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Abstract

In this work, we introduce Fibonacci— Halpern iterative scheme ( FH scheme) in
partial ordered Banach space (POB space) for monotone total asymptotically non-
expansive mapping (, MTAN mapping) that defined on weakly compact convex
subset. We also discuss the results of weak and strong convergence for this
scheme.
Throughout this work, compactness condition of m-th iterate of the mapping for
some natural m is necessary to ensure strong convergence, while Opial's condition
has been employed to show weak convergence. Stability of FH scheme is also
studied. A numerical comparison is provided by an example to show that FH scheme
is faster than Mann and Halpern iterative schemes.

Keywords: Banach Space, Monotone Mappings,Total Asymptotically Non-
expansive Mapping, Fixed Points.
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1.Introduction

As more general classes of asymptotically non-expansive mapping. In [1], Alber introduced
total asymptotically non-expansive mappings ( TAN). He also studied the iterative method to
determine their fixed points. Let A be a Banach space with norm ||. ||, a mapping G: A — A is
called TAN if forr,e € Aand {B,},{g, } @ RT(R™ is the set of nonnegative reals),n > 1.
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IG"(r) — G"(e)ll < [Ir — ell + By (llr —ell) + gn, (1)
where @: R* - R* is increasing continuous function with ¢(0) = 0.
If @(t) = t, then equation (1) reduces to
IG(r) — G*(e)|| < |Ir —e]| + Byllr—e|| + gy, for r,e €A, Vn=>1. (2)

In addition, if g, =0, k, =1+B,, Vn > 1, then G correspond to the asymptotically non-
expansive mapping. If g, = B, = 0, then equation (1) reduces to the non-expansive mapping.
See [2-3] for more details.
Let G:D — D.In[4], Halpern studied the following iteration for a non-expansive mapping

Y1 € D,yns1 = AuXo + (1 = 2,)G, A, € (0,1) 3
where D is a closed convex subset of Hilbert space.
In this article, we consider a modification of Halpern iteration to be suitable for MTAN
mappings. So that equation(3) will be modified by employing Fibonacci sequence of numbers
{fi}or{f(i)}, i=1,1,2,3, ... ,whichis

fG+1)=f0)+f(i—1),i=>1.

The new iterative scheme is defined by

ro € Dand {hy} B(0,1), rnyq = hpry + (1= hy)G™ () (4)
is called Fibonacci— Halpern scheme and denoted by FH scheme.
Definition (1.1): [7] A Banach space (A ||.|) is called uniformly convex if V € >0
38 > 0andfor r,e € Aif||r|| <1,]|le]l <1and|r—e| = € then|r+ el < 2(1-29).
Definition (1.2): [6] A Banach space (A, ||.||) is called strictly convex if ||r|| = [le|]| = 1 and
r # e, then ||tr+ (1 —t)e|| < 1 forall t € [0,1].
Definition (1.3): [7]. The function & 4:[0,2] — [0,1] is called modulus of convexity of A if

defined by & 4 (€) = inf{1 et e = el < Llr—ell = eVee [o,z]}

2
Definition (1.4): [5] Let (A, ||. ][, =) be POB space and DcA. A mapping G: D — D is said to
be monotone if r<e = G(r) < G(e) Vr,e €D.

Definition (1.5): [5] A mapping G: D — D is called monotone Lipschizian if G is monotone
and there exist ¢ = 0 such that ||G(r) — G(e)|| < qllr —e]| foranyr,ein D and r < e. While
G is said to be MTAN if it is monotone and satisfy (1) for any r,e € D suchthat r < e.

Note that, every TAN mapping is MTAN but the opposite is not true, see the following
example.

Example (1.6): Let A = [0, +o0)be a Banach space with usual norm ||r — e||=|r — e|, r, €€ A.
Consider the order relation r S easr,e € [0,1]and r<e or r,e € (i,i + 1] for some i =
1,2,... and r<e

Define G as the following G (0)=0, re (0,1]i=0 = G(r) = g + g =

r
2
re(1,2],i=1= G() = §+§ = % .So,ifr € (i,i + 1], then, G(r) = >+~
G is discontinuous since, forany i, G(i+17) = % + % = 212—“ =i+ % * % + % = 2(1:1)
i+1=G(@+1%). Sothat G is not non-expansive mapping.
Now, if e r,thenr, e € [0,1]or r,e € (i,i + 1]for somei = 1,2,...,and
i T i e
I6() = Gl = ”(E * E) B (E * E)
So that G is monotone non-expansive mapping but not a non-expansive mapping, therefore G
is not TAN mapping.

We will use symbols — and> denote strong convergence and weak convergence respectively
in the following.
Definition (1.7): [5] A Banach space A has the weak-Opial’s property if for any sequence

- W - - . 3
{rp,}in A, r, - r implies that lim,_,., sup||r, — r|| < lim,_ . sup|lr, —e|l, Ve€A 3 r =+
e.

| =Ir—el<lir=el
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Therefore, A has monotone weak-Opial’s property if whenever any monotone increasing (or,

- - W - -
decreasing) sequence {r,} in A, r, = r implies that
lim sup||r, — r|| < lim sup||r, — €, Ve € A suchthatr< eore=<r
n—->oo n—>oo

Remark (1.8): [13]. Every weak-Opial’s property is monotone weak —Opial. It is known that
a Hilbert space and Banach spaces £, 1 < p < o are weak Opial property, while Banach
spaces Lp([0,1]), 1 < p < oo, fail to have weak Opial property, however it is monotone
weak-Opial.
Proposition (1.9): [9] Let A be reflexive Banach space, and {r,} is bounded monotone
increasing (or decreasing) sequence in A. Then {r,} is weakly convergent.
Also, for nonempty compact subset D of A, if lim,_,., d(r,, D) = 0 then {r, } is convergent
strongly
Definition (1.10): [9].The norm function ||. || on A is monotone if c S u <X v = max{|lu —
cll,lu=vl|} <|lv—c|, foranyc,u,v € A

Here, the subsets {r: a < r},{r:r < B}and {r:a < r < B} foranya, 3 € A are denoted to
order intervals.
Proposition (1.11): [9] If A is uniformly convex POB space with monotone norm||. || for
which order intervals are closed and convex then A satisfies the monotone weak-Opial’s
property.
Lemma (1.12): [5] Let (A, ||.]l, =) be uniformly convex POB space and @ #Dc A, D is
closed convex .Let w: D — [0, +0) be a type function, i.e., there exists a bounded sequence
{r,} € Asuch that w(r) = lim,_,. sup||lr, —r||,Vr € D.
Then w has a unique minimum point s € D such that w(s) = inf{ w(r);r € D} = w,
Moreover, if {s,} is minimizing sequence in D, i.e.,lim,_,, w(s,) = w,, then {s,} converges
strongly to s .
Proposition (1.13): [9] Let D be a convex and bounded nonempty subset of A . Assume that
the map G:D — D is monotone. Let ry, € D be such that ry £ G(ry)(or,G(ry) = ry) and
{h,} @ (0,1) and consider the sequence {r,} generated by (4). Let s be a fixed point of G
such that ry < s (or,s S rg) (or, G**1(ry) < G"(ry)) then
i. G"(ro) S G™"1(ry)
ii. g Sy Ss(or,s Sy, S1)
ii. GI™W(ry) 3 6fMW(ry) S s (or, s 3 G () 6 (ry))
iv. Iy S Tppq S G () (or, GF™W(r) S rppq S 1)
foranyn € N
Lemma (1.14) [10] Let {a,}, {b,},and {t,} be three nonnegative sequences and

apne1 < (1 +bpa, +t,,Vn > n,
for some nonnegative integer ng. If >0, b, < coand Y-, t, < oo, thenlim,_ a, exists.
1. Convergence Theorems
Throughout this results, we assume that (4, ||. ||, <)is POB space such that order intervals

are closed and convex and Gis TAN mapping whenever s € F(G) and IM* > 0, then
o(llr—s])) < M* |Ir —s|| Vr € A. We start with the following fixed point result.
Theorem (2.1) LetA be a uniformly convex, and D such that @ # D c A is closed
convex,which has more than one point . Let G:D — D be a continuous MTAN mapping
where3 ry €D 3 ry = G(rp) then G has a fixed point s such thatry <s.
Proof: Let r, € D such that ry < G(ry) , by monotonicity of G, G"(ry) < G"*1(ry),
Vné€N.
By reflexivity of A and closeness and convexity of order intervals, we get that
Do, =N{r €D, G"(ry) S} *# 0.
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Let re D, = G%(ry) 31, since G is monotone,G"(ry) = G(G"(ry)) = G"1(ry) =
G(r),Vvn = 0,i.e.,G(Dy) € Dy.Let w: D — [0, +0) be a type function which is generated
by {G"(ry)}, w(r) = lim,_,4 sup||G"(ry) — r||, by Lemma(1.12)there
exists a unique s € Dy such that w(s) = inf{w(r);r € Dy} = w, .Fixs € D, = G™(S) €
Do
vm € N, which implies to
(G™(s) ) = limye supllG™(ro) — G™(s) |l

< lim sup[[|G"(ro) = s | + Bnw([IG"(ro) = s ) + gm]

such that lim B, = lim g, = 0,foranym € N wy < w(G™(S))< wq
m—-0o

m—-0o
=>Irlli_r3;no w(G™(s))= w, , this means {G™(s)} minimizing sequence of w. By Lemma (1.12)
{G™(s)} converges strongly to s. Note that G is continuous, thennlli_{rgo G(Gm(s)) = nl)i_r}rgo
G™*1(s) = G(s) = s, so s is fixed point of G.
Note that, by a similar steps in proof of Theorem (2.1), a corresponding result can be
satisfied if G(ry) =< rothen G has a fixed point s such thats < r,.
Proposition (2.2): Let D a nonempty closed and convex subset of A and G:D —» D be a
MTAN mapping with ry € D such that ry < G(ry) (or, G(ry) = 19){ hy} & (0,1) . We also
consider the sequence { r,} which is generated by equation(4). Let s be a fixed point of G
such thatry < s (or, s S 1p). Then lim,_||r, — s|| exists.
Proof: By definition of {r,}
”rn+1 - S” < ”(hnrn + (1 - hn)Gf(n)(rn) - (hns + (1 - hn)s)”
< hyllrn = sl + (1 = hp)||G™ (1) = GT™(s) |,
for any n > 1. Since G is MTAN mapping,
[Itne1 = sll < hgllrn = sl + (1 = hp)[lIrn = sll + Bemy@(llra = sl + g
”rn+1 - S” = hn”rn - S” + (1 - hn)”rn - S” + (1 - hn)Bf(n)M*”rn - S” + (1 - hn)gf(n)
< (hn + (1 - hn) + (1 - hn)Bf(n)M*) ”rn - S” + (1 - hn)gf(n)
< (@ +uy)llry —sll + vy
Where u, = (1 — hy)Bgmy)M* and Y51 By < o0
vy =(1- hn)gf(n) and 2?:1 8f(n) < ®©
Then by Lemma (1.14) we obtain that lim,,_,||r, — s|| exist.
To prove the next results, we need the concept of ultra-power of Banach space. For more
details, see [5].
Lemma (2.3) [5]: Let U be a nontrivial ultra-filter overN, then for any bounded sequence of
real numbers {u,,}, lriquﬂl U, exist. Moreover, if A is Banach space then

£0o(A) = {{rn} € A+ |{ry}lleo = supllryll < oo} endowed with norm ||. ||,
is Banach space and A, = {{rn} € £, (A): lir%}llrnll = O} is closed subspace of £, (A).

The quotient space (Ay) = £ (A) /A, is called ultra-power of the Banach space A.In
particular for every ¥ € (A)q, |IFlly = limpy ¢ llry |l , where {r,} is any representative of ¥
Proposition (2.4): Let (A, ||.]l,=<) be a uniformly convex POB space and D a nonempty
weakly compact convex subset of A. Let G: D — D be a continuous MTAN mapping as in (1).
Letry € Dsuchthat ry £ G(rg)(or,G(ry) = rg)and { ry}as in (4). Let s be a fixed point of
G such that ry < s (or, s 3 1) Then limy, o, |1y — Gfm (r)|[=0.

Proof: Suppose that ry < G(r,) . Theorem (2.1) implies that 3 s 3 G(s) = s such thatry, s,
and Proposition (2.2), ¢ =||r, — s|| exists.

If ¢ =0, the result trivially holds . Suppose that c > 0, then

lim,_,., sup ||Gf(“) (rp) — s|| = lim,_, sup ||Gf(n) (r,) — Gf™ (s)||
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< liInn—mo sup [”rn - S” + Bf(n)cp(”rn - S”) + gf(n)]
< lim sup (1 + Byen)M*)lIra — sl + ge)
Since 1111—r>£>lo Bf(n) = rlli_r)lgogf(n) =0
< lim supIr, —sl| = c
Note that r,, < s, foranyn > 1. Also, for any > 1, we obtain that
ITnss — ell < hyllry — ell + (1 = hy) [|GFr, — e
Let U be a nontrivial ultera-filter over N .Then limy h, =h € [a,b]where 0 <a<b<1
Thus, ¢ = limyIryy1 — sll < limg [hylir, = sll + (1 = hy) ||GT™r, —s|| |
c<hc+(1-h) limu”Gf(n)rrl - s||
¢ —he < (1 - h) lim[|G™r, — |
(1-h)c<(1-h) limu”Gf(“)rn - s||, since ¢ # 0, we have ¢ < limu”Gf(n)rn - s||
Hence ¢ < limy||Gf™r, — s|| < lim,_, sup||G™r, —s|| < ¢,
which implies  limy||Gf®™r, —s|| = ¢
Let (A)y be ulter-power of Aand ¥ = ({r,}) ,§ = ({sp}) & =({G™r,}) .Then
II¥ — 8|y, = l|€ =8|l = |Ihf + (1 —h)é — §||y; = c. Since A is uniformly convex then (A)y
is strictly convex. Note that h € (0,1) ,we get ¥ =& , that means limy||r, — G' ™ (ry)|| =
0.
Since U is arbitrary nontrivial ultra-filtre then lim,,_,e||r, — GI™ (ry)|| = 0.
Next, we employ the concept of compact mapping to get another result
Definition (2.5):[14 ] Let G: A — B be a mapping between two Banach spaces A and B, then
G is said to be compact if G is continuous and G(D) is relatively compact for any subset D of
A.
Theorem (2.6): Let D be a nonempty weakly compact convex subset of a uniformly convex
Aand G:D - D be a MTAN mapping as in (1) and G™is compact for some m > 1. Let r, €
D such that ry £ G(ry)(or,G(ry) = ry) and {ry} asin (4). Then {r,} converges strongly to
a fixed point s of G with ry < s (or,s < 1p).
Proof: Suppose that r, < G(ry), by Proposition (1.13)ry S, Vn €N
By Proposition (2.4), lim_e||ry, — GF®™ (ry)| =0
Fix m > 1, such that G™is compact and set D, = G™(D) .Then D, is nonempty compact set.
For every n>m and r € D,thenG"(r) € D,. Note that f(n) > mfor n > m,so,
GI™W(r,)) €D,.

Hence, limy 0, d(rp Do) < limy e[ty — GF® ()| =0 and
Ail?od(Gn(rO)' Dy) = 0.
The monotonically of {r,},{ G"(r,)} and reflexivity of A makes Proposition (1.9) implies
{r,} and{ G"(r,)} are strongly convergent. Thus, { G!™(r,,)} converges strongly to the same
limit of {r,} .
Let s be the strongly limit of {G™ (1)}, to prove that s is fixed point of G. Since {G" (1)} is
monotone increasing, G™ (ry) < s for every n € N. Then
IG™*2 (ry) — G(s)|| < IIG™(ry) — sl + By @(]|G™ (ry) — s||)+g, for every n > 1.Therefore,
G"*! (ry) — G(s) and s thatis G(s) = s.
By Proposition (1.13) G'™(r,) < Gf™(r,) <'s, for everyn € N. By closeness of the
bounded intervals, s is also the limit of {Gf(n) (rn)} and {r,}. Then {r,} converges strongly
to a fixed point s of G.

The following proposition is needed to prove the next theorem.
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Proposition (2.7) [5]: Let{r,} be a bounded increasing (or decreasing) sequence of a
uniformly convex space A with its norm ||.|| is monotone. Suppose that D = {r;r, <,
foranyn € N} and w(r):D — [0,0) be a function such that w(r) = lim,_.|r, —rl|. If
Iy %5 then w(s) = inf{ w(r); r € D} and any minimizing sequence {s,} of w in D converges
strongly to s. Moreover, w has one minimum point.
Theorem (2.8):Let (A, |l. 1], =) be a uniformly convex space with||. || is monotone and D is a
nonempty convex weakly compact subset of A. If G:D—->D is a MTAN as in (1), 1, €
D be such thatry < G(ry) and{r,} asin (4) withth , } < (0,1), then {r,} converges
weakly to a fixed point of G which comparable to r,.
Proof: Suppose that ry < G(ry),so {G"(ry)} is monotone increasing. Since D is weakly
compact, and {G"(ry)} is weakly convergent to a point s. By Proposition (1.11) A satisfies
the monotone weak Opial’s condition. Then s is the minimum point of w, w: Dy, — [0, ),
w(e) = lim,_, inf]|G™(ry) — e|| =lim,,||G"(ry) — €|, where
D, ={e € D:G"(ry) < sforanyn € N }.
Since s € D, where G™(s) € D, for every m € N, which implies
w(G™(s)) = lim inf[|G"(ro) — G™ ()| = 1G*(ro) = sll + B @(1G"(ro) = sll) + gm
Since limy, o By = limy 0 gm = 0, since G is MTAN mapping, then
w(s) < w(G™(s)) < w(s) foreverym € N
{G™(s)} is a minimizing sequence of w. By Proposition (2.7) G™(s) — s ..
Since G"(ry) < s we have G"*1(ry) S G(s) Foranyn> 1
Since G™(s) — s, and by closeness and convexity of order intervalss < G(s). Since G is
monotone then the sequence {G™(s)} is monotone increasing and it converges to s.
We must have G™(s) Ssvm>1. By Proposition (1.13) Gf™(ry) < ¢f™(r,) <s
Vn € N.
Since {G™(r,)} is monotone increasing, and it converges weakly to s. By closeness and
convexity of intervals, we have {Gf(“)(rn)} also converges weakly to s. By Proposition (2.4)
limp,_e0||ra — G (ry)|| = 0., then {r,} converges weakly to s, a fixed point of G.
Corollary (2.9): Suppose that (A, |l.|l,=),G, 1y, D and {r,} are in Theorem (2.8). If G is
continuous then G has a fixed point s and the sequence {r,} is generated by (4) converges
weakly to s which is comparable to ry, .

In the following example, we present a compression between the behaviors of FH-scheme
and two different iterative schemes [18].
Example (2.10): LetG:[0,o) — [0,0),G(s) = %be a function with fixed point
s=3.Consider the following three
X, € [0,00),Xp4+1 = hy X, + (1 — hy)GI ™G (x,,), (FH scheme)
y1 € [0,0), V41 = hy yn + (1 — hy)G" (1), (Modified Mann scheme)
z1 €[0,0),z,41 = h, z, + (1 —h,)G(z,), (Mann scheme)
Fix x; = y; = z; =20and h, ==
In Table 1,and Figure 1 it is shown that {x,} is faster than {y,} and{z,}.
Table 1-

n xn yn Zn

1 20.00000000 20.00000000 20.00000000
2 17.51040764 17.51040764 17.51040764
3 14.44399770 12.91079273 14.44399770
20 3.00000003 3.00003902 3.00861677
21 3.00000001 3.00001614 3.00524855
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22 3.00000000 3.00000043 3.00069495
30 3.00000000 3.00000000 3.00005164
42 3.00000000 3.00000000 3.00000008
43 3.00000000 3.00000000 3.00000005
44 3.00000000 3.00000000 3.00000003
45 3.00000000 3.00000000 3.00000001
46 3.00000000 3.00000000 3.00000000
47 3.00000000 3.00000000 3.00000000
20
—d— x
18 | ——y |
—_—— z
16 .
14 8
» 12 i
= ol |
8 (- -
6 I i
4 + i
> .
O 10 20 30 40 50
N
Figure 1-

2. Stability of FH-iterative Scheme
Definition (3.1): [18] Let (A, ||. 1) be a normed space and G:A — A is a mapping.. {r,} is
an iterative scheme converges strongly to s€ F(G), which is produced by G

{ r €EA

In+1 = f(G 1)
where f is a function. If for an arbitrary sequence {e,} € A lim,_lleps1 — f(G )|l =
0 implieslim,_,. e, = s, then {r,} is said to be stable w.r.t G.
Definition (3.2): [16] The sequences {r,} and {e,}are called equivalent if lim,_]||lr, —

en” =0
Definition (3.3): [15] Let {r,} be an iterative scheme and it converges strongly to s € F(G). If
for any equivalent sequence{e,} < A of {r,}, lim,lleger — (Gl =0 =

lim,_,., e, = s, then the iteration sequence {r,} is said to be weak-w? stable w.r.t G.
Theorem (3.4): Let (A, |l. ]I, =) be a uniformly convex space and D is a nonempty convex
closed subset of A. Let G:D — D be MTAN mapping as in (1) with fixed point s. Suppose
that {r,} as in (4) with ry < G(ry),h, € (0,1)ands S r, If {e,} is any equivalent
sequence of {r,}with r, < e, (or,e, 3 rp), then {r,}is weak-w? stable w.rtG..
Proof: Consider {e,}to be an equivalent sequence of {r,}

limyellens: = f(Gr)ll =0 = limy_, e, =s
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Letr, S e, by monotonicity of G Gf™(r,) < GI™(e,).
Set e, = llep+1 — f(G,rp)|l, suppose €, » 0 asn — o
llen+s — sll < llenss — £(G e | + [I(G, 1) — rgall + Ity — sl
< €n + ”(hnen + (1 - hn)Gf(n)(en)) - (hnrn + (1 - hn)Gf(n) (rn)” +
lIrn+1 — sl
S €+ hn”en - rn” + (1 - hn)”Gf(n)(en) - Gf(n)(rn)” + ”rn+1 - S”
S €t hn”en - I'n” + (1 - hn)[”en - I-n” + Bf(n)(P(”en - rn”) + gf(n)] +
lIrn+1 — sl
S €+ hn”en - rn” + (1 - hn)[”en - rn” + Bf(n)”en - r'n” + gf(n)] + ”rn+1 - S”
Let, then lim,,.|leps1 — S|l =0
So, {r,} is weak — w? stable w.r.t G.
3. Application to Integral Equations
Consider the Hilbert space

(L?[0,1], R) :{f: [0,1] - R, fis Lebesgue masurable and follf(t)l2 dt < 00}

with ||f]| = fol f2 (t)dt. Theorem (2.8) solves the following of integral equation:

r(®) = k(®) + [] B(t;s,r(s))ds t € [0,1] (5)
such that
i. ke 12([0,1], R)
ii. B: [0,1]? x L([0,1], R) — R is measurable and satisfies the condition
0 < |B(t,s,r) —B(t,s,e)| < |Ir—e||Vt,se[0,1]andr,e € L2([0,1,R)3r<e.
It is known that for any r,e € L?([0,1], R), we have r S e © r(t) < e(t)almost every for
t €[0,1]
Suppose that there exist a nonnegative function g(.,.) € L?([0,1] x [0,1]) and M<% such
that
|B(t, s, 1)| < g(t,s) + M||r||
forevery t,s € [0,1] and r € L2([0,1], R)
Define H ={e € L2([0,1],R) 3 |le|| < o}, where o large enough, hence H is closed ball of
L2([0,1], R) with center 0 and radius o.
Define the operator G: L2([0,1], R) —» L2([0,1], R) by
G(e(®) = k(©) + [, B(t,s,e(s))d(s). (6)
To show that G(H)cH, let e(t) € G(H), then by using the Cauchy-Schwarz inequality and
condition (ii) with this property ,namely for any reals s,t the inequality (s + t)? < 2s% +
2t2holds . Therefore

IG)I? = j (D)2 dt
0

1 2

= fl k(t) +fB(t, s,e(s))ds| dt
0

0

1 1 1
szj |k(t)|2dt+zj J B(t,s, e(s))|” ds dt
01 01 01 2
szj Ik(t)lzdt+Zj J I8t s) + Mle(s)][* ds dt
0 0 Y0

1 1 1 1 1
< zf Ik(t)lzdt+4f f lg(t,s)|? ds dt+4Mf f le(s)|? ds dt
0 0o Y0 0o Y0
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1 1 ~1
= zf Ik(t)lzdt+4f f lg(t,s)|? ds dt + 4M||e||?
0 0 0

1 1 1
< Zf Ik(t)lzdt+4f f lg(t,s)|? ds dt + 4Mo?
0 0 0

By M < % choosing o such that

2 1 2 1,1

— s L kO dt+ —— [ [, 18t $)|* ds dt < o

,we get G(e) € H.

Now, to show that G is MTAN mapping,one canemploy condition (ii) and Theorem 12 in
[17].

G is monotone. Thus,

IG() — G2 = f G(r(®) — Ge(t))*dt
0

= fol(fol B(t,s,r(s)ds) — B(t,s, e(s)ds))?dt
< [1(J] (r(s) — e(s))ds)?dt
< [, (x(s) — e(s))?ds

=[Ir —ell?
which means that G is non-expansive and then it is MTAN. Since every Hilbert space is
uniformly convex POB, A= L2([0,1],R) and the Theorem (2.8) is satisfied.
Theorem (4.1): Under all pervious hypotheses in this section, the iterative scheme generated
by (4) converges weakly to a solution of integral equation (5).

The second application is that possible to employ the results in [20] after we prove similar
results to the previous results.
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