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Abstract 

     The statistical fluctuations of nuclear excitation energies in Ba138
 nucleus are 

investigated. This nucleus is described as a core of Sn132
 with 6 active protons 

move in the space of .82N  The OXBASH shell-model program together with the 

interaction of KN82  are used to obtain the excitation energies in .138Ba
 
To 

reflect the transition from  regular (ordered) to chaos in Ba138
, we consider 

different strengths parameter )(  to the off  diagonal elements of .82KN  The 

level density for the states 32TJ 
 is found to have a Gaussian shape, which is 

in agreement with the predicted studies for a many-body system with two-body 

residual interaction. Both distributions for the level spacing )(sP  and 

3 statistics show an ordered performance at strength parameter ,0  a 

chaotic performance at 3.0  and an in-between situation at .3.00     
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 -N82دراسة أحصائية لمستويات الطاقة النووية لِستة جسيمات في إنموذج الفضاء النووي
 

2شذى فرحان مُراد ، 1خلف حمودي عادل  
 العراق ، بغداد ، بغداد عةجام ، العلوم كلية ، الفيزياء قسم1

 العراق ،المثنى  ،جامعة المثنى  ،كلية الطب  ،قسم الفزيولوجي 2

 

 الخلاصة
-تم دراسة التموجات الأحصائية لمستويات الطاقة النووية لِستة جسيمات تتحرك ضمن إنموذج الفضاء     
N82   138 ن النواةكو  )والتي تBa   132) مع قلب مغلقSn. إنموذج القشرة النووي لإيجاد  أجرينا حسابات

 مختلفة )(مع شدات  N82Kعن طريق أستخدام التفاعل المؤثر   138Baمستويات الطاقة النووية للنواة 
 قطرية لهذا التفاعل. لعناصر المصفوفة الغير

الى السلوك المنتظم. وجدنا  وكيفية أنتقالها 138Baنواة الفوضوي لل سلوكالفي هذه الدراسة تم البحث عن     
32TJبأن كثافة مستويات الطاقة للحالات النووية    لها( شكل كاوسيGaussian shape ) والتي

أظهرت هذه  تتفق تماماً مع الدراسات النظرية الأخرى لنظام متعدد الجسيمات ذو التفاعل المتبقي للجسيمتين.
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عندما  ، ولهما سلوك فوضوي0سلوك منتظم عندمالهما  الأحصاء و  sP)( الدراسة بأن الأحصاء
3.0 3.00 سطية عندما، ولهما حالة و  . 

 

1. Introduction 

     Chaotic properties of many body quantum systems were searched tremendously in the previous 

thirty years [1]. A relationship between chaos in the classical-system and the spectral fluctuations of 

the similar quantum-system is recommended by Bohigas et al. [2], where a systematic confirmation of 

this recommendation [2] is presented in [3]. At the present, it is naturally recognized that quantum 

equivalents of classically chaotic-systems reveal statistical fluctuations that reach agreement with the 

random matrix theory (RMT) [4, 5] whereas quantum equivalents of classically ordered-systems 

reveal statistical fluctuations that reach agreement with a Poisson distribution. For systems that are 

invariant under time reversal, the proper formula of the RMT is the Gaussian orthogonal ensemble 

(GOE). RMT had been primarily utilized to illustrate the behavior of fluctuations in the neutron 

resonances of compound-nuclei [6]. RMT has come to be a typical implement for investigating the 

general manners of fluctuations in chaotic systems [7-10]. 

     In general, one can use the mean-field approach to investigate the chaotic performances for 

dynamics of the single-particle in atomic nuclei. On the other hand, the mixing of various mean-field 

configurations by the residual interaction leads to affect the behavior of fluctuations of many-particle 

excitation energies and wave functions. In addition, one can utilize different nuclear models to analyze 

these fluctuations. Alhassid et al. [11, 12] used the framework of the interacting boson-model (IBM) to 

study the fluctuation properties of the low-lying energy spectrum, where the nuclear space is drawn 

onto a considerably lesser space of bosonic-degrees of freedom. As a result of the comparatively slight 

number of degrees of freedom in the IBM, it had been also probable to connect the statistics to the 

essential mean-field collective dynamic. At the region of high-lying energy spectrum, extra degrees of 

freedom come to be significant [13], as well as the influences of interactions on the statistical 

properties have to be searched in bigger spaces. The nuclear shell model is considered as a good 

context for these studies, where many effective interactions for various model spaces are existed as 

well as the basis states are characterized via good quantum numbers of total angular momentum ( J ), 

isospin (T ) and parity ( ) [14]. 

     The distribution of the wave function components [15-19] was analyzed by the perspective of the 

shell model. Brown and Bertsch [17] indicated that the distribution of the basis vector amplitudes is in 

agreement with that of Gaussian (i.e., consistent with the prediction of the GOE) at the region of 

higher excitation energies and departed from Gaussian performance in further regions unless the 

evaluations assumes degenerate single particle energies. Zelevinsky et al. [19] as well recommended 

that evaluations with degenerate single particle energies have chaotic performance at lower excitation 

energies than other realistic evaluations. 

   It is known that the nuclear observables of electromagnetic transition intensities are sensible to the 

nuclear wave functions. Therefore, the analysis of their statistical fluctuations should supply the 

analysis of spectral fluctuations and assist as an additional mark of chaos in quantum systems. 

Hamoudi et al. [20] performed calculations in the fp-shell to analyze the fluctuation properties of 

excitation energies and electromagnetic intensities in some of 
60

A nuclei using an effective interaction 

of F5P [21]. The estimated outcomes were consistent with RMT and with the earlier outcomes of [15-

19]. The influence of one body hamiltonian on the statistical fluctuations of excitation energies and 

electromagnetic intensities in 
136

Xe was investigated by Hamoudi [22], where an explicit quantum 

mark for violation the chaoticity was remarked with enlarging the values of single particle energies. 

Later, full fp shell calculations were carried out by Hamoudi et al. [23]. They [23] used the FPD6 [24] 

as an effective interaction and looked for the transition from regular to chaos in the calculated 

excitation energies and electromagnetic intensities of 
44

V nucleus. The outcomes revealed that the 

transition from regular to chaos is possible through implementing different strengths to the off 

diagonal interaction of FPD6. Recently, Hamoudi et al [25] have accomplished calculations in the 

space of sd shell to analyze the chaotic properties of energy spectra in 
32

A (
32

S, 
32

P and 
32

Si) nuclei. 

They [25] have adopted an empirical effective interaction of W [26] in the isospin formalism. The 

results have been well described by the GOE of random matrices with no dependency on J  and .T  

Subsequently, Hamoudi et al [27] have repeated their study as in [25] but this time chosen an 
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empirical effective interaction of WPN [26] in the proton-neutron formalism. The spectral fluctuations 

in 
32

A nuclei have been found to have an intermediate behavior between Wigner and Poisson limits. 

Besides, they move gradually toward the GOE limit when going over PS 3232 ,  and Si32
 nuclei, 

respectively. Moreover, they are independent of the spin .J   

     There has been no comprehensive investigation for chaotic dynamics of the nuclear energy 

spectrum in 
138

Ba nucleus. We thus, in this research, examine the effect of interaction strengths )(  

on the chaotic properties of excitation energies in 
138

B. Here, the nucleus 
138

B is described as an inert 

core of 
132

Sn with 6 protons in the N82 space.  

2. Theory 

     In the viewpoint of the shell model, the effective hamiltonian of many body quantum system is 

given by [14] 

                                                       ,0 HHH                                                                       (1) 

where 0H  is the one body term given by  

                                                      


 aaeH 0                                                                    (2) 

and H   is the two body residual interaction specified by 

                                               .
4

1
;  aaaaVH                                                             (3) 

     Here the symbols  ,,  and   exemplify the single particle orbitals which have for example 

).(  ljm  The quantum numbers mjl ,,  and   is the orbital, total angular momentum, projection 

)( mjz   and isospin projection, respectively. 

     The wave functions for many body quantum systems are constructed in terms of the m scheme 

picture.  For certain J  and ,T  with single-particle maximum spin and isospin projection [14], 

                                                    .;, 3 mTTJM                                                                   (4) 

In eq. (4), m  denotes the m scheme picture. 

The many body hamiltonian 

                                            

k

JT

kk kJTHkJTH ;;                                                                  (5) 

is ultimately diagonalized to get the energies E  and wave functions 

                                                  ,;; 
k

k kJTCJT                                                             (6) 

where the energies E  are the essential physical quantities of this study. 

     The statistical fluctuations of nuclear excitation energies are investigated by two statistics: these are 

the nearest neighbor’s level spacing )(sP  and 3  (Dyson-Mehta) - statistics [4, 29]. The staircase 

function )(EN  of calculated energy spectrum is initially constructed, where )(EN  is specified as the 

energy levels number N  with excitation energies .E   A smooth fitting to )(EN  is made through 

appropriate polynomial fit. The calculated spectrum is then unfolded via the mapping [12] 

                                                   )(
~~

ii ENE  .                                                                               (7) 

It is relevant to indicate that the unfolded energy levels iE
~

 possess a constant average spacing while 

the real spacings reveal strong fluctuations.  

   The )(sP  distribution (which characterizes the fluctuations of the short range relationships among 

energy levels) is specified by the possibility of two adjacent levels to be a distance s  away from each 

other. The spacings is  are calculated from the unfolded energy levels via the relation: .
~~

1 iii EEs    

For classically regular system, one expects to find the Poisson distribution 

                                                   ).exp()( ssP                                                                        (8) 

     Whereas for classically chaotic system, one expects to have the Wigner distribution 
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                                 ),4/exp()2/()( 2sssP                                                                         (9) 

which is in agreement with the GOE limit. 

     In this study, the calculated distribution of )(sP  is fitted to the Brody distribution 

)exp()1(),( 1   sssP ,                                                                                                 (10) 

where 
1

1

2





























                                                                                                                  (11) 

     The distribution of Brody interposes between the Poisson (with )0  and Wigner (with )1  

distributions. In this work, the limitation   is employed as a simple numerical measure for the degree 

of chaoticity. 

     The 3 statistic (which exemplifies the fluctuations of the long range relationships among energy 

levels) is utilized to find the rigidity of the nuclear energy levels and given by [4] 

         




L

BA EdBEAEN
L

L






~

)
~

()
~

(
1

min),(
2

,3 .                                                                 (12) 

     This statistic determines the abnormality of the staircase function (of the unfolded spectrum) from a 

straight line. A rigid spectrum corresponds to smaller values of 3  whereas a soft spectrum has a 

larger .3  To get a smoother function ),(3 L  we average )(3 L  over several n  intervals 

( L , ) 

                                               ).,(
1

)( 33 L
n

L 


                                                               (13) 

The successive intervals are taken to overlap by .2/L  

For regular system, we guess to find the Poisson limit 

.15/)(3 LL                                                                                                                              (14) 

But for chaotic system, we foresee to obtain the GOE limit 

 







 )arg(ln

)(15/
23

LelforL

LsmalforL


                                                                                           (15) 

 

3. Results and discussion 

     The statistical fluctuations of the nuclear excitation energies in Ba138
 nucleus are investigated by 

means of the interacting shell model. This nucleus is supposed to have a core of Sn132
 and the 

remaining six protons move in the 82N  space defined by 2/12/112/72/5 3,1,1,2 shgd  and 2/32d  

orbitals. The isospin-conserving KN82  interaction [28] is taken as an effective interaction together 

with realistic single particle energies. Shell model calculations for Ba138
 nucleus are carried out by 

the code OXBASH [30] using various strengths   to the off diagonal elements of KN82  interaction. 

The statistical properties of nuclear energy levels are studied for states which possess similar spin ( J ), 

parity ( ) and isospin (T ). In this study, we generally use the class of states 32
 (which possesses a 

dimension of 2134) as a case test and involve all obtainable energy levels in the analysis. 

3.1. Level density 

     In Figure-1, the calculated level density )(E  (histograms) for 32
 class of states in Ba138

 is 

displayed with different interaction strength ( ). The Gaussian fit [31] (the dashed line) is also 

displayed for comparison. Fig. 1(a) demonstrates the result (histograms) of the diagonalization with no 

off-diagonal residual interaction (i.e., with )0  and Fig. 1(i) characterizes the result of the 

diagonalization with the full hamiltonian (i.e., with ).1  It is obvious that the histograms in 
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Figures-1(a) and 1(i) are indistinguishable, with the exception of a shift in energy as a whole. This 

figure reveals that the level density suddenly evolves along with the excitation energy, comes to its 

maximum at the central of the spectrum and then decreases again for the highest energy. This behavior 

of the high energy, and the rough symmetry relative to the mid of the spectrum, are fake features of 

models with finite Hilbert space which is in disagreement to actual many-body systems. This figure as 

well exhibits that the calculated histograms possesses a Gaussian shape, which is in accordance with 

the prediction of Brody et al. [7] for a many-body system with two-body residual interaction.  

 

 
 

 

 
 

Figure 1- The level density in 
138

Ba nucleus for the 32TJ 
 class of levels: (a) corresponds to the 

result obtained with the absence of the off-diagonal interaction ( 0 ); (b) demonstrates the result 

obtained with the full Hamiltonian ( 1 ). 

 

3.2. Level spacing distribution 

     In Figure-2, the calculated )(sP  distribution (histogram) for the unfolded 32
 class of energy 

levels in Ba138
 is presented with various interaction strengths .  The GOE limit (which defines 

chaotic systems) is displayed in the above figure via the solid curve. The Poisson limit (which refers to 
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ordered or regular systems) is exhibited by the dashed curve. Figure-2(a) reveals the outcome of the 

unperturbed hamiltonian calculations for the )(sP  distribution calculated with the interaction strength 

.0  The calculated histogram in Figure- 2(a) reveals ordered performance (which is in agreement 

with the Poisson limit) because of the deficiency of mixing as well as repulsion among energy levels. 

In fact, this deficiency is due to the nonattendance of the off diagonal interaction matrix elements 

(only diagonal elements of the N82K interaction are considered in the calculations). Figs. 2(b)-2(h) 

present the outcome of the full hamiltonian calculations for )(sP  distributions calculated with various 

strengths ).10(    These figures exhibit the histograms move clearly away from the Poisson limit. 

They also show the level repulsion at small spacings, which is a typical feature of chaotic systems, 

growths more and more with increasing the strength ,   as a consequence the computed histograms 

transfers regularly in the direction of the GOE limit. To compute the degree of chaos in the )(sP  via a 

limitation, we display in Figures-2(b)-2(h) the fitted results of Brody distribution (the red dash dotted 

curves) with their fitted limitations .  It is realized from Fig. 2 that the transition from regular (order) 

to chaos arises at comparatively small strength of about  0.3.  However, the outcome of Fig. 2 

confirms the works achieved by Zelevinsky et al. [14] and Hamoudi et al. [23] for analyzing  the )(sP  

distribution in the sd and full fp shell model calculations, respectively. 

3.3. Spectral rigidity 

    In Figure- 3, the influence of the strength   on the )(3 L statistics (spectral rigidity) is examined. 

In this figure, the calculated distribution of the )(3 L statistics (denoted by open circles) for the 

unfolded 32
 class of energy levels in Ba138

  is exhibited with several interaction strengths .  The 

Poisson limit (signified by the dashed curve) and the GOE limit (signified by the solid curve) are 

likewise exhibited for comparison. It is noticeable that the calculated distribution of )(3 L  in Fig. 

3(a) (obtained with zero strength )0 reveals a good agreement with the Poisson distribution 

whereas those in Figs. 3(b)-3(h) (obtained with )10    show important abnormality from the 

Poisson distribution. Increasing the interaction strength   across Figs. 3(a)-3(i) leads to transfer the 

calculated distribution of )(3 L  in the direction of the GOE distribution. Fig. 3 also demonstrates 

that the calculated distribution of )(3 L  goes forward to the GOE limit at small strength of about 

 0.3. This also approves the result that we have gained in Fig. 2 from the examination of the level 

spacing ).(sP  Besides, the outcome of Fig. 3 also approves the works done by Hamoudi et al. [23] for 

the distribution of )(3 L  statistics in 
44

V nucleus. 

4. Conclusions 

     The fluctuation properties ( )(sP  and 3  statistics) of the excitation energies in Ba138
 have been 

searched through the context of the shell model, utilzing the isopspin-conserving KN82  as an 

effective interaction for 6 protons in the 82N space with a core of Sn132
. We have searched for a 

transition from ordered to chaos in Ba138
 through performing shell-model calculations with several 

strengths .  The level density has been found to have a Gaussian shape, which is in agreement with 

the predicted studies for a many-body system with two-body residual interaction. Both distributions of 

the )(sP  and 3  statistics have been found to own an ordered dynamic at strength ,0  a 

disordered dynamic at 3.0  and an intermediate limit at .3.00    Moreover, they have been 

well characterized by the GOE prediction once the strength becomes .4.0  
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Figure 2-The nearest neighbor level spacing  distributions in 

138
Ba nucleus for the unfolded 

32TJ 
 states (histograms) calculated with interaction strength 0  (a), 02.0  (b), 

04.0  (c), 06.0  (d), 08.0  (e), 1.0  (f), 2.0  (g), 3.0  (h) and 1  (i).  

 

     The solid and dashed lines are the GOE and Poisson distributions, respectively. The red dash-

dotted line is the best-fitted Brody distribution with the quoted .  
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Figure 3-The average 3  statistic in 
138

Ba nucleus for the unfolded 32TJ 
 states (open circles) 

calculated with interaction strength 0  (a), 02.0  (b), 04.0  (c), 06.0  (d), 

08.0  (e), 1.0  (f), 2.0  (g), 3.0  (h) and 1  (i). The solid and dashed lines are 

the GOE and Poisson distributions, respectively. 
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