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Abstract 

     This paper investigates the simultaneous recovery for two time-dependent 

coefficients for heat equation under Neumann boundary condition. This problem 

is considered under extra conditions of nonlocal type. The main issue with this 

problem is the solution unstable to small contamination of noise in the input data. 

The Crank-Nicolson finite difference method is utilized to solve the direct 

problem whilst the inverse problem is viewed as nonlinear optimization problem. 

The later problem is solved numerically using optimization toolbox from 

MATLAB. We found that the numerical results are accurate and stable. 

 

Keywords: Neumann boundary problem; inverse problem; coefficient 

identification problem ; nonlinear optimization, heat equation. 

 

 استرجاع المعامِلات الزمنية في معادلة الحرارة من شروط اضافية غير المحلية
 

 فرح أنور سعيد، محمد صباح حدين 
 جامعة بغجاد، كلية العلهم ، قدم الخياضيات، بغجاد، العخاق 

 

 الخلاصة  
تبحث هحه الهرقة في الاستخداد المتدامن لمعاملَين معتمجين على الهقت لمعادلة الحخارة تحت ظخوف       

حجود نيهمان. تم اعتبار هحه المدألة تحت ظخوف إضافية من النهع غيخ المحلي. المذكلة الخئيدية في هحه 
المجخلة. تم استخجام طخيقة الفخوق  المدألة هي ان الحل غيخ مدتقخ للتلهث الرغيخ بالأخطاء في البيانات

لحل المدألة المباشخة بينما ينعخ إلى المدألة العكدية على أنها مدألة امثلية  Crank-Nicolsonالمحجودة 
 . وججنا أن النتائج العجدية دقيقة ومدتقخة.MATLABغيخ خطية. تم حل المدألة عجديًا باستخجام 

 

1 Introduction 

The field of inverse problems has been existed for a long time. Which concerned with the 

problems that can not be solved directly. Due to  the wide applications in various fields of 

physics, chemistry, engineering and mathematics [1]. Inverse problems attracted many 

researchers.  For instance, in the case of heat diffusion in melting ice, the boundary of the 

ice is in a constant state of motion, and the latent heat is absorbed or given out by the 

thermodynamic setting without any modifications in temperature [2]. The theory of 

inverse problems has been extensively developed over the last decade, partly due to its 

importance and real applications [3]. 

ISSN: 0067-2904 
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Parameters identification problem consist of using the input noise-contaminated observation 

or indirect calculation to infer the parameter values characterizing the device under inquiry 

[4]. These inverse problems are frequently ill-posed in the view of Hadamard definition, 

which is: if there is no solution, or if it is not unique, or whether it contradicts the 

continuous dependency on input data. The first two conditions satisfy most identity 

concerns and violate the third one, which is stability [5]. 

Solving an inverse problem is concerned with identifying unknown causes based on 

observing their effects. This gives, in complementary form, the corresponding definition 

of the corresponding direct problem, the solution of which is to find the effects based on a 

complete description of their causes [6]. The inverse problem is much more difficult to 

solve analytically than the direct problem. So, we are going to employ the numerical 

methods [7]. The numerical solutions to such problems require vast computations and 

also reliable numerical scheme [1]. An iterative process for solving the inverse problem 

has been proposed by [8, 9, 10]. 

     The simultaneous determination for two timewise heat equation coefficients under the 

Neumann boundary condition is investigated in this paper. 

The outline of this research is as follows. We give the mathematical formulation of the 

inverse problem under investigation in Section 2. The computational method for solving 

the forward problem based on the finite-difference method is described in Section 3, while 

Section 4 introduces the constrained regularized minimization problem to be solved using 

the lsqnonlin MATLAB routine. The numerical results are presented and discussed in 

Section 5. Finally, conclusions of the paper are given in Section 6. 

2 Mathematical formulation 

         Consider the 1-D inverse time-dependent heat equation 

               ut = κ(x, t)uxx + f (x, t),             (x, t) ∈ QT ,                             (1)   

where κ(x, t) = a(t)x + b(t). a(t), and  b(t) are unknown timewise coefficients, the 

domain  QT = {(x, t) : 0 < x < h, 0 < t < T } subject to the initial condition and 

Neumann boundary conditions are ; 

 

 

 

and overspecified conditions of the tempreature at (x = 0), and heat moment of zero 

order/ energy /mass specification, [11], respectively. 

                                     u(0, t)    =   µ1(t),                             t𝜖 [0, T ],                    (4) 

∫  (   )      
 

 
                               t𝜖[0,T].                          (5)                                         

This model has been investigated theoretically in [12], and no numerical solution is attempt 

undertaken. The aim of the paper is to find the numerical solution based on reliable algorithm. 

The existence and uniqueness theorems for inverse problem are established in [12]. 

Definition 1 ([12]). Consider a solution to the inverse problem (1)-(5), the triplet 

class  (a(t), b(t), u(x, t)) ∈ (  /2
[0, T ] ×   /2

[0, T ] ×           ( T)                  

where, 0 <   < 1, b(t) > 0,  and a(t)h + b(t) > 0, for t ∈ [0, T ], that satisfies 

equations (1)-(5). 

Theorem 1 (Existence of the solution,[12]). Assume the following conditions hold:  

1.  ∈      [0, h],  i  and µi ∈       [0, T ], i = 1, 2   f ∈           ; 

 2. '1(t)−f (0, t) > 0 , µ'2(t) −∫   (   )  
 

 
 > 0,  2 (t)− 1(t) ≥ 0 , for t ∈ [0, T ],    (x) > 0   

for x ∈ [0, h]; 

3.  µ1(0) =  (0),  µ2(0) = ∫  ( )
 

 
 dx,   1(0) =    (0),  2(0) =    (h). 

Then there exist a solution of the problem (1)-(5) where the number t0 ∈  

           u(x, 0) = (x),              0 ≤ x ≤ h                                    (2) 

          ux(0, t) =  1(t)     ux(h, t) =  2(t),0 ≤ t ≤ T,              (3) 
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[0, T ] is determined by input data. 

Theorem 2 (Uniqueness of the solution,[12]). Suppose that the following conditions hold 

  ( )   (   )      
 ( )  ∫  (   )          

 

 
   ( )    ( )   , 

for t∈[0,T]. Then the solution of the problem (1)-(5)is unique for  x∈[0,h] and t∈ [   ]  
3 Numerical solution of direct problem 

In this section, we consider the direct Neumann boundary value problem (1)-(3). Where the 

functions a(t), b(t), (x) and µi(t), i = 1, 2 are known and the solution u(x, t) is to be 

computed. In addition for some required information (4)-(5) in order to solve the problem 

we employ the Crank-Nicolson finite difference scheme which is unconditionally stable 

and second order accurate in time and space [13].  

The discrete form of the direct problem is as follows. Take two positive integer M and 

N  and assume ∆x  =  
 

 
   and ∆t  =

 

 
  is to  be step lengths in space and time 

directions ,respectively .We subdivided the domain QT = {(x, t) : 0 < x < h, 0 < t < T 

} into M × N subintervals of equally step length. At the node (i, j) we denote u i , j := 

u(xi, tj),a(tj) := aj , b(tj) := bj , and f (xi, tj) := fi,j  where xi = i∆x , tj  = j∆t, for 

i=   ,  J =    .  

Applying Crank-Nicolson scheme for equation (1) we obtain 
           

  
=

 

 
(( (    )    (    )) (

                         

(  ) 
)+ f ( x i , t j + 1 )  

          + ( a ( t j ) x i + b ( t j ) ) (
                   

(  ) 
)+ f ( x i , t j ) ) ,                    ( 6 )  

 

ui,0 =  (xi), i =   ̅̅ ̅̅ ̅̅ ,                  (7) 

 

where u1,j  and uM+1,j  for j =    ̅̅ ̅̅ ̅ , are fictitious values at points located outside the 

computational domain. Equation (6) can be rewritten in the form of difference equation  

as follows; 

 

-Ai,j+1ui-1,j+1+[1+Bi,j+1]ui,j+1 –Ai,j+1ui+1,j+1= Ai,jui-1,j+[1-Bi,j]ui,j +Ai,jui+1,j +
  

 
(fi,j+fi,j+1)              (9) 

For  i=   ,  J=        where    

Ai,j= 
  (       

 (  ) 
  , Bi,j =

  (       )

(  ) 
,                                                                                     (10) 

 

At each time step tj+1 for j =        using the Neumann boundary conditions (8), we 

obtain a (M × M ) system of linear equations of the form; 
Auj+1 = Euj + b,                                       (11) 

where 

uj+1 = (u1,j+1, u2,j+1, ...., uM,j+1)
tr
 and uj = (u1,j, u2,j, ...., uM,j)

tr
, A,  and E are (M × 

M ) matrices as follows: 

 

             (  )  (  )                (  )  (  )  j =           ( 8 )    
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A 

 

 

E  

 

   

 

 

 

 

 

 

 b = 

 

3.1 Example for direct problem 

Consider the direct problem (1)–(5) with T = h = 1 and 

a(t) = b(t) =
 

   
  ,  (x) = x

2
 + 4 ,  1  (t) = 0, 2(t) = 2, 

µ1  (t) = 4(t + 1), µ2 (t) = 
 

 
+4t ,        f(x,t)=4-2

   

   
 

The exact solution is given by 

u(x, t) = x
2
 + 4(t + 1).                                                                                     (12) 

The numerical and exact solution for the temperature u(x, t) at various mesh size M = N 

∈ {10, 20, 40, 80} are shown in Figure 1. From this figure one  can clearly notice that an 

accurate and stable solution are obtained. Also as the number of mesh is increased the 

more accurate solution obtained revels the mesh independent is achieved. Table 1, and 2  

show the numerical result for desired output for various mesh sizes. From these tables it 

can be seen an excellent agreement is obtained. The trapezoidal rule is employed to 

compute the integral in 5 based on the following formula, 

∫  
 

 
(xi,tj)dx =

 

  
  (u(0,tj)+u(h,tj)+2∑     

   (xi,tj))     , j=   ̅̅ ̅̅ ̅                                   (13) 
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Figure 1-The exact and the numerical solutions for the direct problem (1)–(5), for 

various mesh sizes (a)M = N = 10 (b) M = N = 20 (c) M  = N  = 40 and (d) M  = 

N  = 80 for Example 1. Also, the error graph is included.  

 

Table 1-The exact and numerical value for desired output µ1(t) at various time node and 

mesh sizes . 

T 0 0.2 0.4 0.6 0.8 1 

N=M=10 1 1.8000 2.6000 3.4000 4.2000 5.0000 

N=M=40 1 1.8000 2.6000 3.4000 4.2000 5.0000 

N=M=20 1 1.8000 2.6000 3.4000 4.2000 5.0000 

N=M=80 1 1.8000 2.6000 3.4000 4.2000 5.0000 

Exact 1 1.8000 2.6000 3.4000 4.2000 5 

 

Table 2-The exact and numerical value for desired output µ2(t) at various time node and 

mesh sizes . 

T 0 0.2 0.4 0.6 0.8 1 

N=M=10 1.3350 2.1350 2.9350 3.7450 4.5350 5.3350 

N=M=40 1.3338 2.1338 2.9337 3.7337 4.5337 5.3337 

N=M=20 1.3334 2.1334 2.9334 3.7334 4.5334 5.3334 

N=M=80 1.3334 2.1334 2.9334 3.7334 4.5334 5.3334 

Exact 1.3333 2.1333 2.9333 3.7333 4.5333 5.3333 

4 Solution of the inverse problem 

We aim to find the numerically stable reconstructions for inverse problem which is described 

in Section 2. The one-dimensional heat equation together with temperature distribution 

u(x, t) satisfying the problem is given by equations (1)-(5). At initial time; i.e, at t = 0, we 

can use the input data to obtain values for a(0) and b(0) which will be described in next 

subsection. These values will be considered as initial guess in iterative process of solving 

the inverse problem. In order to solve this problem, we recast the inverse problem as nonlinear 

minimization problem. In other word, we minimize the gab between measured data and 

computed solution. Since the problem is ill-posed we adapt Tikhonov regularization 

method to find stable and smooth solution. The Tikhonov regularization functional can be 

constructed from overdetermination conditions (4) and (5) as follows : 

F(a,b):=||u(0,t) – 1(t)||
2
+||∫  (   )    

 

 2(t)||
2
+β1||a(t)||

2
+β2||b(t)||

2 
,  (14) 

Or ,in discredited form  

F(a,b)=∑ (  
   (0,tj) – 1(tj))

2
+∑ (∫  

 

 
 
   (x,tj)dx – 2(tj))

2
+β1∑   

   j
2
+β2∑   

   j
2
,               (15) 

where, βi ≥ 0, i = 1, 2, are regularization parameters and should be determined  according 

to suitable selection strategy. The norm is taken in the space L
2
[0, T ]. Also, u(x, t) solves (1)-
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(5) for given a and b. 

The minimization of the objective functional (15), subject to simple physical bound 

constrain b > 0 is  accomplished using lsqnonlin routine from MATLAB optimization 

toolbox, for more details see [14]. During the simulation, we use the parameters of the 

routine lsqnonlin, by default as, follows: 

• Maximum number of iteration (MaxIter) = 10
4
× (number of variables). 

• Maximum number of objective function evaluation (MaxEval) = 10
6
× (number of 

variables). 

• Solution tolerance (SolTOL)= 10
−10

. 

• Objective function tolerance (FunTOL)= 10
−10

. 

The inverse problem(1)-(5) is solved subject to both exact and noisy measurements (4) 

and (5). The noisy data is numerically simulated by adding random errors as follows: 

                                                    
  (  )  𝜖                              j=    ,           (16) 

                                                    
  (  )  𝜖                              j=    ,           (17) 

 

where 𝜖1,and 𝜖2 are random vectors generated from a Gaussian normal distribution with 

mean zero and standard deviations σ1 and σ2 which  are  given by 

σ1 = p × max |µ1(t)| ;  σ2 = p × max |µ2(t)| , (18) 

t∈[0,T ] t∈[0,T ] 

where p is the percentage of noise. We use the MATLAB bulletin function normrnd 

to generate the random variables 𝜖1  = (𝜖1,j)and j =     and 𝜖2 = (𝜖2,j), 

 j =      as follows: 

𝜖1  = normrnd(0, σ1, N ),                                      (19) 

 𝜖2  = normrnd(0, σ2, N ).                                                   (20) 

4.1 Initial guess for unknowns a(t) and b(t) 

During the iterative process of solving the inverse problem we need initial guess to start 

with. These values for a(0),  and b(0) can be computed form input data as follows; 

Consider the inverse problem (1)-(5) with unknown coefficient a(t), and b(t)  evaluate 

equation (1) at x = 0, we have: 

b(t)uxx(0, t) =   
 ( t)− f (0, t),                            (21)  

on the other hand, differentiating (5) with respect to time; 

  
 ( )  

 

  
(∫  (   )  ) 

 

 

 

=∫  (   )  ) 
 

 
 

∫ (( ( )   ( ))     (   ))    
 

 

 
 

by integrating by parts we get, 

    
 = ( ) ∫         ( ) ∫       ∫  (   )    

 

 

 

 

 

 
 

           = ( )   ( )+u(0,t)-u(h,t)+b(t)(  ( )    ( ))+ ∫  (   )  
 

 
,                  (22) 

from last equation we arrive to 

 ( )   ( )   (   )   (   )   ( )(  ( )    ( ))    
 ( )  ∫  (   )    

 

 
  (23) Copsulating equations 

(21) and (23) in matrix form  
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[
    (   )

   ( )   (   )   (   )   ( )    ( )
] [

 ( )

 ( )
]=[

  
 ( )   (   )

  
 ( )  ∫  (   )  

 

 

] 

Solving the above system we obtain  

                          a(t)=
  
 ( ) ∫  (   )    ( )(  ( )   ( ))

 
 

   ( )  (   )  (   )
   

 

                          b(t)=
  
 ( )  (   )

   (   )
,  

evaluating the last equations at t =0 using the compatibility conditions we have; 

a(0)=
  
 ( ) ∫  (   )    ( )(  ( )   ( ))

 
 

   ( )  ( )  ( )
 ,                                              (24) 

                     b(0)=
  
 ( )  (   )

   ( )
 .                                                     (25) 

      
 

 

5  Results and discussion 

In this section, we present numerical solutions for the recovery of timewise coefficients 

a(t), b(t), and the temperature u(y, t), in the case of noisy and exact data (4)-(5). To  

assess the accuracy of the numerical solution we utlize the root mean square error (rmse) 

which is defined as: 

 

    rmse(a)=*
 

 
∑           (  )        (  ))

  
   +2

                                   (26)  

 

    rmse(b)=*
 

 
∑           (  )        (  ))

  
   +2

                       (27)                                                            

In our simulation we fix T = 1 

5.1   Example for inverse problem 

Consider the inverse problem (1)-(5) with the input data in the example of direct problem 

except the coefficients a(t) and b(t) are unknown. 

One can notice that the conditions of Theorems 1, and 2 are satisfied hence, a solution  

exists, and it is unique. 

5.2    Case 1: no noise and no regularization 

We start the numerical investigation with case of no noise included in the measurements 

equations (4) and (5), i.e. p = 0 in the equation (18). We choose various mesh sizes 

M = N ∈ {10, 20, 40} in order to test our numerical scheme and algorithm. Figure 2, shows 

the objective function (15) as a function of the number of iterations. From Figure 2 one 

can clearly observe the speed minimization and convergence to local minimum in no more 

than 90 iterations, in the case where M = N  = 40 is taken, to reach a very low value of 

order O(10
−9

). One can notice that if the number of mesh size is increased then the number 

of iterations required to reach the minimum value is also increased. 

The corresponding numerical results for time-dependent coefficients are presented in Figure 

3. From Figure 3 we notice that an accurate and stable reconstruction for unknowns are 

obtained as the number of mesh size increased shows that the results are mesh independent
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Figure 2- The objective function (15), where no noise included. 
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5.3 Case 2: with noise and no regularization 

In this case we will study the inversion of the problem where the input data contaminated 

with p = 0.1% noise as in equations (18) via (16) and (17) for µ1 and µ2, respectively. 

Figure 4, presents the regularized objective function as a function of the number of 

iterations. From Figure 4 it can be seen that unstable and oscillatory retrievals are 

obtained. Which indicates that the problem under investigation is ill-posed and small 

error in the input data (µ1, µ2) causes a huge errors in the outputs solutions (a, b). 

Commonly, the naive least squares minimizations produce such results for ill-posed 

problems. 
10
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Figure 4-The unregularised objective function (15), where p = 0.1% noise included, 

and no regularization applied for Example 1. 
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5.4 Case 3: with noise and Tikhonov regularization 

Next, to restore the stability and obtain stable and accurate results we have to apply 

Tikhonov regularization method by adding penalty term of the form β1ǁaǁ
2
 + β2ǁbǁ

2
 to the 

naive least squares errors functional as it placed in equations (14) and the discrete form in 

(15). In the first stage, we select the regularization parameters β1 and β2  to be  equal and 

belong to the set {10
−7

, 10
−6

, 10
−5

, 10
−4

, 10
−3

, 10
−2

, 10
−1

}. That means we look diagonally to 

the Table 3. From Table 3 one can clearly observe that the best selection for 

regularization parameters is β1  = β2  = 10
−3

, that the rmse(a), and rmse(b) have the 

lowest value. We Justify the selection of this value , if we use the L-curve criterion by 

Hansen, [15]. The method is based on a plotting, in a suitable scale, the solution norm 

versus the corresponding residual norm 

for all valid regularization parameters. Figure 6 indicates that the so-called corner of 

the L-curve gives a regularization parameter which provides an acceptable compromise 

between the data gap and regularization terms in the objective functional (14), 
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The related numerical results are presented in Figures 7–8. From Figures 7-8 one can 

observe that an oscillation free and reasonably accurate reconstructions are obtained. All 

other combinations of the pair of regularization parameters (β1,β2) are listed in Table 3. 

Each cell of Table  3 represents the rmse values for numerically obtained solutions of a(t), 

and b(t) which is calculated by the expression (27) and (26), respectively. 
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Figure 7-The regularised objective function (15), where p = 0.1% noise included, and 

regular- ization applied for Example 1. 
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Figure 8-The exact and the numerical solutions for (a) a(t) and (b) b(t) where p = 

0.1% noise included, and no regularization applied for Example 1. 
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Table 3-The rmse values for recovered coefficients a and b, for Example 1 with p = 

0.1% noise 

 

β2 
 10−7 10−6 10−5 10−4 10−3 10−2 10−1 

10−7 rmse(b) 

rmse(a) 

0.3472 

1.0798 

0.3272 

0.8830 

0.4770 

0.6438 

0.4727 

0.2243 

0.5181 

0.2274 

0.6449 

0.5585 

0.7127 

0.6831 

10−6 rmse(b) 

rmse(a) 

0.3948 

1.1419 

0.3231 

0.8838 

0.4737 

0.6431 

0.4650 

0.2244 

0.5103 

0.2273 

0.6374 

0.5585 

0.7074 

0.6830 

10−5 rmse(b) 

rmse(a) 

0.4101 

1.2403 

0.3736 

1.0287 

0.4211 

0.6289 

0.3617 

0.2227 

0.3495 

0.2262 

0.3047 

0.5564 

0.4465 

0.6830 

10−4 rmse(b) 

rmse(a) 

0.2496 

1.3478 

0.2391 

0.9793 

0.2204 

0.4791 

0.1907 

0.2022 

0.1979 

0.2166 

0.3047 

0.5546 

0.3616 

0.6825 

10−3 rmse(b) 

rmse(a) 

0.0941 

1.2278 

0.0923 

0.8884 

0.0884 

0.4199 

0.0791 

0.2010 

0.0849 

0.1368 

0.2470 

0.5204 

0.3273 

0.6778 

10−2 rmse(b) 

rmse(a) 

0.2217 

0.9485 

0.2199 

1.0948 

0.2187 

0.7112 

0.2107 

0.5748 

0.1497 

0.3453 

0.1234 

0.2676 

0.2942 

0.6335 

10−1 rmse(b) 

rmse(a) 

0.5478 

1.4976 

0.4609 

1.5127 

0.4587 

1.4737 

0.4542 

1.3997 

0.4249 

1.2383 

0.2605 

0.5935 

0.1512 

0.3356 

 

6 Conclusions 

An inverse problem finding a couple of timewise coefficients has been investigated 

numerically under over specified Dirichlet boundary data and energy/mass specification 

for one- dimensional heat equation. The forward (direct) solver based on a Crank-

Nicolson finite difference scheme has been developed. Minimization of the nonlinear least-

squares functional is applied in order to render accurate solutions. This problem solved 

iteratively using trust-region algorithm which encapsulated in lsqnonlin routine from 

MATLAB. This problem has been investigated under exact/noisy data and with/without 

regularization. The L-curve method is used to determine the optimal choice of 

regularization parameter. The numerically obtained results is shown that an stable, and 

oscillation free retrievals are obtained. 
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