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Abstract

In this study, we propose a suitable solution for a non-linear system of ordinary
differential equations (ODE) of the first order with the initial value problems (IVP)
that contains multi variables and multi-parameters with missing real data. To solve
the mentioned system, a new modified numerical simulation method is created for
the first time which is called Mean Latin Hypercube Runge-Kutta (MLHRK). This
method can be obtained by combining the Runge-Kutta (RK) method with the
statistical simulation procedure which is the Latin Hypercube Sampling (LHS)
method. The present work is applied to the influenza epidemic model in Australia in
1919 for a previous study. The comparison between the numerical and numerical
simulation results is done, discussed and tabulated. The behavior of subpopulations
is shown graphically. MLHRK method can reduce the number of numerical
iterations of RK, and the number of LHS simulations, thus it saves time, effort, and
cost. As well as it is a faster simulation over the distribution of the LHS. The
MLHRK method has been proven to be effective, reliable, and convergent to solve
a wide range of linear and nonlinear problems. The proposed method can predict the
future behavior of the population under study in analyzing the behavior of some
epidemiological models.

Keywords: Nonlinear system of ordinary differential equations, Epidemic model,
Runge-Kutta (RK) method, Latin Hypercube Sampling (LHS) method, Numerical
simulation methods.
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1. Introduction:

The differential equation is very useful for modeling, simulating phenomena and
understanding how the natural problem can be formulated not just a value or a set of values,
but a function or a class of functions.

The problem of the present study, multi-parameters of the non-linear system of ordinary
differential equations (ODE) with missing their real data is that matter needs to solve the
system and to estimate their parameters in the same time. Epidemic refers to an increasing in
the number of disease cases in the population of a particular region such as influenza, cholera,
measles, malaria and others. The epidemic may be in one place, however if it spreads to other
countries and it affects a large number of people, it may be called a pandemic. Two kinds of
epidemic models social and biology epidemic models. The study of epidemiology has spread
significantly; the problem was studied by several authors such as study the fitting curve of the
influenza epidemic in Australia in 1919 [1]. 50-100 million deaths people were recorded who
have been affected by the influenza epidemic that means the influenza epidemic is a global
epidemic that is spreading very quickly across the world and infecting much of the
population. Estimation of outstanding claims liability and sensitity analysis. Herlambang and
Tampubolon in 2008 studied estimation of outstanding claim liability and sensitivity analysis.
probabilistic trend family (PTE) model [2]. Mutaqgin, et al. in 2008 studied generating claim
data of general insurance based on collective risk model and claim process [3]. Asmawati and
Juliana in 2008 studied Combining individual learning ,and group discussion in calculus
course [4]. Kinyanjui, et al. in 2015 studied Vaccine induced herd immunity for control of
respiratory syncytial virus disease in a low-income country setting [5]. Beauparlant in 2016
studied a metapopulation model for the spread of MRSA in correctional facilities [6]. Leung,
et al. in 2016 studied periodic solutions in a SIRWS model with immune boosting and cross-
immunity [7]. Pei, et al. in 2019 studied predictability in process-based ensemble forecast of
influenza [8]. The social epidemic problems attracted a lot of attention and was studied by
several authors such as Sabaa, et al. studied approximate solutions for alcohol consumption
model in Spain in 2019 [9]. Many authors proposed Runge-Kutta numerical method to solve
the social epidemic models. Mohammed et al. discussed numerical solution for weight
reduction model due to health campaigns in Spain in 2015 [10]. Sabaa and Mohammed in
2020 studied approximate solutions of nonlinear smoking habit model [11].

To produce data for the parameters of a real model random numbers are usually created in
a sequence by a specific code for some programs in computer to generate them, this process is
called simulation. In our study simulations process (LHS) is used. Elsevier and AB
McBratney studied a conditioned Latin hypercube method for sampling in the presence of
ancillary information in 2006 [12]. One of the statistical tasks is to determine the appropriate
sample size for the study because this statistic largely depends on the sample size [10].
Inevitable epidemiological models are represented as a non-linear system of differential
equations that have parameters missing their real data. These models are solved using a
simulation approach to evaluate random parameters for deterministic epidemiological models
that have specific distribution and approximate their solutions. The statistical simulations
process (LHS) run multiple times to simulate the parameter values, then estimated parameters
are combined with a reliable numerical method to be a numerical simulation method to
simulate the parameter values to solve the influenza epidemic problem under study. Some
authors solved the social epidemic models by numerical simulation methods such that
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Mohammed, et al. in 2018 discussed the non-conventional hybrid numerical approach with
multi-dimentional random sampling for cocaine abuse in Spain [13]. Mohammed, et al. in
2019 discussed Mean Monte Carlo finite difference method for random sampling of a
nonlinear epidemic system [14]. Sabaa in 2019 proposed modified numerical simulation
methods Mean Monte Carlo Runge-Kutta that was applied to two the social epidemic models,
namely nonlinear smoking habit, and alcohol consumption model [15].

This research is arranged as follows: in Section 2, the mathematical model of an influenza
epidemic is descried. Statistical technique: Latin hypercube sampling (LHS) to simulate
model’s parameters is introduced in Section 3. In Section 4, numerical methods (Runge-
Kutta) are presented. In Section 5, the modified process which is Mean Latin Hypercube
Runge-Kutta (MLHRK) method is constructed as a sutible numerical simulation method to
applied on the influenza epidemic model. In Section 6, the results of the current methods are
discussed and shown tabulary and graphically the influenza epidemic model under study, the
version (9.0) for MATLAB R2016a is used to obtain the results of the influenza epidemic
model which is the present application. Finally, some conclusions for outcomes are mentioned
in Section 7.

2. Mathematical Model:

Modeling is an important and powerful tool for understanding the effects and transmission
of epidemic diseases [16]. Mathematical models are used to plan, implementation,
comparision, evaluation, prevention, treatment, and other matters [17]. The mathematical
models describe different processes in mathematics, physics, and biology [18]. The modeling
requires an initial effort to reduce complexity. Examining the model is important to prevent
the spread of the epidemic. The system consists four equations, and four variables which are
S(t),E(t),1(t), R(t) represent healthy persons, infected persons that does not cause infection,
the person is in the incubation period, infected persons and the cause infection after in the
incubation period the persons who recover or die. So that our model is made (SEIR) with
eight parameters B, u,7, 98,0, k, a,y that connect variables. The SEIR model is used to study
disease progression and to obtain some estimates and comparisons [19]. The influenza model
was introduced as a system of the first order nonlinear ordinary differential equations in
equations (1-4):

S'(t) = — B~ —uS +rN + bR, (1)
E'(t) = ,8% - (u+ o+ K)E,

(2)

I'(t) = cE — (u+a+y)l,

3)

R'(t) = kE + yI — uR — 6R.

(4)

Table 1. describes the variables of influenza model S(t),E(t),I(t),R(t), and Table 2.
describes the parameters of influenza model B, u, 1,46, 0, k, a,y, the initial conditions (random
variables) of equations (1-4) are as follows : S, = 4865.0000, E, = 9.0000000, I, =
68.000000, R, = 0.0000000 for first wave, S, =0.3982, E, =0.000010, I, =
0.000079, R, = 0.0000000 for second wave, N is the total population such that N = S +
E + 1+ R, and the time period is specified in days; (0,70) was used to obtain results by
Samsuzzoha, Manmohan Singh and David Lucy [1].
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Table 1- Description of variables for the influenza model, [1]

Variables Description
S(t) Proportion of susceptible population
E(t) Proportion of exposed population
1(t) Proportion of infective population
R(t) Proportion of recovered population

Table 2- Description of parameters for the influenza model, [1]

Parameters Description Value of parameters
B Contact rate 0.5020000
i Natural mortality rate 0.0003671
T Birth rate 0.0006762
1) Duration of immunity loss 0.0027400
o Mean duration of latency 0.6990000
K Recovery rate of latent 0.0001500
a Flu induced mortality rate 0.0300000
y Mean recovery time for clinically ill 0.3600000

3. Methodology

In this section, statistical method (LHS) is sued to simulate the model’s parameters,
numerical methods (RK) and modified numerical simulation method (MLHRK) is used to
solve the system numerically and approximately.
3.1 Latin Hypercube Sampling (LHS) Technique

Latin Hypercube Sampling is one of the known stratified statistical methods and type of
stratified sampling that used to generate random samples for a multidimensional random
distribution of a multidimensional model over the certain period in present study. It is fast
method, and it is efficiency method that saves effort and time with a small number of sample
elements. The results can be accurately reached. The sampling methods are different in the
time and the results obtained. LHS is an appropriate method to solve any system because the
system is made up of multiple variables and parameters to solve, therefore a stratif sampling
becomes necessary. LHS provides more accurate, better simulation results and closer to the
statistical values even if the number of iterations is few because it is often faster to reach a
good representation of the probability distribution.

The name LHS is Latin squares sampling that N x N arrays contain various elements. Each
element in a Latin square exactly occurs once in each row and column. The elements occur
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once in each hyperplane when the LHS concept is applied to a multidimensional setting to
make up a Latin hypercube. Each layer is represented by the elements in the hypercube, the

layer is divided into equal intervals [ﬁ,%] based on the number of samples required [20].

Before using this method we must create the random numbers then we create a sample that
has a uniform distribution, after that we specify the number of simulations [21]. In addition
LHS remember in which row and column the specific sample was taken, this is called a
system mentioned in the approach compared with the rest of the methods such as MC it needs
a large number of iterations in order to provide accurate simulation results because the sample
comes from anywhere to distribute the inputs so this is without memory in the approach.
Therefore it is sometimes inactive. LHS distributes the sample values even in small areas,
while MC distributes the samples in large areas, and without cutting so that the LHS method
is better than MC method [9, 19, 20].

3.2 Runge-Kutta (RK) Numerical Method

Runge-Kutta is one of the most famous multi-stage methods. Runge-Kutta techniques had
been introduced around 1900 by C. Runge and M. W. Kutta. Runge-Kutta is an effective,
iterative numerical method consisting of several stages, the arrangement of the method is
determined by the number of stages, this method can be applied to the ordinary, partial,
explicit, implicit, delaying differential equations etc [22]. It is easy to understand and
implement. Runge-Kutta generates a series of approximate solutions converging to the exact
solution. Runge-Kutta plays a major role in many branch of science, engineering and
economics that frequently contain mathematical models of ordinary differential equations
[23]. In our study, RK method is used to solve the nonlinear system of an influenza model of
the first order ODE for initial value problems. Two types of Runge-Kutta numerical methods
have been used.

3.2.1 Runge-Kutta of order four (RK,):

Runge-Kutta of order four (RK,) is suggested an approximation for solving the system of
non-linear ordinary differential equations (ODE) of the first order with the initial value
problem (IVP). The RK, is a numerical method that gives more accurate results than some
other numerical methods such as Finite Difference (FD) method.

The general form of the first order for ordinary differential equation (ODE) can be written as
follows:

y'=f(ty), a<t<b, withinitial value y(a) = a,,

where f is nonlinear function, y is the dependent variable, t is the independent variable while
a, b and a,, are positive real constant values.

The most common form of the four-stage of the explicit RK method [23] is:

ki = hfi(t,y:) ()

ky = hfy(ti+ 2,y + = (6)
ks = hfs(ti+5, 5 +2) )

ky = hfy(t; + h,y; + k3) (8)
The general formula of y;,; for the RK, method is

Vies = Vi + < (ky + 2k + 2k3 + ky) 9)

where fi, >, f3, fo are unknown function, t is a time and h is a step size
The most common form of the four-stage of the implicit RK method [23] is:

ki = f1(t, yi) (10)
ky = folti +5, 5+ 2 (11)
ks = fi(ti +5, 5+ 2 (12)
ko = fati + by + hiks) (13)
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The general formula of y;,; for the RK, method is
h
Yi+r = Yi 2 (ky + 2ky + 2k + ky) (14)
where f, f>, f3, f» are unknown function, t is a time and h is a step size.

Now, to find kg, kg1, k;1 and kg4, we following the next steps in equations (10-14).
ksy = hfi(ty, Si, Ei 11, Ry)

= h (_T'B IiSi - }JSL' +rN + 6Ri), (15)

kg, = hf2 (8, Si Eiy I, R;y)
= h(% Il'Si—(|J.+O'+K')Ei), (16)

k;1 = hf3(t;, Si, Ei 1, R;)
=h(oE; — (u+a+y);), (17)

kri = hfy(ti, Si, Ei, I, R;)

wherei =0,1,..,n — 1.
In the same way, ks, kg2, ki and kg, can be found to obtain the second step in equations
(15-18) where f3, f2, f5, f» are unknown functions, t is a time and h is a step size:

h 1 1 1 1
ks, = hf;(t; + E'Si + EkSLEi + EkElrli + Ekleri + Ele)

- 1 1 1 1
= h (L (1 +3ki) (S +5kst) —w(Si + ks ) + TN + 8 (R + 2 hery ), (19)
A1 1 1 1
kg, = hf; (¢ +§:Si +§ks1, E; +EkE1, I; +§k11'Ri +§kR1)
1 1 1
=h (E(1+2kn) (Si+2ke) =t o+ 1) (B + ki), (20)
A1 1 1 1
ki, = hfs (t; +§;5i +Ek51;Ei +EkE1:Ii +§k11, R; +§km)
1 1
=h (0 (B +3ke1) = (nta+7) (L +3kn)), (21)
hoo1 1 1 1
kg, = hfs (t; + E'Si + EkSLEi + EkEpIi + Eku,Ri + Ekm)
1 1 1 1
—h <K (Bc+ 2kp )+ v (1 2hen) = w (R + 2 heas ) — 6 (R, +5kR1)). 22)

wherei =0,1,...,n— 1.

In the third stage, we try to find kg3, kg3, k3 and kg3 by substituting in the system (1) as
below in equations (19-22) where fi, f2, f3, fa are unknown functions, t is a time and h is a
step size:

h 1 1 1 1
ks3 = hfy (t; + 55t EkSZJEi + EkEZJIi + EkIZrRi + EkRZ)
- 1 1 1 1
= h (L +3kin) (S +3ks2) = 0(S; +3ks) + TN + 6 (Ry + ks ), (23)
h 1 1 1 1
kg3 = hfz (t; + EJSi + Eksz:Ei + EkEZ:Ii + EkIZ:Ri +§kR2)
1 1 1
=h(E(1+3k) (Si+3ks2) = (w0 + 1) (B + 5 kg2 ), (24)
h 1 1 1 1
kiz = hfs (t; + EJSi + Eksz:Ei + EkEZ'Ii + EkIZ:Ri +§kR2)
1 1
= h (0(E; +2ksz) = (Wt a+7) (I + ki), (25)

h 1 1 1 1
krz = hfy (t; + E!Si + Eksz,Ei + EkEZ;Ii + Eklz,Ri + EkRZ)

—h <K (Bc+ 2kg )+ v (1 2hen) = w (R + 2 hens) — 6 (R, +§kR2)). (26)
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wherei =0,1,..,n — 1.

The fourth stage needs to find kg,, kg4, k;4 and kg, as below, in equations (23-26) where
fi, 2, f3, fa are unknown functions, t is a time and h is a step size:
ksy = hfy (ti + b, S; + kg3, E; + kgz, I; + ki3, Ry + kg3)

= h (L (L + ki) (Si + ksa) = W(S; + ksa) + 7N + 8(R; + kga)), (27)

kgs = hfy (t; + b, S; + kg3, Ey + kg3, [; + ki3, Ry + kg3)
= h(E 1+ kig) (Si+ ks3) = (+ 0+ 1) (E; + kis)), (28)

kig = hfs3 (t; + b, S; + kg3, Ey + kg3, I; + ky3, Ry + kg3)
=h (o(E; + kgz) — (L+a+y) (i +kpiz)), (29)

kra = hfy (t; + h, S; + kg3, Ey + ki3, I; + ki3, Ry + kg3)
=h (K(Ei +kgs) + v (i + kyz) — p(R; + kgs) — (R + kR3))- (30)

wherei =0,1,...,n— 1.
3.2.2 Runge-Kutta of order four (RK,s):

Runge-Kutta of order four (RK,s) is presented an approximation for solving the system of
non-linear ordinary differential equations (ODE) of the first order with the initial value
problem (IVP). It is a suitable method to obtain stable results.

The most common form of the six-stage of the explicit RK method is:

ki = hfy (s 7)) (31)
ky = hfy(t+ 2,y +°2) (32)
ks = hfs(ti+ 50,5+ 32+ 22) (33)
o= A 5 R Tt @
ks = hfs(ti + h,y; + Tt — Bk, + 2222 — 22 (35)
e B e @

The general formula of y;,; for the RK, method is

_ 25k, . 1408ks; . 2197k, 1k 37
yl+1_yl+216+ 2565 + 4104 5 (37)

where f1, f>, f3, fa, f5, fo @re unknown function, t is a time and h is a step size.

Now, To find kg, kgq, k;; and kg,, we following the next steps in equations (38-41) where
fi, f2, f5, fo are unknown functions, t is a time and h is a step size:

ksy = hf1(t;, Si, Ei, I, Ry)

= h(_N_B IiSi - HSL' +7rN + 6Ri), (38)

kg1 = hf2 (8, Si Ein I Ry)
= h(E1s,—(uto+ K)El-), (39)

ki = hf3(ti, Si, Ei, 1, R;)
=h(0E;—(u+a+y);), (40)

kri = hfy(t;, Si, Ei 1, R;y)

wherei =0,1,...,n — 1.
In the same way, kg, kg, k;» and kg, can be found to obtain the second step in
equations (42-45) where f;, f>, f3, f4 are unknown functions, t is a time and h is a step size:

h 1 1 1 1
kSZ = hfl(tl + _’Si + ZkS'DEi + ZkEllIi + ZklllRi + Zle)

4
- 1 1 1 1
=h (L (1 +5k) S+ 5kt ) —u(Si+5ks) + N+ 8 (Ri+ 2k ), (42)
hooo1 1 1 1
kgz = hfy (¢ + Z’Si + stl, E; + ZkEl, I; + Zku,Ri +ZkR1)
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=h (E(1+3kn) (Si+3ks) = (o +50) (B + kg ), (43)
ki = hfs (t; + %;Si + %kaEi + %kElrli + %kll' R; +%km)
=h(o (Ei + %km) - (pta+y) (Ii + %ku))' (44)
krz = hfy (t; + EJSi + lkSlei + lkm»]i + 1k11,Ri + 1le)
4 4 4 4 4
= h (K (Eo+3key )+ v (hi+3kn) —w(Ri +3kes) — 8 (R, +%km)>. (45)

wherei =0,1,...,n— 1.

In the third stage, try to find kg3, kg3, k;3 and kg5 by substituting in the system (1) as
below in equations (46-49) where f1, f>, f3, f» are unknown functions, t is a time and h is a
step size:

3h 3 9 3 9 3 9
kss = hfy (t; + §3;5i + 5"51 +§k5‘2:Ei + ﬁkm +§kE2:Ii +§k11 + ﬁkIZ'Ri

) + 35 k1t 35 kR2)

- 3 9 3 9 3 9

=h (5 i+ g5k + k) (Si + 55 ks + 5 Ks2) — U(Si + 55 kst +5k52) + rN +
5 (Ri+ Zkas + =krz)), (46)

3h 3 9 3 9 3 9
kgs = hf; (¢ +?'Si +§k51 +§k52:Ei +§k51 +§kE2'1i +§k11 +§k12:Ri

3 9
+ ﬁkm + ﬁkRZ)

3 9 3 9 3 9
= h(%(li +55kn +3—2k12)(5i + 5 ks1 + 55 ks2) = (Wt o +x) (Ei + 55 ke +3—2k52)),

(47)
3h 3 9 3 9 3 9
ki3 =hf; (t; + ?3:51' + 3_29’(51 + ﬁksz»Ei + ﬁkm + ﬁkEZ'Ii +§k11 +§k12;Ri
+§km +§kR2)
3 9 3 9
=h (o(E; + 3_2kE1 + EkEZ) - (ut+a+y) (Ii + 3_2k11 + 3_2k12)). (48)
3h 3 9 3 9 3 9
krs = hfy (t; +§3'5i +%ks1 +3_2k52'Ei +3_2k51 +3_2kE2'Ii +3_2k11 +3_2k12’Ri
+3_2le +3_2kR2)
3 9 3 9 3 9
=h (K (El +3_2kE1 +3_2k52 ) + Y (Il +3_2k]1 +3_2k12) — H(Rl +3_2le +3_2kR2) -
3 9
8 (Ri + = ke +§kR2)). (49)

wherei =0,1,...,n— 1.
The fourth stage needs to find kgy, kg4, k14 and kg, as below, in equations (50-53) where

fi, f2, f3, fo are unknown functions, t is a time and h is a step size:
12h 1932 7200 7296

kss = hf; (t; +§;5i +mks1 - mksz +mk53,
. 1932k 7200k +7296k . 1932k 7200k
t 72197 "E1 " 2197 7E2 T 2197 "E¥ L T 219711 2197 12
7296 1932 7200 7296

S R: + —— - — S
+ 2197 i, Ri + 2197 kra 2197 kra + 2197 krs)
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1932 7200 7296 1932 7200 7296
=h ( (1 t ok T gy ket 55 ks )i+ o5 ks — g ks + 2197k53) (Si +
1932 7200 7296 1932 7200 7296
7107 K51 Zrg7 Ks2 ¥ 2197k53) + TN +6( 2107 KR1 g7 Kra +2197kR3)> (50)
e t+12h5+1932k 7200k +7296k
pa = Mz (& 13’8 7 2197 St 2197 752 T 2197 ¥
. 1932k 7200k 7296k L+ 1932 N 7200
i ¥ 5197 F1 T 5197 2 5197 B3 2197 11 2197 712
7296k - 1932k 7200k 7296k
2197191332, i 2712207 “ 7229%9‘7 2:Ilh‘(99372 R3) 7200 7296
—h(—(l + o5,k 1291? 2 %km)@n;m(n 51 J197 Ks2 T 555 Ks3) —
(Mt+o+Kr)E+— 2197 kgi — mkEZ 2197 ——kg3)), (51)
R e +12h ¢ +1932k 7200k 7296k
14 = fs (& 13 721 T 2197 %1 7 3197 %2 T g7 Ksw
£t 1932 y 7200 7200, 7296 7296 - 1932 N 7200
£ 72197 "F1 " 2197 "E2 T 2197 "E¥ L T 919711 2197 12
.\ 7296k R+ 1932k 7200k 7296k
2197 3% ¥ 5197 2197 Rz T 5197 r3)
1932 7200 7296 1932 7200
- h72(9i (E + 2197k E1 ™ 5197 7107 KE2 T 2197 kE3) (Rt+aty) @i+ 2197k n— 5197 7107 iz t
2197 ki3)), (52)
e G +12h ¢ +1932k 7200k 7296k
ra = Ifa (& 13 21 T 2197 1~ 3197 %52 T g7 Ksw
s 1932 7200 B 7296 . 1932 7200
t 72197 "E1 " 2197 7E2 T 2197 "E¥ L T 219711 2197 12
. 7296k R+ 1932k 7200k 7296k
2197 13"t T 2197 2197’2 t 5197 r3)
1932 7200 7296 1932 7200
=h (E +2197 E1 ™ 5197 “E2 +2197 kE3> 14 (1 +2197 n— 5197 7107 Kz t
7296 1932 7200 7296 1932 7200
Ek”’) ( T %197 7107 KR1 ~ Ek""z 2197 kR3) 6<R * 2107 kr1 — Ekm +
7296
2197 kR3)) (53)

where i =0,1,...,n — 1.
The fifth stage needs to find kgs, kg5, k;5 and krs As below, in equations (54-57) where
fi, f2, f5, fo are unknown functions, t is a time and h is a step size:

ke- = hf, (t; + h, S +439k 8k +3680k 845k
E; +— 439 kg, — 8kg, + 3680 k 845 kpa, I; + 439 k 8k
216 E2 T 513 "E3 4104 F* 7 T 216 1 12
s 3680 4 845 .. 439 Kot — Blcg, + 2050 3680 . 845 845
iy 513 "B 4104 %’ 216 k2 513 R3 4104 Ra)
439 3680 845 3680
=h(— ( +Ek11 — 8k + =13 %13 7 1702 —k14)(S; + k — 8ks, + 513 — kg3 —
845 439 3680 845
mk‘”) u(S + 216k 1~ 8ksy + 513 kss — 4104 k54) + TN +9 (Ri + Ekm -
3680 845
8Kz + oz Ky — ks ), (54)
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kgs = hf, (t; + h, S; +439k 8k +3680k 845k
439 3680 845 439
E+216k 8kE2+—513 kE3__4104kE4lIl+ﬁk11_8k12
3680 K, 845 koo R+ 22 439 ks — 8kpy + 20 3680 ke 845
A I
=h (—(1 +Ek’1 8k, + =13 13 7 2702 —k) (5 + 216k — Bkg, + k53 -
845 439 3680 845
2102 ksy) — (u+o+ K)4(§'9+ k E1— 8’;156280 kE§454104 kga)), (55)
is = hfs (& + b, Sy 5= ks = 8ksy + ks = o Ko
439 3680 845 439
E; + mkm — 8kgp + mklss - mkm,li + mkn — 8k,
4 3680 I 845 kpu R+ o0 439 ks — 8kpy + 3680 ke 845 84
513 1 4104’ 216 : R2 7513 "R3 4104 R4)
439 3680 84 439
=h (o (E + 2 ks — Bl + ks — 4104kE4) (Wt a+y) Ui+ kny
3680 ‘845
8k, + 513 — ki3 — 2102 kis)), (56)
439 3680 845
kgrs = hfy (t; + h,S; + mkﬂ — Bkg, + mkﬁ —mk&p
439 3680 845 439
E +216k 8kE2+mkE3_mkE4,Ii+mk11_ 8k12
4 3680 I 845 kpu R+ o2 439 ks gl 4 2080 3680 ke 845 84
513 1 4104’ 216 R2 77513 "R3 4104 R4)

439 3680

= h ( (E +216k - 8kE2 + 513 kE3 4104kE4-) + y (I +216k - 8k12 +

3680 845 3680 84
513 13 4104 k”) H (R t 216 k — 8kpy + 513 S13 Kr3 4104 kR4) 0 (R t 316 k
3680 845
8kgz + 513 krs — 4104 kR4)>' (57)

wherei =0,1,...,n— 1.
The sixth stage needs to find kg, ki, k16 and kge as below, in equations (58-61) where
f1, f2, f3, fa are unknown functions, t is a time and h is a step size:

h 8 3544 1859 11
kse = hfy (t; + 5151 - ﬁkm + 2kg, — 2565 kss + 2104 ksa —Ekss,
8 3544 1859 11
By — o= key + 2kps = Seee ks + 2707 Kea — 75 kes. i k11 + 2kpy
3544k 4 1859k 11k R — 8 or 4 2k 3544k
2565 714104 40 'S 27 R k2 7565 k3

N 1859k 11k
, 4104 ®** 40 rs)
— 8 3544 1859
=h (V(Ii_;kn + 2kp; —

11 8
ses K13 ¥ oo, Kia = 2o Kis) (Si — 5 kst + 2ksz —

3544 1859 11 3544 1859 11

2565 53 4104 Jesa = _k55) —H (S kSl + 2ks2 = 555 Ksa F grga Ksa — Ekss) +
3544 1859

TN + 8 (R; = o= kpy + 2kgy — e kR3 + 22 ks — ks ), (58)
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Ko = hfy (6 + oS — o kgy + 2y — oo gy + 02 e, —
8 3544 1859 11 8
E; — ﬁkm + 2k, — mkm + mkm ~ 70 —kgs, [ k11 + 2k,
3544k 4 1859 i 11 P 8 e 4 2k 3544k
2565 12 T 4104 1 40757t 7 7RY k2 9565 RS

1859 11

+ 2104 krs — 20 kgs)

B 8 3544
=h (W(Ii_;kn + 2k;; — 7560

1859
4104

g + o ks — ks ) (St — o ksy + 2ksy —

3544 1859 11 354-4- 1859
ﬁ? 53 mkﬂ - Ekss) —(n+o+K)(E; __kEl + 2kg, — 565 — kg3 mkm -
EkES))J (59)
h 8 3544 1859 11
kie = hfs; (t; + 5;51' — ﬁkm + 2kg, — mkss +mk54 _Ek“'
E 8k + 2k 3544k +1859k 11k I, ——kyy + 2k
b7 El B2 2565 "E3 T 4104 40 BT p7TH 12
3544k s 1859k 11k . 8 ok 3544
2565 137 4104 % 40 57t 27 7RY T
| 1859 - 11 .
4104 40 rs)
3544 1859 11
o =n (o (E; -3—54:@1 + 2K~ g ke + g ke ~ Zhgs) - (et a+y) U -
;kll + 2k12 2565 k13 4104 k14- - EkIS))I (60)

h 8 3544 1859 11
kre = hfs (ti+z'5i_ﬁk51+2k52_ﬁk53 mk —Eks&
8 3544 1859 11 8
Ei - ﬁkEl + 2kEZ 2565 E3 4104 E4 — 40 kE51 ﬁkll + 2kIZ
3544 . 1859k 11k . k 2k 3544k
2565 137 4104 1% 40 57t 7 TRR R2 = 9565 k3
. 1859 y 11 )
4104 ®* 40
8 3544 1859
= h <K (El —_— ;kEl + ZkEZ 2565 kE3 2104 kE - _kES) + )/ ( k]l + 2k12
3544 1859 11 3544 1859
ks + ks — 1 kis) — W (Ri = ke + 2kpo — ot K + 1o s —EkRs) —
3544 1859
8 (Ri = ks + 2wz — Joem e + oo ens = So ki) ). (61

wherei =0,1,...,n — 1.
3.3 Mean Latin Hypercube Runge-Kutta (MLHRK) Method:

The modified method is the first time mentioned that integrates the results between the
statistical simulations of random sampling with the classic numerical iterative approach of
Runge-Kutta (RK) formula. Whereas, the samples are estimated by LHS random process
before solving the system by the RK method. These samples contain the number of LHS
simulation values for each parameter that was generated by code in MATLAB [9]. This
method has been suggested to calculate the numerical simulation solution obtained for each
subgroup. The MLHRK method is performed using the Matlab program. The MLHRK method
is more effective than classical numerical methods that depend on a limited time. This method
is applied to solve the influenza epidemic model in the current study. The Latin Hypercube
sampling is repeated (200,500) times to simulate values of parameters as random sample.
The modified method is called Mean Latin Hypercube Runge-Kutta method The modified
process is called Mean Latin Hypercube Runge-Kutta method which is abbreviated by
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(MLHRK). The scenario of the suggested method in our study is as follows : reliable
numerical methods have firstly been used for solving nonlinear ordinary differential
equations of the first order to prove the solutions of the system under study. The numerical
simulation solutions for the influenza epidemic in Australia [1] are obtained using a modified
process that combines the numerical method RK and the statistical random sampling
technique LHS. The aim of this study to solve nonlinear ordinary differential equations of the
first order for the influenza epidemic model by using MLHRK method under initial
conditions. This modified approach simulates the rate of model parameters by LHS
technology before integration with iterations of RK. The steps of the MLHRK method are
summarized:

Step 1: All parameters have been simulated as LHS sample for n-times at once.

Step 2: For each random parameter, one value is specified and replaced in the system.

Step 3: Solve the system m-times iterations numerically by RK. The last iterative solution is
the final solution.

Step 4: Repeat steps 1, and 2 for n-simulations times.

Step 5: Calculate the mean final solutions (MLHRK) of the model from step 4. The number of
simulations is the total number of variables in the model present studied. The algorithm is
displayed as a flow chart to the model under study.

( )
Step 1: All parameters have been simulated by LHS for n

times at once
o )

Step 2: For each random parameter, one value is
specified and replaced in the system

Step 3: Solve the system m-times iterations numerically
by RK. The last iterative result is the final solution

a )
Step 4: Repeat steps 1 and 2 for n- times

\ S

-

Step 5: Calculate the mean of final solutions from step 4,
as a solution system, called MLHRK

Figure 1- MLHRK procedur

6. Results and Discussion

Several numerical statistical results of the influenza epidemic have been discussed through
70 days. Suppose m is the number of iterations, p is the number of simulations of MC, and
LHS operations and h is the step size. The parameters are treated as random variables having
uniform distribution over predicted values from previous study. The results have been
calculated by the Matlab program, and Figures have been drawn by the Magic plot program. It
is found that the proposed method is effective, reliable, and suitable in solving such problems
and there is a convergence between their results as it is shown in Tables 3 and 5. Error is a
measure of the convergence of a solution to the methods. For this, the absolute error of
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MLHRK method is less than the absolute error of MMCRK method as it is shown in the
Tables 4 and 6, where the absolute error is the difference between RK numerical, and
MLHRK mnumerical simulation results for both orders 4,and 4 and 5. The errors of MLHRK,,
and MLHRK,s are less than the errors of MMCRK,, and MMCRK,s, respectively. Therefore,
MLHRK method is better than the MMCRK method. The MMCRK, and MLHRK solutions
for influenza model in 70 days are inside the predicted interval of numerical.

From the Tables (3-6), we conclude, with the greater number of simulations, the best
results for the old method MMCRK are got. While the increasing number of simulations does
not affect the accuracy of the results in our new method MLHRK. Therefore, the proposed
method MLHRK is not need more repetitions to get good results as in the other numerical
simulation methods like MMCRK that needs more repetitions to get accurate results. It is clear
in this study, 500 repetitions at h=0.04 need more time than 200 repetitions with the same
step size, the MLHRK gets accurate results with 200 repetitions while MMCRK gets the
accuracy with 500 repetitions under the same step size.

The proposed MLHRK method gives values closer to the RK numerical solutions than the
MMCRK method for both orders 4 and, 4 and 5 as it is shown in Figures (1- 4).
7. Conclusion

The influenza model has been studied to understand, to analyze and to interpret the
behavior of epidemic dynamics. Mean Latin Hypercube Runge-Kutta (MLHRK) method is an
iterative algorithm which has been presented to calculate the numerical statistical solution for
the influenza epidemic problem.

The new modified approach, namely Mean Latin Hypercube Runge-Kutta (MLHRK)

method is discussed to solve influenza model wherein the sample is frequently and randomly
divided into groups. The RK method is used to find numerical deterministic solutions to the
influenza model when the model parameters are constants, while the MLHRK method is used
when the randomization in the model becomes necessary with parameters model are treated as
random variables. There are many techniques to solve epidemiological models and evaluate
performance by applying a form of segmentation like Mean Monte Carlo Finite Difference
(MMCFD) and Mean Latin Hypercube Finite Difference (MLHFD). The accuracy and
efficiency of MLHRK method have been demonstrated by studying the convergence. The
error of MLHRK method is less than MM CRK method. Therefore, MLHRK method is better
than MMCRK method. The advantage of MLHRK method over RK method is that it can
reduce the number of numerical iterations of RK as well as it is a faster simulation over the
distribution of the LHS randomized group samples. MLHRK method is an upgrade to the
previous numerical simulation process which is Mean Monte Carlo Runge-Kutta (MM CRK).
MLHRK method is collected the last iteration of RK in each simulation, finally taking the
average for the simulation iterations results as a final solution to the method. In the present
work, the MLHRK results are tabulated with the RK results as well as the MM CRK results for
the influenza pandemic model.
The numerical results of Runge-kutta of order 4 (RK,) and Runge-kutta of order 4 and 5
(RK,5) methods are compared with other statistical numerical results of Mean Latin
Hypercube Runge-Kutta (MLHRK), and Mean Monte Carlo Runge-Kutta (MMCRK)
methods in the time interval (0,70). It is found that these proposed methods are effective,
reliable, and suitable in solving such problems. MLHRK considers a middle between the
statistical simulation process and numerical methods. The convergence of numerical and
numerical statistical methods has been discussed. MLHRK method is better than the MMCRK
method. The MLHRK method gives values closer to the RK numerical solutions than the
MMCRK method. The results have been calculated by the Matlab program and the figures
have been drawn by the Magic plot program.
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Table 3- Numerical and numerical simulation results with 200 simulations for influenza
model in 70 days.
Step
Variables (Z';;f'l) RK, MLHRK4 | MMCRK4 | RK,; | MLHRK45 | MMCRK45
0.5 0.59720331 | 0.60910438 | 0.61407354 | 0.59720329 | 0.60910436 | 0.61407353
s 0.25 | 0.59715737 | 0.60914557 | 0.61412602 | 0.59715736 | 0.60914555 | 0.61412600
0.04 | 0.59711877 | 0.60918342 | 0.61417319 | 0.59711877 | 0.60918341 | 0.61417319
0.5 0.00224669 | 0.00179916 | 0.00171281 | 0.00224670 | 0.00179916 | 0.00171282
E(O) 0.25 | 0.00224599 | 0.00177358 | 0.00168868 | 0.00224599 | 0.00177358 | 0.00168868
0.04 | 0.00224539 | 0.00175238 | 0.00166868 | 0.00224539 | 0.00175238 | 0.00166868
0.5 0.00473296 | 0.00378715 | 0.00358140 | 0.00473297 | 0.00378716 | 0.00358140
10 0.25 | 0.00473178 | 0.00373198 | 0.00352907 | 0.00473178 | 0.00373198 | 0.00352907
0.04 | 0.00473076 | 0.00368628 | 0.00348572 | 0.00473076 | 0.00368628 | 0.00348572
0.5 0.38142439 | 0.37020568 | 0.36639393 | 0.38142440 | 0.37020569 | 0.36639394
R(D) 0.25 | 0.38146692 | 0.37028761 | 0.36646455 | 0.38146694 | 0.37028763 | 0.36646457
0.04 | 0.38150269 | 0.37035259 | 0.36652021 | 0.38150269 | 0.37035259 | 0.36652022
Table 4-Absolute Error (AE) between numerical and numerical simulation results
with 200 simulations for influenza model in 70 days
Variables | StePsize h | AE for RK4 AE for RK4 AE for RK45 AEf‘;;EK“E’
-1
(day ') | and MLHRK4 | and MMCRK4 | and MLHRKA45 MMCRIRAE
0.5 0.01190107 0.01687023 0.01190107 0.01687024
s 0.25 0.01198819 0.01696865 0.01198819 0.01696865
0.04 0.01206465 0.01705442 0.01206465 0.01705442
0.5 0.00044754 0.00053388 0.00044754 0.00053388
(D) 0.25 0.00047241 0.00055731 0.00047241 0.00055731
0.04 0.00049301 0.00057672 0.00049301 0.00057672
10 0.5 0.00094581 0.00115157 0.00094581 0.00115157
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0.25 0.00099979 0.00120271 0.00099979 0.00120271
0.04 0.00104448 0.00124504 0.00104448 0.00124504
0.5 0.01121871 0.01503046 0.01121871 0.01503047
R(t) 0.25 0.01117931 0.01500237 0.01117931 0.01500237
0.04 0.01115010 0.01498248 0.01115010 0.01498248

Table 5-Numerical and numerical simulation results with 500 simulations for influenza
model in 70 days

Step
Variables (;Z;ﬁ) RK4 MLHRK4 | MMCRK4 | RK,s | MLHRK45 | MMCRKA45
0.5 | 0.59720331 | 0.61016727 | 0.61288480 | 0.59720329 | 0.61016726 | 0.61288479
st 0.25 | 059715737 | 0.61021177 | 0.61293555 | 0.59715736 | 0.61021175 | 0.61293553
0.04 | 059711877 | 0.61025230 | 0.61298126 | 0.59711877 | 0.61025230 | 0.61298126
0.5 | 0.00224669 | 0.00177515 | 0.00172169 | 0.00224670 | 0.00177515 | 0.00172169
B 0.25 | 0.00224599 | 0.00175031 | 0.00169747 | 0.00224599 | 0.00175031 | 0.00169747
0.04 | 0.00224539 | 0.00172973 | 0.00167739 | 0.00224539 | 0.00172973 | 0.00167739
0.5 | 0.00473296 | 0.00369642 | 0.00358722 | 0.00473297 | 0.00369642 | 0.00358722
. 0.25 | 0.00473178 | 0.00364310 | 0.00353507 | 0.00473178 | 0.00364310 | 0.00353507
0.04 | 0.00473076 | 0.00359893 | 0.00349188 | 0.00473076 | 0.00359893 | 0.00349188
0.5 | 0.38142439 | 0.36939055 | 0.36704081 | 0.38142440 | 0.36939056 | 0.36704083
RO 0.25 | 0.38146692 | 0.36946747 | 0.36711051 | 0.38146694 | 0.36946749 | 0.36711052
0.04 | 0.38150260 | 0.36952835 | 0.36716539 | 0.38150269 | 0.36952836 | 0.36716540

Table 6-Absolute Error (AE) between numerical and numerical simulation results
with 500 simulations for influenza model in 70 days

Variables Ster;ls'ze AE for RK4 and | AE for RK4 and | AE for RK45and | ~F f‘;;(';m‘r’
(day-1) MLHRK4 MMCRKA4 MLHRK45 MM CRKAS
s 05 0.01296396 0.01568150 0.01296397 0.01568150
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0.25 0.01305439 0.01577818 0.01305439 0.01577818

0.04 0.01313353 0.01586249 0.01313353 0.01586249

05 0.00047155 0.00052500 0.00047155 0.00052500

E(t) 0.25 0.00049568 0.00054853 0.00049568 0.00054853
0.04 0.00051567 0.00056800 0.00051567 0.00056800

0.5 0.00103655 0.00114575 0.00103655 0.00114575

16 0.25 0.00108868 0.00119670 0.00108868 0.00119670
0.04 0.00113183 0.00123888 0.00113183 0.00123888

0.5 0.01203384 0.01438358 0.01203384 0.01438358

R(D) 0.25 0.01199945 0.01435642 0.01199945 0.01435642
0.04 0.01197434 0.01433730 0.01197434 0.01433730

Table 7- Predicted interval of numerical simulation results with 500 simulations for influenza

model in 70 days.

Step size
Variables ( da’; 1) MLHRK4 MMCRK4 MLHRK45 MMCRK45

05 | [0.351101467962179, | [0.359742130259010, | [0.351101428240616, | [0.359742071783190,
' 0.895619597016719] | 0.886651778145059] | 0.895619613803351] | 0.886651797827509]

S
005 | [0:351420402152609, | [0.360089071512295, | [0.351420373345214, | [0.360089028752050,
' 0.895652764062866] | 0.886705727496761] | 0.895652762695949] | 0.886705725302930]
05 | [0:000384019645701, | [0.000420050272981, | [0.000384019780925, | [0.000420050448261,
' 0.003625380625017] | 0.003540872886166] | 0.003625381610702] | 0.003540874304606]
E() 025 | [0.000376700227764, | [0.000412249213634, | [0.000376700271277, | [0.000412249256735,
: 0.003574775934314] | 0.003496157020491] | 0.003574776386625] | 0.003496157507734]
05 | [0:000902936431770, | [0.000420050272981, | [0.000902936653220, | [0.001006120837582,
' 0.007432508394284] | 0.003540872886166] | 0.007432510571505] | 0.006953824570379]
I 005 | [0.000893897570153, | [0.000996076132565, | [0.000893897638856, | [0.000996076198154,
' 0.007350003304441] | 0.006865136055881] | 0.007350003927862] | 0.006865136652129]
05 | [0.112027579234225, | [0.001006120594320, | [0.112027561777776, | [0.121517392921282,
' 0.600690300179813] | 0.006953822030645] | 0.600690337676898] | 0.593779332386679]
R(®) 025 | [0112041999544785, | [0.121542496550874, | [0.112042001570227, | [0.121542499236848,
' 0.600437901904896] | 0.593537050877795] | 0.600437928733691] | 0.593537083223483]
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Figure 1- Comparison RK,numerical and MMCRK, and MLHRK, numerical simulation
solutions for influenza model of S(t), E(t),1(t), R(t) in 1919 when step size h = 0.5 and
simulation p = 500.
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Figure 2-Comparison RK,s numerical and MMCRK,s and MLHRK,s numerical simulation
solutions for influenza model of S(t), E(t),1(t), R(t) in 1919 when step size h = 0.5 and
simulation p = 500.
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Figure 3-Comparison RK, numerical and MMCRK, and MLHRK, numerical simulation
solutions for influenza model of S(t), E(t),I(t),R(t) in 1919 when step size h = 0.25 and
simulation p = 500.
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Figure 4-Comparison RK,s numerical and MMCRK,s and MLHRK,s numerical simulation
solutions for influenza model of S(t), E(t),I(t),R(t) in 1919 when step size h = 0.25 and
simulation p = 500.
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