then A is critically s-compressible.
Proof: Assume that A is an s-compressible module satisfying the above condition. Let B be a
submodule of A which is not small and feHom(A, A/B) and kerf<< A. Then A /kerf = L/B,
where L is a submodule of A containing B. Let v: L— L/B be the natural epimorphism and
¢: L/ B — A /kerf be an isomorphism, then ¢ v eHom(L, A/kerf) and ker ¢ v=B which is not
small in A, a contradiction with the assumed condition. Therefore, the kernel of any element
of Hom(A, A/B) is not small in A, that is, A is critically s-compressible. m
3. s-Prime Modules
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Prime modules are defined and investigated in the literatures see [3][4][15]. An R-module
A is said to be prime if for any nonzero submodule B of A, anngB = anng A. This notion is
generalized in[7] using the concept of small submodules in this way an R-module A is a small
prime module if anng A = anng B for each non-zero small submodule B of A. We also use
small submodules to give a different generalization for prime module, its properties, and
characterizations as well as relations with s-compressible is also studied.
Definition 3.1: A nonzero R-module A is called s-prime if for any nonzero submodule B of A,
(anng B) A << A.
Remark 3.2:
(i) The two notions small prime, and s-prime are independent. For example the Z-module Z,4
Is an s-prime but not small prime (can be easily checked), while the Z-module Z,4 is small
prime , this is also shown in[7], However it is not s-prime since (anngz( (8) )
Z24:3Z(Z24): (§) not small in Zoa.
(if) We have seen that any torsion free R -module is s-prime.
(i) It is clear that any prime module is s-prime. However the converse is not true, for
example the Z -module Zg is not prime since anny(4 Zg)= 2Z, while anny( Zg)=8. But Zs is s-
prime Z-module (can be easily checked).

Proposition 3.3: An s-compressible module is s-prime.
Proof: See Proposition 2.10. m

It is clear the converse of Proposition 3.3 is not true, the Z-module Q is s-prime since it is
torsionfree (Remark 3.2(ii)) but not s-compressible since Hom(Q, Z)=0.
Proposition 3.4: A nonzero R-module A is s-prime if and only if (anng Rx) A << A for each
0£X€EA.
Proof: (=) Itis clear.
(<) Assume that (anng Rx) A << A for each 0#X€ A, and let 0#B< A, then there exists 0£X€ B
and (anng B) € (anng Rx) which implies (anng B) A S(anng Rx) A << A, hence (anngB) A <<
A. Therefore A is s-prime.
Proposition 3.5: A nonzero R-module A is s-prime if and only if for each 0# B < A and for
each ideal 1 of R, I B =0 implies | A <<A.
Proof: It is clear that |1 B =0 means I< (anng B).
Theorem 3.6: Let A be a multiplication retractable R-module, then A is s-compressible if and
only if it is s-prime.
Proof: (=) See Proposition 3.3.
(<)Assume that A is a multiplication retractable R-module and 0# B<A.
Then, there exists 0# feEHom(A, B), since A is retractable, that is Imf #0. As A is s-prime, it
follows (anng Imf) A << A.
Now, anng (Imf)={reR |rf(m)=0, vme A }={reR [f(rm)=0, vme A}= {re R [rmekerf Yyme A
}= [kerf: A]. Hence (anng Imf) A = [kerf: A] A =Kkerf, since A is multiplication. Therefore, we
have kerf<< A, and A is s-compressible. o

In [16] author proved that a faithful multiplication R-module is retractable according to
this result Theorem 3.6 can be rewritten as following.
Corollary 3.7: Let A be a faithful multiplication R-module, then A is s-compressible if and
only if it is s-prime.

Recall that a ring R is called left duo if any left ideal is two sided ideal [14].

Proposition 3.8: Let R be a left duo ring. A nonzero R-module A is s-prime if and only if for
each 0# x€ A and for each ideal | of R, Ix=0 implies | A << A.
Proof: (=) Assume that 0#x€ A and Ix=0, then IRx= RIx=0 where 0#Rx<< A and by
assumption 1 A << A,
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(&) Let 0# B< A and IB=0, if 0+# x€ B, then 1x=0, by assumption | A << A, therefore A is s-
prime.
Remark 3.9: The Z- module Z, is s-prime if and only if n= p* where p is a prime number.
Proof: If n= p¥, then Z, is s-compressible (see Example 2.4), and by Proposition 3.3, it is s-
prime. If n= mk with (m, k)=1, then annz(m) =k Z, (k Z) Z,=(k) which is not small in Z, since
(m) +(k)= Zn.
Proposition 3.10: Let B be a finitely generated submodule of an R-module A and J(B)=J(A).
If A'is s- prime then B is also s-prime.
Proof: Assume that A is s-prime and K<B, then K< A and (anngK) A << A.
Now, (anngK) B < (anngK) A and (anngrK) A << A implies (anngK)A< J(A) = J(B). Therefore
(anngK)B< J(B), that is, (anngK) B << B. O

It is known that, if R is a commutative ring and 0#x€ A, where A is an R-module, then
anng x is an ideal of R and anng Rx= anng X. The following lemma is needed to get the next
result.
Lemma 3.11: Let R be a commutative ring with identity and A a finitely generated faithful
multiplication R-module. If I is any ideal of R, then I<< R if and only if | A <<A.
Proof: (=) Assume that I<< R and | A + B = A where B <A. Since A is multiplication, B=J A
for some ideal J of R, then I A + JA = A, hence (I+ J) A = A. This implies I+ J= R (see
Theorem 3.1,[16]), then J= R (since I<< R).Therefore, B= A, that is | A << A.
(&) Assume that | A << Aand I+ J=R for some ideal J of R, then A+ JA=RA=A, and
so, J A =Asince | A<<A. Again, by (Theorem 3.1,[17]) J=R, hence I<<R.
Theorem 3.12: Let R be a commutative ring with identity and A a finitely generated faithful
multiplication R-module. Then, A is s-prime if and only if (anng X) << R for each 0£x€ A.
Proof:See Proposition 3.4 and Lemma3.11.
Corollary 3.13: Let R be a commutative ring with identity and A a finitely generated faithful
multiplication R-module, then, A is s-compressible.
Proof: Let A be a finitely generated faithful multiplication R-module. By (Lemma4.1,[17]),
faithful multiplication modules are torsion free, then
(anng x)=0, then ( anngi X) << R for all 0# x€A. By Theorem 3.12, A is s-prime. Then by
Corollary 3.7, A is s-compressible.
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