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Abstract

The mean energy loss per path length, also known as stopping force, is a key
quantity that characterizes the interaction of cluster ions with matter. If the
internuclear distance in a cluster approaches the interaction range for events,
substantial energy transfer is involved. The aim of this theoretical research is to
evaluate the electronic stopping power in free electron gas of hetero nuclear di-
cluster (He-H) by using a semi classical partial-wave scattering method based on the
induced density approach (IDA) model. For ion electron scattering, the transport
cross section is used to calculate the energy loss. This method yields a non-
perturbative exemplification of energy loss, bridging the difference among classical
and quantal representations. The results show the relation of the three kinds of
stopping power in (a.u) (cluster stopping power, self-stopping power and correlated
stopping power) of hetero nuclear di-cluster ions (He-H) with velocity at different
atomic di-cluster distances (r;,)(0,1.5,3.5,4.5) for different densities(n=10%,
10%, 10** cm®) and different temperatures(T=10, 20, 40 eV). It was found that
Bragg’s peak of stopping power is directly proportional to density and temperature
and inversely with atomic di-cluster distance (r;,). In literature, there is no
information about stopping of hetero di-cluster ions in plasma, therefore, the first
time present results needs more attention. The equations in present work were
programmed in fortran-90 for numerical calculations.
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Introduction
Cluster ions' stopping power in the presence of free electrons is important for a number of
fields of knowledge, including basic and applied physics, medicine and materials. It has been
the focus of extensive research [1]. In literature, several different measurements of ion
stopping power in a homogeneous electron-gas process have been suggested. de Ferriis and
Arista [2] have calculated the energy loss of charged particles in non-degenerate plasmas
using classical and quantum-mechanical approximations. The research yielded basic
expressions for the energy loss in terms of particle velocity and charge, as well as plasma
density and temperature. Maynard et al. [3] investigated the stopping power of swift heavy
ions in both plasma and cold targets, and they developed a single formula from which normal
quantum or classical effects can be obtained as precise limits. Arista and Sigmund[4]created
a semi-classical theory of ion stopping in matter, with the goal of covering a broad variety of
ion energies and mass numbers. This approach provided a nonperturbative energy loss
representation that connects the classical and quantal representations. Arista and Clauser [5]
studied the energy loss and transport cross section of ionized atomic or neutral beams in
plasmas using a semi-classical partial-wave scattering approach according to the WKB
approximation. Grande[6]discovered a method for calculating the electronic stopping power
and transport cross section of electron-ion binary collisions. The partial wave expansion was
used to derive the formula from the induced density of spherically symmetric potential.
Matias et al. [1] investigated the electronic stopping of H*projectiles in solid valence
electrons. The self-consistent potential for valence-electrons scattering at the projectile was
investigated and compared to measurements using the extended Fidel Sum Rule (FSR). F.
MAtias et al. [7] used the generalization of the induced density approach (IDA) model to
create a nonlinear model for the stopping power of cluster ions based on partial-wave
measurement. Therefore, there are several approaches to explain the stopping power in free
electron gas like linear response theory presented by Lindhard [8]. Schemes for first-and
second-order perturbation[9].and transport cross-section approach[10].
The absence of a unifying method of stopping theory is a major weakness in the present
processed. For low Z; and high v, Born approximation is a useful method, however, the scope
of its applicability is very limited. In the nonattendance of shell correction and high-order
terms, this is particularly true. On the other hand, the classical theory of Bohr is an excellent
point of beginning the investigation of stopping heavy ions; However, converting it into a
quantitative method involves the inclusion of a remarkable number of corrections. The Bloch
correction offers a useful connection between the Bohr and the Bethe method. However, the
methods mentioned above must be added as a distinct agency. So, the semi-classical phase
shift is an attempt to approach the unified theory. The semi-classical theory of ion stopping
power in matter aims at a large variety of ion energies and mass numbers [4]. This method
offers a non-perturbative interpretation of the energy loss that bridges the distance between
quantum and classical concepts [11]. In electron-ion collisions, the mechanical transport
cross-section and stopping power have been measured using the induced density method
(IDA)[6][1]. The stopping force generated by means of asymmetrical induced charge density
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on the projectile is used to measure the stopping power. In this case, the non-central induced
charge density n;,q(7) is produced by a central Yukawa potential V(r). In the ion's rest
frame, the electron—ion collision partial-wave expansions of the stationary wave function in
this procedure n;,4(7) is utilized to determine each of the non-central induced potential
Vina(r) or the induced force, F;,4(#) on the ion placement. As a result, this leads to
electronic stopping power [7].
The aim of this paper is to evaluate three kinds of electronic stopping power (cluster stopping
power, self-stopping power and correlated stopping power) of hetero nuclear di-cluster ions in
plasma by applying a semi classical partial wave scattering method based on the induced
density approaches (IDA) model. The stopping power was determined using the retarding
force caused by the projectile’s induced symmetric charge density.
Theory
Computations of the transport cross-section o, typically use partial-wave expansion to
account for an ion's central potential for electron scattering. Thus, o can be described by
phase shifts §;, and orbital angular momentum [, from the following equation [12],
ot = 13 Ta(l + Dsin?(8; — 5141) (1)

where Kk represents the wave vector associated with the relative position of the scattered
electron velocity v, = hk/m, and §; is the phase shift caused by the scattering of wave
components with angular momentum [ = 0,1,1,3, .... . The scattering potential is at the center
of this technique V (), from which it is possible to quantify phase shifts. The Yukawa
potential is [6],

V() = Zle e"T/a )
In the present work, a useful model potential has been found. For a particular ion-electron

interaction potential V (), phase shift might possibly be measured by solving Schrodinger
equation by numerical methods [4],

d::; (kz t’(i+1) 2m V(T)) w (1) = 0 3)

In the case of the radial wave equation uf(r) , this has the asymptotic type,

u,~ sin(kr — ¢#m/2 + &,) at long distance, while the semi-classical WKB approximation
provides a formal expression for phase shifts. The phase shift is calculated for a given
spherically potential V() by [5],

0, =Idr\/q2_(|+rl—2/2)_2_mv(r) J‘dr\/q _(|+:./2)

Using the first-order approximation, a perturbative solution can be found:
6pert _ —Efoodr v(r) (5)
pert =

h% "o k2—(€+1/2)2/r2

As a result, the transport cross-section is approximated perturbatively [5]:
Pt = Z X+ 1A (6)
with Al— 8 — 8141 (7
To get an analytic approximation for cross section of the stopping power, Eq. (1) is rewritten
in the form of:

(4)

IR+ D 2(01=8141)/ 05> (B1=8141) ©
0
/0052(51 —8141)

_ gzﬁo(l + 1) tan? (Sl_61+1)

sec2(8;—8141) '

s _tan0,-0iy)_
T k2 LiZo(l+ 1) 1+tan?(6;-6141)’
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Tyl + 1) > 9)
where A, =4, —5|+1 , with tan(x) =~ x, when x < 1,
In the limit 6; < 1 and hence A;<«< 1, Eq. (9) is reduced to:

Pt ~ (U + 1)47 (10)

For massive phase shifts, the perturbation approach is bound to break down. Using Yukawa
potential, the phase shifts are reduced to the following equation [2]:

7" = ko (x) (11)
with, X = (12)

For large ¢,
A= nlko(x) = ko (xi41)] = 2ok () (13)

where a = % Bohr’s adiabatic radius.
The perturbation approximation does not describe phase shift well for small £. To repair this
error, Eq. (13) is multiplied by (l + )/(l + 1) to get [13]:

_ (g _
Be= [t ki) = [ ks G (14)
hence for x;, - 0, x;k(x) » 1,
&= [5] (15)
and hence Eqg. (9) becomes:
4-77.' 2 (l+1)
Otr Zl =0 (1+1)2+n2 (16)
This is an exact result for coulomb scattering. Using Eqg. (16), Eqg. (9) becomes:
(1+1)[nxk 4 (x)]?
Zl =0 D2+ ks ()2 (17)

In an electron gas system the transport cross section was used to calculate the
majority of non-perturbative stopping power equations derived from Eg. (1) and the
integration of all states within the Fermi sphere. Then the stopping force dE/dz attached to
the transport cross section [14] is:

L+U¢

dE 1

E:mu‘[ dkkzO'tr [k2 U 19 ):[(U-i—l)f)z—kz], (18)
For di-cluster ions, Eq. (18) becomes:
?1_5216;202 jfdkkzat, k2 - -v, Flo+v, F -k2]i(z2 +22)+ 22,2, coslk, )] (19)
Results

The equations, in the present work, were programmed using fortran-90 and writing a program
(He-H-Dicluster-phasefor) for numerical calculations. Figure 1 shows the variation of
stopping power (in a.u.) of He-H di-cluster ions, calculated from Eq. (19), with ion velocity (
v), density(n)=10%cm™3 and at temperature(T)=10eV at different atomic di cluster distances
r,(inau.) (r, =0.0-4.5).The results showed that Bragg’s peak of cluster stopping power
(Sqser) 1s inversely proportional to the atomic di-cluster distance (ry,); this is because the
correlated stopping power S, depends on r,,. The relation between velocity of the di-cluster
and stopping power of plasma for different temperatures (10, 20 and 40)eV are shown in
Figures (1,2 and 3), respectively. Bragg’s peak of cluster stopping power S, at T =40eV

IS larger than S uster at T =20eV and at T =10eV i.e
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((Suustr )r—soey > (Sctuste )1os0ev > (S Jroa0ev ) @IS0 Sy IS inversely proportional with r,, .
Figures (1,4 and 5) represent the stopping power of HeH di-cluster ions with density plasma
(n=(10%,10%,10*) cm™®) ,respectively at temperature T =10eV. Bragg peak of cluster
stopping power, S, between velocity range v, <v<uv,Z"® and move toward lower
velocity and gets sharper when electron density decreases. While, at high velocity region
v>0,Z27° | S, decreases faster with increasing velocity and electron density( from

n=10"cm™ to n=10*cm™* ),as shown in Figures. (1,4,and 5).
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Figure 1-The relation between velocity of the di-cluster and stopping power of plasma
using induced density approximation (IDA) (phase shifts problem ) with temperature
T = 10ev and density n = 1022cm™3 for different atomic di-cluster ions distances 7,
(0,1.5,3.5,4.5).
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Figure 2-The relation between velocity of the di-cluster and stopping power of plasma
using induced density approximation (IDA) (phase shifts problem ) with temperature
T = 20ev and density n = 1022¢m™3 for different atomic di-cluster ions distances 7,
(0,1.5,3.5,4.5)
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Figure 3- The relation between velocity of the di-cluster and stopping power of plasma
using induced density approximation (IDA) (phase shifts problem ) with temperature
T = 40ev and density n = 1022cm™3 for different atomic di-cluster ions distances 7,

(0,1.5,3.5,4.5)
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Figure 4-The relation between velocity of the di-cluster and stopping power of plasma
using induced density approximation (IDA) (phase shifts problem ) with temperature
T = 10ev and density n = 1023cm™3 for different atomic di-cluster ions distances 7,
(0,1.5,3.5,4.5)
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Figure 5- The relation between velocity of the di-cluster and stopping power of plasma
using induced density approximation (IDA) (phase shifts problem ) with temperature
T = 10ev and density n = 10%*cm™=3 for different atomic di-cluster ions distances 7,
(0,1.5,3.5,4.5)

Conclusions

The energy loss of hetero nuclear di-cluster (He-H) in plasma calculated in the current
work was centered on the effects of a partial wave study. It was built via the popularization of
the Induced Density Approach (IDA) pattern. Stopping power based on semi-classical phase
shift is strongly dependent on transport cross-section a;, where o;,- depends on the relative

velocity v, = |[v —v,| = %k and phase shift &§, It was found that Bragg’s peak of stopping

power was directly proportional to density and temperature, but not on the center of the peak.
Increasing the density and temperature lead to the increase in the collisions between hetero
nuclear di-cluster and electronic targets that help to stop the hetero nuclear di-cluster in the
medium such as plasma.
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