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Abstract 

     The main focus of this article is to introduce the notion of rough pentapartitioned 

neutrosophic set and rough pentapartitioned neutrosophic topology by using rough 

pentapartitioned neutrosophic lower approximation, rough pentapartitioned 

neutrosophic upper approximation, and rough pentapartitioned neutrosophic 

boundary region. Then, we provide some basic properties, namely operations on 

rough pentapartitioned neutrosophic set and rough pentapartitioned neutrosophic 

topology. By defining rough pentapartitioned neutrosophic set and topology, we 

formulate some results in the form of theorems, propositions, etc. Further, we give 

some examples to justify the definitions introduced in this article. 

Keywords: Neutrosophic Set; Pentapartitioned Neutrosophic Set; Rough 

Pentapartitioned Neutrosophic Set; RPNT-space; RPNO-set.  
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1. Introduction                                                                                                                             

Smarandache [29] grounded the concept of neutrosophic set (in short NS) theory by extending 

the notion of fuzzy set (in short FS) [40] and intuitionistic fuzzy set (in short IFS) [1] to deal 

with the uncertainty events having indeterminacy. In the year 2010, Wang et al. [39] studied 

the notion of single valued neutrosophic set (in short SVNS). Thereafter, Salama and Alblowi 

[27] presented the idea of neutrosophic topological spaces via neutrosophic sets by extending 

the notion of intuitionistic fuzzy topological spaces. Thereafter, Imran et al. [19] grounded the 

neutrosophic generalized alpha generalized continuity via neutrosophic topological space. 

Santhi and Udhayarani [28] grounded the idea of N-closed set via neutrosophic topological 

space. Afterwards, Maheswari and Chandrasekar [20] introduced the concept of neutrosophic 

gb-closed set and continuous functions via neutrosophic topological space. In the year 2019, 

Pushpalatha and Nandhini [25] presented the idea of generalized closed set via the 

neutrosophic topological space. The idea of neutrosophic ^m continuity was introduced and 

studied by Dhavanseelan et al. [17]. In the year 2020, Das and Pramanik [9] studied the 

generalized neutrosophic b-open set via neutrosophic topological space. Later on, Hanif 
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PAGE and Imran [18] studied the neutrosophic generalized homomorphism via neutrosophic 

topological space. Das and Pramanik [10] also presented the neutrosophic -open set and 

neutrosophic -continuous functions. Recently, Das and Tripathy [15] introduced the notion 

of neutrosophic simply b-open set in neutrosophic topological space. Later on, Ozturk and 

Ozkan [23] grounded the concept of bi-topological space under the neutrosophic set 

environment. Thereafter, Das and Tripathy [14] presented the notion of pairwise neutrosophic 

b-open set via neutrosophic bi-topological space. Tripathy and Das [33] grounded the concept 

of pairwise neutrosophic b-continuous mappings via neutrosophic bi-topological space. The 

idea of neutrosophic multiset topology was grounded by Das and Tripathy [13]. In the year 

1982, Pawlak [24] introduced the concept of rough set for the processing of incomplete 

information system. Thereafter, Broumi et al. [3] presented the idea of rough neutrosophic set 

(in short R-NS) by extending the notion of fuzzy rough set. In the year 2018, Thivagar et al. 

[32] grounded the concept of nano topology via neutrosophic sets. Afterwards, Sweety and 

Arockiarani [31] studied the topological structures of fuzzy neutrosophic rough sets. 

Mukherjee and Das [22] introduced the neutrosophic bipolar vague soft set and proposed a 

multi attribute decision making strategy based on it. Smarandache et al. [30] studied the fuzzy 

soft topological space, intuitionistic fuzzy soft topological space and  neutrosophic soft 

topological space. Later on, Riaz et al. [26] notion of neutrosophic soft rough topology and 

presented an application to decision making. In the year 2021, Das et al. [6] introduced the 

notion of quadripartitioned neutrosophic topological space. Recently, Mallick and Pramanik 

[21] introduced the notions of pentapartitioned neutrosophic set (in short P-NS) by splitting 

indeterminacy-membership into three independent components namely contradiction, 

ignorance and unknown membership. In the year 2021, Das and Tripathy [16] introduced the 

notion of pentapartitioned neutrosophic topological space. Recently, Das et al. [5] proposed a 

MADM-strategy based on tangent similarity measure under the pentapartitioned neutrosophic 

set environment. In the year 2021, Das et al. [7] introduced and studied the concept of 

pentapartitioned neutrosophic Q-ideals of Q-algebra.                                                                                                                                          

     In this paper, we introduce the notion of rough pentapartitioned neutrosophic set (in short 

R-P-NS) and applied the concept of topology to R-P-NS. Then, we establish some basic pro- 

perties, operations, and examples of the proposed set and topology.   

Research gap: No investigation on rough pentapartitioned neutrosophic set and rough 

pentapartitioned neutrosophic topology has been reported in the recent literature.                      

Motivation: To diminish the research gap, we procure the notion of rough pentapartitioned 

neutrosophic set and rough pentapartitioned neutrosophic topology.                                           

     The remaining part of this article is designed as follows:                     

In section 2, we recall some relevant definitions and results to the main results of this article. 

Section 3 introduces the notion of R-P-NS and some operations defined on them. In section 4, 

we apply the concept of topology to R-P-NSs and introduce rough pentapartitioned 

neutrosophic topology (in short RPNT) and its properties. In section 5, we conclude our work 

done in this article and state some future scope of research. 

2. Preliminaries 

      In this section, we give some definitions and results on NSs, P-NSs and R-NSs, which are 

relevant to the main results of this paper. 
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Definition 2.1:[16]. A neutrosophic set V over a fixed set W is defined as follows: 

V = {(r, TV(r), IV(r), FV(r)): rW}, where T, I, F : W[0, 1] are the truth, indeterminacy and 

falsity membership functions respectively. 

Definition 2.2:[11]. Let W be a fixed set. Then, a pentapartitioned neutrosophic set (in short 

P-NS) Z over W is defined as follows: 

Z = {(r,TZ(r),CZ(r),GZ(r),UZ(r),FZ(r)): rW}, where TZ(r), CZ(r), GZ(r), UZ(r), FZ(r) ([0, 1]) 

are the truth, contradiction, ignorance, unknown, falsity membership values of each nW. So, 

0  TZ(r)+CZ(r)+GZ(r)+UZ(r)+FZ(r)  5, for all rW. 

Definition 2.3:[11]. Let W be a fixed set. Then, the absolute P-NS (1PN) and the null P-NS 

(0PN) over W are defined as follows: 

(i) 1PN = {(r,1,1,0,0,0): rW}; 

(ii) 0PN = {(r,0,0,1,1,1): rW}. 

The absolute P-NS (1PN) and the null P-NS (0PN) have other seven types of representations. 

They are given below: 

1PN = {(r,1,1,0,0,1): rW}; 

1PN = {(r,1,1,0,1,0): rW}; 

1PN = {(r,1,1,1,0,0): rW}; 

1PN = {(r,1,1,0,1,1): rW}; 

1PN = {(r,1,1,1,0,1): rW}; 

1PN = {(r,1,1,1,1,0): rW}; 

1PN = {(r,1,1,1,1,1): rW}; 

0PN = {(r,0,0,1,1,0): rW}; 

0PN = {(r,0,0,1,0,1): rW}; 

0PN = {(r,0,0,0,1,1): rW}; 

0PN = {(r,0,0,1,0,0): rW}; 

0PN = {(r,0,0,0,1,0): rW}; 

0PN = {(r,0,0,0,0,1): rW}; 

0PN = {(r,0,0,0,0,0): rW}. 

Remark 2.1: Clearly, 0PN  X  1PN, for every P-NS X over W. 

Definition 2.4:[11]. Let M={(r,TM(r),CM(r),GM(r),UM(r),FM(r)): rW} and N={(r,TN(r),CN(r), 

GN(r),UN(r),FN(r)): rW} be two P-NSs over W. Then, M  N iff TM(r)  TN(r), CM(r)  CN(r), 

GM(r)  GN(r), UM(r)  UN(r), FM(r)  FN(r), for all rW. 

Example 2.1: Consider two P-NSs X={(r,0.3,0.4,0.5,0.7,0.3), (m,0.3,0.6,0.4,0.8,0.4)} and 

Y={(r,0.4,0.7,0.1,0.5,0.2), (m,0.8,0.9,0.2,0.1,0.2)} over a fixed set W={r, m}. Then, XY. 

Definition 2.5:[11]. Let M={(r,TM(r),CM(r),GM(r),UM(r),FM(r)): rW} and N={(r,TN(r),CN(r), 

GN(r),UN(r),FN(r)): rW} be two P-NSs over W. Then, the intersection of X and Y is XY={(r, 

min{TM(r), TN(r)}, min{CM(r), CN(r)}, max{GM(r), GN(r)}, max{UM(r), UN(r)}, max{FM(r), 

FN(r)}): rW}. 

Example 2.2: Consider two P-NSs X={(r,0.4,0.7,0.4,0.2,0.9), (m,0.5,0.6,0.7,0.8,0.5)} and Y= 

{(r,0.9,0.2,0.8,0.7,0.8), (m,0.5,0.8,0.7,0.2,0.9)} over W={r, m}. Then, the intersection of X 

and Y is XY={(r,0.4,0.2,0.8,0.7,0.9), (m,0.5,0.6,0.7,0.8,0.9)}. 

Definition 2.6:[11]. Let M={(r,TM(r),CM(r),GM(r),UM(r),FM(r)): rW} and N={(r,TN(r),CN(r), 

GN(r),UN(r),FN(r)): rW} be two P-NSs over W. Then, the union of X and Y is XY={(r, 

max{TM(r), TN(r)},max{CM(r), CN(r)},min{GM(r), GN(r)},min{UM(r), UN(r)},min{FM(r), 

FN(r)}): rW}. 

Example 2.3: Consider two P-NSs X={(r,0.5,0.4,0.7,0.7,0.5), (m,0.8,0.5,0.9,1.0,0.5)} and 

Y={(r,0.6,0.7,0.1,0.5,0.2), (m,1.0,0.9,0.4,0.0,0.1)} over W={r, m}. Then, their union is XY= 

{(r,0.6,0.7,0.1,0.5,0.2), (m,1.0,0.9,0.4,0.0,0.1)}. 

Definition 2.7:[11]. Let M={(r,TM(r),CM(r),GM(r),UM(r),FM(r)): rW} be a P-NS over a fixed 

set W. Then, M
c
={(r,FM(r),UM(r),1-GM(r),CM(r),TM(r)): rW}. 

Example 2.4: Let M={(r,0.4,0.5,0.9,0.7,0.8), (m,0.7,0.1,0.5,0.7,0.1)} be a P-NS over W={r, 

m}. Then, M
c
={(r,0.8,0.5,0.1,0.7,0.4), (m,0.1,0.7,0.5,0.1,0.7)}. 
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Definition 2.8:[2]. Let ρ be an equivalence relation on W. Let Q={(r,TQ(r),IQ(r),FQ(r)): rW} 

be a NS over W. Then, the lower approximation ( (Q)) and the upper approximation ( (Q)) 

of Q in the approximation space (W, ρ) are defined as follows: 

 (Q)={(r,  ( )(r),  ( )(r),  ( )(r)): p    , rW}; 

 (Q)={(r,  ( )(r),  ( )(r),  ( )(r)): p    , rW}, 

where   ( ) =      TQ(p),   ( ) =      IQ(p),   ( ) =      FQ(p),   ( ) =      TQ(p), 

  ( )=      IQ(p),   ( )=      FQ(p). 

So, 0    ( )(r) +   ( )(r) +   ( )(r)  3 and 0    ( )(r) +   ( )(r) +   ( )(r)  3. 

Clearly, the lower approximation [ (Q)] and the upper approximation [ (Q)] are the NSs 

over W. The pair ( (Q),  (Q)) is said to be a rough neutrosophic set (in short R-NS) in the 

approximation space (W, ρ). 

3. Rough Pentapartitioned Neutrosophic Set 

The notion of rough pentapartitioned neutrosophic set (in short R-P-NS) and its properties are 

defined as follows: 

Definition 3.1: Suppose that ρ be an equivalence relation on a fixed set W. Assume that Q = 

{<r,  (r),  (r),  (r),  (r),  (r)> : rW} be a P-NS over W. Then, the lower approximation 

set [ (Q)] and the upper approximation set [ (Q)] of Q in the approximation space (W, ρ) are 

defined as follows: 

 (Q) = {<r,  ( )(r),  ( )(r),  ( )(r),  ( )(r),  ( )(r)> : p    , rW}; 

 (Q) = {<r,  ( )(r),  ( )(r),  ( )(r),  ( )(r),  ( )(r)> : p    , rW}, 

where   ( ) =      TQ(r),    ( ) =      CQ(r),    ( ) =      GQ(r),   ( ) =      UQ(r), 

  ( ) =       FQ(r),   ( ) =       TQ(r),   ( ) =       CQ(r),   ( ) =       GQ(r), 

  ( )=      UQ(r),   ( )=      FQ(r). 

So, 0    ( )(r)+  ( )(r)+  ( )(r)+  ( )(r)+  ( )(r)  5, 

and 0    ( )(r)+  ( )(r)+  ( )(r)+  ( )(r)+  ( )(r)  5. 

Here, the operators “ ” and “ ” means “max” or “join” and “min” or “meet” operators 

respectively. Clearly,  (Q) and  (Q) are two P-NSs over W. The pair ( (Q),  (Q)) is called 

the rough pentapartitioned neutrosophic set (in short R-P-NS) in (W, ρ). 

Example 3.1: Let W = {r1, r2, r3, r4, r5} be a fixed set. Let ρ be an equivalence relation, where 

its partition of W is given by W/ρ = {(r1,   ), (r2,   ), (r4)}. Suppose that Q = 

{<r1,0.5,0.4,0.2,0.3,0.6>, <r2,0.8,0.2,0.6,0.6,0.4>, <r3,0.2,0.3,0.4,0.7,0.6>, <r4,0.9,0.8,0.7,0.1, 

0.8>, <r5,0.6,0.3,0.7,0.2,0.5>} be a P-NS over W. Then, the lower approximation set of the P-

NS Q is  (Q)={< r1,0.2,0.3,0.2,0.3,0.6 >, < r2,0.6,0.2,0.6,0.2,0.4 >, < r3,0.2,0.3,0.2,0.3, 0.6 >, 

< r4,0.9,0.8,0.7,0.1,0.8 >, < r5,0.6,0.2,0.6,0.2,0.4 >}, and 

The upper approximation set of the P-NS Q is  (Q)={<r1,0.5,0.4,0.4,0.7,0.6>, 

<r2,0.8,0.3,0.7,0.6,0.5>, <r3,0.5,0.4,0.4,0.7,0.6>, <r4,0.9,0.8,0.7,0.1,0.8>, <r5,0.8,0.3,0.7,0.6, 

0.5>}. Therefore, (  (Q),   (Q)) = ({<r1,0.2,0.3,0.2,0.3,0.6>, <r2,0.6,0.2,0.6,0.2,0.4>, 

<r3,0.2,0.3,0.2,0.3,0.6>, <r4,0.9,0.8,0.7,0.1,0.8>, <r5,0.6,0.2,0.6,0.2,0.4>}, {<r1,0.5,0.4,0.4, 

0.7,0.6>, <r2,0.8,0.3,0.7,0.6,0.5>, <r3,0.5,0.4,0.4,0.7,0.6>, < r4,0.9,0.8,0.7,0.1, 0.8>, <r5,0.8, 

0.3,0.7,0.6,0.5>}) is a R-P-NS in (W, ρ). 

Definition 3.2: Assume that N(Q) = ( (Q),   (Q)) = ({<r,   ( ) (r),   ( ) (r),   ( ) (r), 

  ( )(r),  ( )(r)> : p    , rW}, {<r,  ( )(r),  ( )(r),  ( )(r),  ( )(r),  ( )(r)> : p 

    , rW}) be a R-P-NS in the approximation space (W, ρ). Then, [<  ( )(r),  ( )(r), 
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  ( ) (r),  ( ) (r),  ( ) (r)>, <  ( ) (r),  ( ) (r),   ( ) (r),  ( ) (r),  ( ) (r)>] is called a 

single valued rough pentapartitioned neutrosophic number (in short SVRPNN) for all rW. 

Example 3.2: Let N(Q) = ( (Q),  (Q)) be a R-P-NS in the approximation space (W, ρ) as it 

is shown in Example 3.1. Then, [<0.5,0.4, 0.4,0.7,0.6>, <0.5,0.4,0.4,0.7,0.6>] is a SVRPNN 

in the approximation space (W, ρ). 

Definition 3.3: Let N(Q) = ( (Q),  (Q)) be a R-P-NS in the approximation space (W, ρ). 

Then, the complement of N(Q) = ( (Q),  (Q)) is defined as follows: 

N(Q)
c 

= ( (Q)
c
,  (Q)

c
), where  (Q)

c 
= {<r,  ( )(r),  ( )(r),1-  ( )(r),  ( )(r),  ( )(r)> : 

p    , rW} and  (Q)
c 

= {<r,  ( )(r),  ( )(r),1-  ( )(r),  ( )(r),  ( )(r)> : p    , 

rW}. 

Example 3.3: Let N(Q) = ( (Q),  (Q)) be a R-P-NS in the approximation space (W, ρ) as it 

is shown in Example 3.1. Then, the complement of N(Q) is N(Q)
c 
= ( (Q)

c
,  (Q)

c
), 

where,  (Q)
c 
= {<r1,0.6,0.3,0.8,0.3,0.2>, <r2,0.4,0.2,0.4,0.2,0.6>, <r3,0.6,0.3,0.8,0.3,0.2>, <r4, 

0.8,0.1,0.3,0.8,0.9>, <r5,0.4,0.2,0.4,0.2,0.6>} and  (Q) = {<r1,0.6,0.7,0.6,0.4,0.5>, <r2,0.5, 

0.6,0.3,0.3,0.8>, <r3,0.6,0.7,0.6,0.4,0.5>, <r4,0.8,0.1,0.3,0.8,0.9>, <r4,0.5,0.6,0.3,0.3,0.8>}. 

Definition 3.4: Let N(Q) = ( (Q),  (Q)) and N(V) = ( (V),  (V)) be two R-P-NSs in the 

approximation space (W, ρ). Then, N(Q)N(V) if and only if  (Q) (V) and  (Q)  (V), 

i.e.,   ( )(r)    ( )(v),   ( )(r)    ( )(v),   ( )(r)    ( )(v),   ( )(r)    ( )(v),   ( )(r) 

   ( )(v),   ( )(r)    ( )(v),   ( )(r)    ( )(v),   ( )(r)    ( )(v),   ( )(r)    ( )(v), 

  ( )(r)    ( )(v), for all rW. 

Example 3.4: Let N(Q) = ({<r1,0.3,0.5,0.2,0.3,0.6>, <r2,0.3,0.3,0.6,0.2,0.4>, <r3,0.2,0.3,0.2, 

0.3,0.6>, <r4,0.9,0.8,0.7,0.1,0.8>, <r5,0.6,0.2,0.6,0.2,0.4>}, {<r1,0.5,0.4,0.4,0.7,0.6>, <r2,0.8, 

0.3,0.7,0.6,0.5>, <r3,0.5,0.4,0.4,0.7,0.6>, <r4,0.9,0.8,0.7,0.1,0.8>, <r5,0.8,0.3,0.7,0.6,0.5>}) 

and N(V) = ({<r1,0.3,0.5,0.1,0.2,0.5>, <r2,0.7,0.2,0.4,0.0,0.3>, <r3,0.5,0.3,0.0,0.0,0.1>, <r4, 

0.9,0.9,0.5,0.0,0.3>, <r5,0.8,0.3,0.2,0.0,0.2>}, {<r1,0.5,0.5,0.3,0.3,0.6>, <r2,0.8,0.3,0.5,0.1, 

0.3>, <r3,0.5,0.4,0.0,0.1,0.2>, <r4,1.0,0.9,0.6,0.0,0.4>, <r5,0.8,0.3,0.4,0.1,0.3>}) be two R-P-

NSs in (W, ρ). Clearly, N(Q)N(V). 

Definition 3.5: Let N(Q) = ( (Q),  (Q)) and N(V) = ( (V),  (V)) be two R-P-NSs in the 

approximation space (W, ρ). Then, N(Q) = N(V) if and only if  (Q) =  (V) and  (Q) =  (V), 

i.e.,   ( )(r) =   ( )(v),   ( )(r) =   ( )(v),   ( )(r) =   ( )(v),   ( )(r) =   ( )(v),   ( )(r) 

=   ( )(v),   ( )(r) =   ( )(v),   ( )(r) =   ( )(v),   ( )(r) =   ( )(v),   ( )(r) =   ( )(v), 

  ( )(r) =   ( )(v), for all rW. 

Example 3.5: Let N(Q) = ({<r1,0.2,0.3,0.2,0.3,0.6>, <r2,0.6,0.2,0.6,0.2,0.4>, <r3,0.2,0.3,0.2, 

0.3,0.6>, <r4,0.9,0.8,0.7,0.1,0.8>, <r5,0.6,0.2,0.6,0.2,0.4>}, {<r1,0.5,0.4,0.4,0.7,0.6>, <r2,0.8, 

0.3,0.7,0.6,0.5>, <r3,0.5,0.4,0.4,0.7,0.6>, <r4,0.9,0.8,0.7,0.1,0.8>, <r5,0.8,0.3,0.7,0.6,0.5 >}) 

and N(V) = ({<r1,0.2,0.3,0.2,0.3,0.6>, <r2,0.6,0.2,0.6,0.2,0.4>, <r3,0.2,0.3,0.2,0.3,0.6>, <r4, 

0.9,0.8,0.7,0.1,0.8>, <r5,0.6,0.2,0.6,0.2,0.4>}, {<r1,0.5,0.4,0.4,0.7,0.6>, <r2,0.8,0.3,0.7,0.6, 

0.5>, <r3,0.5,0.4,0.4,0.7,0.6>, <r4,0.9,0.8,0.7,0.1,0.8>, <r5,0.8,0.3,0.7,0.6,0.5>}) be two 

SVRPNS in the approximation space (W, ρ). Clearly, N(Q) = N(V). 

Definition 3.6: Let N(Q)=( (Q),   (Q)) and N(V)=( (V),   (V)) be two R-P-NSs in the 

approximation space (W, ρ). Then, the intersection and union of the R-P-NSs N(Q) and N(V) 

are defined as follows: 

N(QV) = ( (QV),  (QV)) and N(QV) = ( (QV),  (QV)), 

where, 



Das et al.                                            Iraqi Journal of Science, 2022, Vol. 63, No. 6, pp: 2630-2640 
 

2635 

 (QV) = {<r,   ( )(r)   ( )(r),   ( )(r)   ( )(r),   ( )(r)   ( )(r),   ( )(r)   ( )(r), 

  ( )(r)   ( ) (r)> : p    , rW}; 

 (QV) = {<r,   ( )(r)   ( )(r),   ( )(r)   ( )(r),   ( )(r)   ( )(r),   ( )(r)   ( )(r), 

  ( )(r)   ( )(r)> : p    , rW}; 

 (QV) = {<r,   ( )(r)   ( )(r),   ( )(r)   ( )(r),   ( )(r)   ( )(r),   ( )(r)   ( )(r), 

  ( )(r)   ( )(r)> : p    , rW}; 

and 

 (QV) = {<r,   ( )(r)   ( )(r),   ( )(r)   ( )(r),   ( )(r)   ( )(r),   ( )(r)   ( )(r), 

  ( )(r)   ( )(r)> : p    , rW}. 

Example 3.6: Let N(Q)=( (Q),  (Q)) and N(V)=( (V),  (V)) be two R-P-NSs in (W, ρ) as 

they are given in Example 3.4. Then,  

N(QV) = (  (QV),  (QV)) = ({<r1,0.2,0.2,0.2,0.3,0.6>, <r2,0.5,0.2,0.6,0.2,0.4>, 

<r3,0.2,0.3,0.2,0.3,0.6>, <r4,0.9,0.2,0.7,0.1,0.8>, <r5,0.5,0.2,0.6,0.2,0.4>}, {<r1,0.5,0.2,0.4, 

0.7,0.6>, <r2,0.8,0.3,0.7,0.6,0.5>, <r3,0.5,0.4,0.4,0.7,0.6>, <r4,0.9,0.8, 0.7,0.1,0.8>, <r5,0.8, 

0.3,0.7,0.6,0.5>}), 

and N(QV) = ( (QV),   (QV)) = ({<r1,0.3,0.3,0.1,0.2,0.5>, <r2,0.6,0.2,0.4,0.0,0.3>, 

<r3,0.5,0.3,0.0,0.0,0.1>, <r4,0.9,0.8,0.5,0.0,0.3>, <r5,0.6,0.2,0.2,0.0,0.2>}, {<r1,0.5,0.4,0.3, 

0.3,0.6>, <r2,0.8,0.3,0.5,0.1,0.3>, <r3,0.5,0.4,0.0,0.1,0.2>, <r4,1.0,0.9,0.6,0.0,0.4>, <r5,0.8,0.3, 

0.4,0.1,0.3>}). 

Definition 3.7: Let N(Q) = ( (Q),  (Q)) be a R-P-NSs in the approximation space (W, ρ). 

Then, the boundary region of the R-P-NSs N(Q) is denoted by NB(Q) and defined as follows: 

NB(Q) =   (Q) -  (Q), where  (Q) -  (Q) =  (Q)   ( ) . 

Theorem 3.1: Let N(Q)=( (Q),   (Q)) and N(V)=( (V),   (V)) be two R-P-NSs in the 

approximation space (W, ρ). Then, the following holds: 

(i) N(QV)
c 
= N(Q)

c
N(V)

c
; 

(ii) N(QV)
c
= N(Q)

c
N(V)

c
. 

Proof. Let N(Q) = ( (Q),  (Q)) = ({<r,  ( ) (r),  ( ) (r),  ( ) (r),  ( ) (r),  ( ) (r)> : 

p    , rW}, {<r,  ( )(r),  ( )(r),  ( )(r),  ( )(r),  ( )(r)> : p    , rW}), and N(V) 

= ( (V),   (V)) = ({<r,   ( ) (r),  ( ) (r),  ( ) (r),  ( ) (r),  ( ) (r)> : p     , rW}, 

{<r,  ( )(r),   ( )(r),   ( )(r),   ( )(r) ,  ( )(r)> : p    , rW}) be two R-P-NS in the 

approximation space (W, ρ).  

Then, N(QV) = ( (QV),  (QV)) 

= ({<r,  ( )(r)   ( )(r),  ( )(r)   ( )(r),   ( )(r)   ( )(r),   ( )(r)   ( )(r),   ( )(r)  

  ( )(r)> :  p    , rW}, {<r,   ( )(r)   ( )(r),   ( )(r)   ( )(r),   ( )(r)   ( )(r),  

  ( )(r)   ( )(r),   ( )(r)   ( )(r)> : p    , rW}). 

This implies, 

N(QV)
c
=({<r,   ( ) (r)   ( ) (r),   ( ) (r)   ( ) (r), 1-(   ( ) (r)   ( ) (r)),   ( ) (r)  

  ( )(r),   ( )(r)   ( )(r)> : p    , rW}, {<r,   ( )(r)   ( )(r),   ( )( )   ( )( ), 1-

(  ( )( )   ( )( )),   ( )(r)   ( )(r),   ( )(r)   ( )(r)> : p    , rW}). 

Also, we have 

N(Q)
c
=({<r,   ( )(r),   ( )(r), 1-  ( )(r),   ( )(r),   ( )(r)> : p    , rW}, {<r,   ( )(r), 

  ( )(r), 1-  ( )(r),   ( )(r),   ( )(r)> : p    , rW}) 
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and N(V)
c
=({<r,   ( ) (r),   ( ) (r), 1-  ( ) (r),   ( ) (r),   ( ) (r)> : p    , rW}, {<r, 

  ( )(r),   ( )(r), 1-  ( )(r),   ( )(r),   ( )(r)> : p    , rW}). 

Now, N(Q)
c 
 N(V)

c 

= N(Q
c
V

c
) 

= ( (Q
c
V

c
),  (Q

c
V

c
)) 

= ({<r,   ( )(r)   ( )(r),   ( )(r)    ( )(r), (1-  ( )(r)) (1-  ( )(r)),   ( )(r)    ( )(r), 

  ( ) (r)   ( ) (r)> : p     , rW}, {<r,   ( ) (r)   ( ) (r),   ( ) (r)   ( ) (r), (1-

  ( )(r)) (1-  ( )(r)),   ( )(r)   ( )(r),   ( )(r)   ( )(r)> : p    , rW}) 

= ({<r,   ( ) (r)    ( ) (r),   ( ) (r)    ( ) (r), 1-(  ( ) (r)   ( ) (r)),   ( ) (r)    ( ) (r), 

  ( ) (r)    ( ) (r)> : p     , rW}, {<r,   ( ) (r)    ( ) (r),   ( ) (r)    ( ) (r), 1-

(  ( )(r)   ( )(r)),   ( )(r)    ( )(r),   ( )(r)    ( )(r)> : p    , rW}) 

= N(QV)
c
. 

Hence, N(QV)
c 
= N(Q)

c 
 N(V)

c
. 

(ii) Similarly, it can be established that N(QV)
c
=N(Q)

c
  N(V)

c
. 

 

4. Rough Pentapartitioned Neutrosophic Topology 

In this section, we introduce the idea of rough pentapartitioned neutrosophic topology and 

study some of its properties.  

Definition 4.1: Let N(Q)=( (Q),  (Q)) be a R-P-NS in the approximation space (W, ρ). Then, 

     ( ) ={1PN, 0PN,  (Q),  (Q), NB(Q)} is called a rough pentapartitioned neutrosophic 

topology (RPNT) which guarantees the following postulates: 

(i) 1PN and 0PN belongs to      ( ); 

(ii) Arbitrary union of members of      ( ) belongs to      ( ); 

(iii) Finite intersection of members of      ( ) belongs to      ( ).  

Then, (W,      ( )) is called a rough pentapartitioned neutrosophic topological space (in 

short RPNT-space), if      ( ) is a rough pentapartitioned neutrosophic topology (in short 

RPNT). 

Definition 4.2: Let (W,      ( )) be a RPNT-space. Then, the members of      ( ) are 

called rough pentapartitioned neutrosophic open set (in short RPNO-set). A R-P-NS is said to 

be a rough pentapartitioned neutrosophic closed set (in short RPNC-set) if its complement 

belongs to      ( )  
Proposition 4.3: Let (W,      ( )) be a RPNT-space. Then, 

(i) Both 1PN and 0PN are NSR-closed sets; 

(ii) Arbitrary intersection of RPN-closed sets is also a RPN-closed set; 

(iii) Finite union of RPN-closed sets is also a RPN-closed set. 

Definition 4.3: Let (W,      ( )) be a RNPT-space such that      ( )={1PN, 0PN}. Then, 

     ( ) is called a RPN-indiscrete topology on W w.r.t   and corresponding space is said to 

be a RPN-indiscrete topological space. 

Definition 4.4: Let (W,      ( )) be a RPNT-space and A be a rough pentapartitioned 

neutrosophic set over W. Then, the collection RPNT(A) = { Bi ∩ A : Bi ∈      ( ), i ∈ N } is 

also a rough pentapartitioned neutrosophic topology on W. Then, (A,      ( )) is called a 

rough pentapartitioned neutrosophic topological subspace (in short RPNT-subspace) of (W, 

     ( )). 

Definition 4.5: Let (W,      
 ( )) and (W,      ( ) ) be two RPNT-spaces. Then, (W, 

     
 ( )) is finer than (W,      ( )) if and only if      

 ( ) ⊇      ( )  
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Definition 4.6: Let (W,      ( )) be a RPNT-space w.r.t   and K be an arbitrary rough 

pentapartitioned neutrosophic subset of W. Then, the RPN-interior (in short  𝑛𝑡RPN) of K is 

union of all rough pentapartitioned neutrosophic open (in short RPN-O) subsets of K. 

Clearly,  𝑛𝑡RPN(K) is the largest RPN-O set contained in K. 

Theorem 4.1: Let (W,      ( )) be a RPNT-space w.r.t  . Let M and N be two RPN-sets 

over W. Then, 

(i)  𝑛𝑡RPN(0N) = 0N and  𝑛𝑡RPN(1N) = 1N. 

(ii)  𝑛𝑡RPN(M) ⊆ M. 

(iii) M is RPN-O set if and only if  𝑛𝑡RPN(M) = M. 

(iv)  𝑛𝑡RPN( 𝑛𝑡RPN(M)) =  𝑛𝑡RPN(M). 

(v) M ⊆ N implies  𝑛𝑡RPN(M) ⊆  𝑛𝑡RPN(N). 

(vi)  𝑛𝑡RPN(M) ∪  𝑛𝑡RPN(N) ⊆  𝑛𝑡RPN(M∪N). 

(vii)  𝑛𝑡RPN(M) ∩  𝑛𝑡RPN(N) =  𝑛𝑡RPN(M∩N). 

Proof. (i) By Definition 4.6.,  𝑛𝑡RPN(A)  A. If we put A=0PN in  𝑛𝑡RPN(A)  A, we have 

 𝑛𝑡RPN(0PN) 0PN. Further, it is known that 0PN   𝑛𝑡RPN(0PN). Therefore,  𝑛𝑡RPN(0PN)= 0PN. 

Similarly, it can be shown that  𝑛𝑡RPN(1PN)=1PN. 

(ii) By Definition 4.6.,  𝑛𝑡RPN(M) is the largest RPN-O set which is contained in M. Hence, 

 𝑛𝑡RPN(M)⊆M. 

(iii) For any RPN-set M. we have,  𝑛𝑡RPN(M)⊆M. Since, M is a RPN-O set, so it is the largest 

RPN-O set contained in M. Therefore,  𝑛𝑡RPN(M)=M. 

(iv) For any RPN-set M, we have  𝑛𝑡RPN(M)⊆M. Now,  𝑛𝑡RPN(M) is the largest RPN-O set 

contained in M, and  𝑛𝑡RPN( 𝑛𝑡RPN(M))⊆ 𝑛𝑡RPN(M). Hence, by using the third part of this 

theorem  𝑛𝑡RPN( 𝑛𝑡RPN(M))= 𝑛𝑡RPN(M). 

(v) Let M and N be two RPN-sets over W such that M⊆N. Therefore,  𝑛𝑡RPN(M)⊆M and 

 𝑛𝑡RPN(N)⊆N. Now,  𝑛𝑡RPN(M) ⊆ M ⊆ N. This implies,  𝑛𝑡RPN(M)⊆N. Therefore,  𝑛𝑡RPN(M) 

is a RPN-O set contained in N. Again,  𝑛𝑡RPN(N) be the largest RPN-O set contained in N. 

Hence,  𝑛𝑡RPN(M)⊆ 𝑛𝑡RPN(N). 

(vi) For any two RPN-sets M and N, we have M ⊆M∪N and N ⊆M∪N. 

By using the above results we have,  𝑛𝑡RPN(M)⊆ 𝑛𝑡RPN(M∪N) and  𝑛𝑡RPN(N)⊆ 𝑛𝑡RPN(M∪N). 

This implies,  𝑛𝑡RPN(M) 𝑛𝑡RPN(N)⊆ 𝑛𝑡RPN(M∪N)                                                                 (1) 

It is known that  𝑛𝑡RPN(M)M and  𝑛𝑡RPN(N)N. This implies,  𝑛𝑡RPN(M) 𝑛𝑡RPN(N)MN. 

Since, the union of two RPN-O sets is again a RPN-O set in (W,       ( ) ), so 

 𝑛𝑡RPN(M) 𝑛𝑡RPN(N) is a RPN-O set. Therefore,  𝑛𝑡RPN(M) 𝑛𝑡RPN(N) is a RPN-O set 

contained in MN. But we know that  𝑛𝑡RPN(M∪N) is the largest RPN-O set contained in 

MN. Therefore,  𝑛𝑡RPN(M∪N)⊆ 𝑛𝑡RPN(M) 𝑛𝑡RPN(N)                                                          (2) 

From eq. (1) and eq. (2), we have  𝑛𝑡RPN(M∪N)= 𝑛𝑡RPN(M) 𝑛𝑡RPN(N). 

(vii) For any two RPN sets M and N we have, MN⊆M and MN⊆N. 

By using the above results we have,  𝑛𝑡RPN(MN)⊆ 𝑛𝑡RPN(M) and  𝑛𝑡RPN(MN)⊆ 𝑛𝑡RPN(N). 

This implies,  𝑛𝑡RPN(MN)⊆ 𝑛𝑡RPN(M) 𝑛𝑡RPN(N)                                                                 (3) 

It is known that  𝑛𝑡RPN(M)M and  𝑛𝑡RPN(N)N. This implies,  𝑛𝑡RPN(M) 𝑛𝑡RPN(N)MN.  

Since, the intersection of two RPN-O sets is also a RPN-O set, so  𝑛𝑡RPN(M) 𝑛𝑡RPN(N) is a 

RPN-O set. It is known that  𝑛𝑡RPN(MN) is the largest RPN-O set which is contained in 

MN. Therefore,  𝑛𝑡RPN(M)  𝑛𝑡RPN(N) 𝑛𝑡RPN(MN)                                                         (4) 

From (3) and (4), we have  𝑛𝑡RPN(M)  𝑛𝑡RPN(N) 𝑛𝑡RPN(MN). 

Definition 4.7: Let (W,      ( )) be a RPNT-space. Suppose that K be a RPN-subset of W. 

Then, RPN-closure (ClRPN) of K is the intersection of all RPN-C supersets of K. 

Theorem 4.2: Let (W,      ( )) be a RPNT-space over W. Suppose that  M and N be two 

RPN-subsets of W. Then, the following holds: 

(i)  𝑙RPN(0PN)=0PN and  𝑙RPN(1PN)=1PN; 
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(ii) M⊆ 𝑙RPN(M); 

(iii) M is RPN-C set if and only if M= 𝑙RPN(M); 

(iv)  𝑙RPN( 𝑙RPN(M))= 𝑙RPN(M); 

(v) M⊆N implies  𝑙RPN(M)⊆ 𝑙RPN(N); 

(vi)  𝑙RPN(M∪N)= 𝑙RPN(M)∪ 𝑙RPN(N); 

(vii)  𝑙RPN(M∩N)⊆ 𝑙RPN(M)∩ 𝑙RPN(N). 

Proof. (i) By definition of RPNT, 0PN and 1PN are the smallest and largest RPN-O set as well 

as RPN-C set. Therefore,  𝑙RPN(0PN)=0PN and  𝑙RPN(1PN)=1PN. 

(ii) It is known that  𝑙RPN(M) is the smallest RPN-C set containing  M, for any RPN-set M. 

Therefore, M⊆ 𝑙RPN(M). 

(iii) Since, the smallest RPN-C set which contains M is  𝑙RPN(M). Again, M is closed. So, the 

only possible case is M= 𝑙RPN(M). 

Conversely, let  M= 𝑙RPN(M). Since,  𝑙RPN(M) is the RPN-C set, so M is a RPN-C set. 

(iv) For any RPN-set M,  𝑙RPN(M) is the smallest RPN-C set which contains M. Again, 

 𝑙RPN(M)=M, for any RPN-C set M. Hence,  𝑙RPN( 𝑙RPN(M))= 𝑙RPN(M). 

(v) Assume that M and N be two RPN-subsets of a RPNT-space (W,      ( )) such that 

MN.  

Now  𝑙RPN(M) = {Z: Z is a RPN-C set in (W,      ( )) and MZ} 

   {Z: Z is a RPN-C set in (W,      ( )) and NZ} [since M  N] 

       =  𝑙RPN(N) 

This implies,  𝑙RPN(M)   𝑙RPN(N). 

Hence, M  N   𝑙RPN(M)   𝑙RPN(N). 

(vi) Let M and N be two RPN-subsets of a RPNT-space (W,      ( )). Clearly, M⊆M∪N and 

N⊆M∪N. It is known that  𝑙RPN(M)⊆ 𝑙RPN(M∪N) and  𝑙RPN(N)⊆ 𝑙RPN(M∪N). This implies, 

 𝑙RPN(M) 𝑙RPN(N)⊆ 𝑙RPN(M∪N)                                                                                            (5) 

It is also known that, M 𝑙RPN(M) and N 𝑙RPN(N). This implies, MN 𝑙RPN(M) 𝑙RPN(N). 

Since, the union of two RPN-C sets is again a RPN-C set in (W,      ( ) ), so 

 𝑙RPN(M) 𝑙RPN(N) is a RPN-C set. Therefore,  𝑙RPN(M) 𝑙RPN(N) is a RPN-C set which 

contains MN. But we know that ClRPN(M∪N) is the smallest RPN-C set which contains 

MN. Therefore, ClRPN(MN) 𝑙RPN(M) 𝑙RPN(N).                                                              (6) 

From (5) and (6), we have ClRPN(MN) 𝑙RPN(M) 𝑙RPN(N). 

(vii) Let M and N be two RPN-subsets of a RPNT-space (W,      ( )). It is known that 

MN⊆M and MN⊆N. By a known result, we have  𝑙RPN(MN)⊆ 𝑙RPN(M) and 

 𝑙RPN(MN)⊆ 𝑙RPN(N). This implies,  𝑙RPN(M∩N)⊆  𝑙RPN(M)∩ 𝑙RPN(N). 

5. Conclusions 

In this article, we have established the concept of R-P-NS and studied several operations on 

them. Further, we have applied the concept of topology on R-P-NSs and introduced the 

notions of RPNT-space, and studied its basic properties, operations. In the future, we hope 

that based on the concept of RPNT, researchers can solve many complicated problems 

involving truth, contradiction, ignorance, unknown and falsity membership functions and 

many multi attribute decision making strategy can be formed. 
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