

ISSN: 0067-2904

N Sequence Prime Ideals

Hemin A. Ahmad*, Parween A. Hummadi

Mathematics, College of Education, Salahaddin University, Erbil, Iraq
Received: 9/3/2021
Accepted: 9/5/2021

Abstract

In this paper, the concepts of n-sequence prime ideal and n-sequence quasi prime ideal are introduced. Some properties of such ideals are investigated. The relations between n-sequence prime ideal and each of primary ideal, n-prime ideal, quasi prime ideal, strongly irreducible ideal, and (k, m) closed ideal, are studied. Also, the ideals of a principal ideal domain are classified into quasi prime ideals and n sequence quasi prime ideals.

Keywords: Prime ascending chain of ideals; Prime with respect to; Length of an ideal; n-sequence prime ideal; n-sequence quasi prime ideal.

> المثاليات الاولية المتتابعة من نمطnn
> هيمن عبد الكريم احمد"، بروين علي حمادي
> قسم الرياضيات ، كلية التربيه ، جامعة صلاح الدين، اربيل ، العراق

الخلاصة
في هذا البحث نتوم بعرض مفهوم المثاليات الأولية المتتابعة من نمط n و مفهوم المثاليات شبه الأولية
المتابعة من نط n. نبحث بعض خصائصهما. أضافة الى ذلك نتوم بدراسة علاقة المتاليات الأولية
المتابعة من نط n مع الدثاليات الإبتائية ، المثاليات الأولية من نط n ، المثاليات شبه الأولية ،

التّي هي ساحة مثاليات رئيسة الى صنفين المثاليات شبه الأولية و المثاليات شبه الأولية المتتابعة من نهط

1. Introduction

Throughout this paper, R is a commutative ring with identity. Let $I_{0} \subset I_{1}$ be two proper ideals of R. We say that I_{0} is prime in I_{1} if for each a, b in $I_{1}, a b \in I_{0}$ implies $a \in I_{0}$ or $b \in$ I_{0} and I_{0} is prime with respect to I_{1} if for each a, b in $R, a b \in I_{0}$ implies $a \in I_{1}$ or $b \in I_{1}$. An ascending chain of proper ideals $I_{0} \subset I_{1} \subset I_{2} \subset I_{3} \ldots$ of R is called a prime ascending chain of ideals if I_{m-1} is a prime ideal in I_{m} for each $m \in \mathbb{Z}^{+}$, the set of all positive integers. We also say that I_{0} is a prime ideal of length m with respect to the prime ascending chain of ideals $I_{0} \subset I_{1} \subset I_{2} \subset \cdots$ if I_{0} is not prime with respect to I_{k} for each $0 \leq k \leq m-1$, but I_{0} is prime with respect to I_{m}, while the prime ascending chain $I_{0} \subset I_{1} \subset I_{2} \subset \cdots$ is said to be stabilized at I_{m} and the ideal I_{m} is called a stabilizer prime ideal of the chain. Moreover, a non-prime proper ideal I_{0} of R is called an n-sequence prime ideal if $n=\min \left\{t: t\right.$ is the length of I_{0} with respect to a prime ascending chain of ideals of the form $\left.I_{0} \subset I_{1} \subset I_{2} \subset \cdots\right\}$. Some important results are obtained. It is shown that for each $a \in R$ and $k \in \mathbb{Z}^{+}$, if $a^{k} \in I_{0}$, then

[^0]$a \in I_{0}$ and consequently, $\sqrt{I_{0}}=I_{0}$; see Theorem 2.12 and Corollary 2.16. It is also shown that there are two elements $a, b \in R$ with $a b \in I_{0}$ but $a^{k}, b^{k} \notin I_{0}$ for each $k \in \mathbb{Z}^{+}$; see Proposition 2.23. The relations between n-sequence prime ideal with some other types of ideals, such as primary ideal, quasi prime ideal, strongly irreducible ideal, and (k, m) closed ideal, are discussed separately; see Proposition 3.1, Proposition 3.3, Theorem 3.10, and Proposition 3.13. Moreover, it is shown that the concept of n-sequence prime ideal is independent with each of weakly prime, weakly irreducible, weakly 2 -absorbing, n almost prime, and 2 absorbing ideals. Finally, the concept of n-sequence quasi prime ideal is introduced (see 3.16). The family of proper ideals of a principal ideal domain is classified. We show that a proper ideal of a principal ideal domain is either quasi prime or n-sequence quasi prime.

2. n-sequence prime ideals

In this section, we introduce the concept of an n-sequence prime ideal of a commutative ring with identity and we illustrate it by some examples. We obtain some results and properties of such ideals.
We start by introducing some new concepts.
Definition 2.1. Let $A \subset B$ be two proper ideals of R. Then A is said to be a prime ideal with respect to B if for each a, b in $\mathrm{R}, a b \in A$ implies $a \in B$ or $b \in B$.
Clearly, if A is a prime ideal of a ring R, then it is prime with respect to any ideal containing it.
Definition 2.2. A sequence of proper ideals $I_{0} \subset I_{1} \subset I_{2} \subset I_{3} \ldots$ of R is called a prime (resp. p-maximal) ascending chain of ideals if I_{m-1} is a prime (resp. prime and maximal) ideal in I_{m} for each $m \in \mathbb{Z}^{+}$. A proper ideal I_{0} of R is called a prime ideal of length m with respect to the prime ascending chain of ideals $I_{0} \subset I_{1} \subset I_{2} \subset \cdots$, if I_{0} is not prime with respect to I_{k} for each $0 \leq k \leq m-1$ but it is prime with respect to I_{m}. Then the prime ascending chain $I_{0} \subset I_{1} \subset I_{2} \subset \ldots$ is said to be stabilize at I_{m} and the ideal I_{m} is called the stabilizer ideal of the chain.
Definition 2.3. A non-prime proper ideal I_{0} of R is called an n-sequence prime ideal if $n=\min \left\{t\right.$: t is the length of I_{0} with respect to a prime ascending chain of ideals of the form $\left.I_{0} \subset I_{1} \subset I_{2} \subset \ldots\right\}$.
The following remarks are obvious.
Remark 2.4. Let $I_{0} \subset I_{1} \subset I_{2} \subset \cdots$ be an ascending chain of ideals of R.

1. For each integer $m \geq 0$, there is $\chi \in R$ such that $I_{m} \subset\left(I_{m} \cup\{\chi\}\right) \subseteq I_{m+1}$, since there exists an element $\chi \in I_{m+1} \backslash I_{m}$. Moreover, if I_{m} is maximal in I_{m+1}, then $\left(I_{m} \cup\{\chi\}\right)=I_{m+1}$. 2. For each $k \in \mathbb{Z}^{+}$, there are k elements $\chi_{1}, \chi_{2}, \ldots, \chi_{k-1}, \chi_{k}$ in R such that ($I_{0} \cup$ $\left.\left\{\chi_{1}, \ldots, \chi_{k}\right\}\right) \subseteq I_{k}$. Morover, if I_{m} is maximal in I_{m+1} for each m, then $I_{k}=\left(I_{0} \cup\right.$ $\left.\left\{\chi_{1}, \ldots, \chi_{k}\right\}\right)$.
Definition 2.5 [1]. A proper ideal I_{0} of R is quasi prime, if $a, b \in R$ with $a b \in I_{0}$ implies $a \in \sqrt{I_{0}}$ or $b \in \sqrt{I_{0}}$. Equivalently a proper ideal I_{0} of R is quasi prime if $\sqrt{I_{0}}$ is a prime ideal.

Remark 2.6.

1. If B is a prime ideal, then every proper ideal of R contained in B is prime with respect to B.
2. An ideal I of R is quasi prime if and only if I is prime with respect to \sqrt{I}.

Remark 2.7.

1. Consider the ideal $I_{0}=\left(m_{0}\right)$ of the ring of integers \mathbb{Z} with the prime factorization of $m_{0}=$ $p_{1} \ldots p_{n}$ with p_{i} are distinct primes, $1 \leq i \leq n$. Let $m_{i}=\frac{m_{i-1}}{p_{l_{i}}}$ where $p_{l_{i}} \in\left\{p_{1}, \ldots, p_{n}\right\}$ for $1 \leq l_{i} \leq n$ such that $l_{i} \notin\left\{l_{1}, \ldots l_{i-1}\right\}$. Let $I_{i}=\left(m_{i}\right)$ be the ideal generated by m_{i}. Then the chain $I_{0} \subset I_{1} \subset I_{2} \subset \cdots$ is a prime ascending chain of ideals and it is stabilized at an ideal
generated by $p_{l_{n}}$. The number of prime ascending chains of the form $I_{0} \subset I_{1} \subset I_{2} \subset \cdots \subset$ I_{n-1} is $n!$ and I_{0} is an n-1-sequence prime ideal.
2. Let $R=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over \mathbb{Z} with n indeterminates and let $I_{0}=$ $\left(x_{1} x_{2} x_{3} \ldots x_{n}\right), I_{k}=\left(\prod_{i=1}^{n-k} x_{i}\right)$ where $n \in \mathbb{Z}^{+} \backslash\{1\}$ and $1 \leq k<n$. Then the chain $I_{0} \subset I_{1} \subset$ $I_{2} \subset \cdots$ is a prime ascending chain of ideals of R that is stabilized at the ideal $I_{n-1}=\left(x_{1}\right)$ and I_{0} is $n-1$-sequence prime.

Example 2.8.

1. Consider the ideals $I_{0}=(2310), I_{1}=(210), I_{2}=(30), I_{3}=(6)$, and $I_{4}=(2)$ of \mathbb{Z}. Then the chain of ideals $(2310) \subset(210) \subset(30) \subset(6) \subset(2)$ is a prime ascending chain that is stabilized at I_{4}, which shows that I_{0} is a 4 -sequence prime ideal. Moreover, the number of such prime ascending chain is 5!.
Consider the ideals $I_{0}=(\chi(\chi+1)(\chi+2)(\chi+3)), I_{1}=(\chi(\chi+1)(\chi+2)), I_{2}=$ $(\chi(\chi+1))$, and $I_{3}=(\chi)$ of $\mathbb{Z}[\chi]$ as the polynomial ring over \mathbb{Z} with one indeterminate. Then the chain of ideals $(\chi(\chi+1)(\chi+2)(\chi+3)) \subset(\chi(\chi+1)(\chi+2)) \subset(\chi(\chi+1)) \subset(\chi)$ is prime ascending chain that is stabilized at I_{3}, which shows that I_{0} is a 3-sequence prime ideal. Moreover, the number of prime ascending chains is 4 !, which are shown in the following diagram

$$
(\chi(\chi+1)(\chi+2)(\chi+3))
$$

Proposition 2.9. Let I_{0} be an n-sequence prime ideal of R. If $a \in R$ with $a^{2} \in I_{0}$, then $a \in I_{0}$. Proof. Since I_{0} is an n-sequence prime ideal of R, then there is a prime ascending chain of ideals $I_{0} \subset I_{1} \subset I_{2} \subset \cdots$ with stabilizer ideal I_{n}. Suppose that $a^{2} \in I_{0}$. Then $a \in I_{n}$, since I_{0} is prime with respect to I_{n}. So $a \in I_{n-1}$, since I_{n-1} prime in I_{n}. For the same reason, $a \in I_{k}$, $0 \leq k \leq n-2$.
Corollary 2.10. Let I_{0} be a proper ideal of R. If $a \in R$ with $a^{2} \in I_{0}$ but $a \notin I_{0}$, then I_{0} is not
an n-sequence prime ideal of R.
Proposition 2.11. Let I_{0} be an n-sequence prime ideal of R. For any two elements x, a in R, if $x a^{2} \in I_{0}$, then $x a \in I_{0}$.
Proof. Let $x a^{2} \in I_{0}$. Then $(x a)^{2} \in I_{0}$. By proposition $2.9, x a \in I_{0}$.
Theorem 2.12. Let I_{0} be an n-sequence prime ideal of R. If $a \in R$ with $a^{k} \in I_{0}$, where $k>1$, then $a \in I_{0}$.
 $a^{k_{1}} \in I_{0}$. By Proposition 2.9, $a^{\left(\frac{k_{1}}{2}\right)} \in I_{0}$. If $\frac{k_{1}}{2}=1$, then the proof is complete. If $\frac{k_{1}}{2}>1$, let $k_{2}=\left\{\begin{array}{l}\frac{k_{1}}{2} \quad \text { if } \frac{k_{1}}{2} \text { is even } \\ \frac{k_{1}}{2}+1 \text { if } \frac{k_{1}}{2} \text { is odd }\end{array}\right.$.Then $a^{k_{2}} \in I_{0}$. Also by Proposition 2.9, $a^{\left(\frac{k_{2}}{2}\right)} \in I_{0}$. By iterating these steps, we obtain $a \in I_{0}$.
Definition 2.13 [2]. If I_{0} is an ideal of R, then the radical of I_{0} denoted by $\sqrt{I_{0}}$ is $\sqrt{I_{0}}=\left\{x \in R ; x^{n} \in I_{0}\right.$ for some $\left.n \in \mathbb{Z}^{+}\right\}$, which is an ideal of R.
Definition 2.14 [3]. The nilradical of $\mathrm{R}(\operatorname{radical}(R))$ is the set of all nilpotent elements in R which forms an ideal of R. Equivalently, $\operatorname{radical}(R)=\sqrt{(0)}$ is the radical of the zero ideal.
Corollary 2.15. Let I_{0} be an ideal of R and $a \in R$. If $a^{k} \in I_{0}, k>1$, and $a \notin I_{0}$, then I_{0} is not an n-sequence prime ideal of R. Equivalently, if $a \in \sqrt{I_{0}}$ and $a \notin I_{0}$, then I_{0} is not an n sequence prime ideal of R.
Corollary 2.16. If I_{0} is an ideal of R such that $\sqrt{I_{0}} \neq I_{0}$, then I_{0} is not an n-sequence prime. Equivalently, if I_{0} is an n-sequence prime ideal, then $\sqrt{I_{0}}=I_{0}$.
The following remark shows that the converse of Corollary 2.16. is not true in general.
Remark 2.17. If I_{0} is an ideal of R and $\sqrt{I_{0}}=I_{0}$, then I_{0} may not be an n-sequence prime ideal, for example the ideal $I_{0}=(2)$ of \mathbb{Z}, then I_{0} is a prime ideal, so $\sqrt{I_{0}}=\sqrt{(2)}=(2)$, but I_{0} is not an n-sequence prime ideal.
Example 2.18. By Corollary 2.15, we obtain that

1. The ideal $I_{0}=\left(p^{k}\right), p$ is a prime number and $k>1$ is not an n-sequence prime ideal of \mathbb{Z}.
2. For each prime number p and $k \in \mathbb{Z}^{+}$, the ring $\mathbb{Z}_{p^{k}}$ has no n-sequence prime ideal.
3. The ideal $\left(x^{k}\right), k>1$ of the ring $\mathrm{R}=\mathbb{Z}[x]$ is not n-sequence prime.

Proposition 2.19. Let I_{0} be an n-sequence prime ideal of R. Then the radical of R is contained in I_{0}.
Proof. If x is a nilpotent element of R, then $x^{n}=0 \in I_{0}$ for some $n \in \mathbb{Z}^{+}$. By Theorem 2.12, $x \in I_{0}$, which means the radical of R is contained in I_{0}.
Proposition 2.20. Let I_{0} be an n-sequence prime ideal of R. If $\chi=\chi_{1}{ }^{\alpha_{1}} \chi_{2}{ }^{\alpha_{2}} \ldots \chi_{k}{ }^{\alpha_{k}} \in I_{0}$, then $\chi_{1} \chi_{2} \ldots \chi_{k} \in I_{0}$, where $\chi_{i} \in R$ and $\alpha_{i} \in \mathbb{Z}^{+}$for each $1 \leq i \leq k$. Equivalently, if $\chi=$ $\chi_{1}{ }^{\alpha_{1}} \chi_{2}{ }^{\alpha_{2}} \ldots \chi_{k}{ }^{\alpha_{k}} \in I_{0}$ and $\chi_{1} \chi_{2} \ldots \chi_{k} \notin I_{0}$, then I_{0} is not an n-sequence prime ideal of R.
Proof. Let $\chi_{1}{ }^{\alpha_{1}} \chi_{2}{ }^{\alpha_{2}} \ldots \chi_{k}{ }^{\alpha_{k}} \in I_{0}$ and $\alpha=\operatorname{Max}\left\{\alpha_{i} ; 1 \leq i \leq k\right\}$. Then $\chi_{1}{ }^{\alpha} \chi_{2}{ }^{\alpha} \ldots \chi_{k}{ }^{\alpha}=$ $\left(\chi_{1} \chi_{2} \ldots \chi_{k}\right)^{\alpha} \in I_{0}$. By Theorem 2.12, $\chi_{1} \chi_{2} \ldots \chi_{k} \in I_{0}$.
Proposition 2.21. Let I_{0} be an n-sequence prime ideal of R and $I_{0} \subset I_{1} \subset I_{2} \subset \cdots$ be a prime ascending chain of ideals with stabilizer ideal I_{n}. Then, for each $m \in \mathbb{Z}^{+}$, there exists an element $a \in R$ such that $a \in I_{m}$, but $a^{k} \notin I_{m-1}$. Moreover, if b divides a, then $b^{k} \notin I_{m-1}$ for each $k \in \mathbb{Z}^{+}$.
Proof. Since $I_{m-1} \subset I_{m}$ for each $m \in \mathbb{Z}^{+}$, then there exists an element $a \in I_{m}$ but $a \notin I_{m-1}$. If $a^{2} \in I_{m-1}$, then $a \in I_{m-1}$, since I_{m-1} is prime in I_{m}, which is a contradiction with the assumption $a \notin I_{m-1}$. Hence, $a^{2} \notin I_{m-1}$. If $a^{k}=a a^{k-1} \in I_{m-1}$ for some $k>2$, then
$a \in I_{m-1}$ or $a^{k-1} \in I_{m-1}$, since I_{m-1} is prime in I_{m}. Since $a \notin I_{m-1}$, then $a^{k-1} \in I_{m-1}$. By iterating this step, we obtain $a \in I_{m-1}$, which is a contradiction. Therefore, $a^{k} \notin I_{m-1}$ for each $k \in \mathbb{Z}^{+}$. Now, suppose that b divides a, then there exists an element x in R such that $a=x b$. If $b^{k} \in I_{m-1}$ for some $k \in \mathbb{Z}^{+}$, then $x^{k} b^{k} \in I_{m-1}$, implies that $a^{k} \in I_{m-1}$. This is a contradiction with $a^{k} \notin I_{m-1}$.
Proposition 2.22. Let I_{0} be an n-sequence prime ideal of R and $I_{0} \subset I_{1} \subset I_{2} \subset \cdots$ be a prime ascending chain of ideals with stabilizer ideal I_{n}. If $a, b \in R$ with $a b \in I_{0}$ and $a, b \notin I_{n-1}$, then I_{n} contains exactly one of a or b.
Proof. Let $a, b \in R$ with $a b \in I_{0}$ and $a, b \notin I_{n-1}$. Since I_{n} is stabilizer, I_{0} is prime with respect to I_{n}. Then $a \in I_{n}$ or $b \in I_{n}$. Suppose that both a and b are in I_{n}. Since I_{n-1} is prime in I_{n}, then $a \in I_{n-1}$ or $b \in I_{n-1}$, which is a contradiction with the assumption $a, b \notin I_{n-1}$.
Proposition 2.23. Let I_{0} be an n-sequence prime ideal of R. Then there are two elements $a, b \in R$ with $a b \in I_{0}$ but $a^{k}, b^{k} \notin I_{0}$ for each $k \in \mathbb{Z}^{+}$. Moreover, if $c \in R$ divides a or b, then $c^{k} \notin I_{0}$ for each $k \in \mathbb{Z}^{+}$.
Proof. Since I_{0} is an n-sequence prime ideal of R, then I_{0} is not a prime ideal. This means that there are two elements $a, b \in R$ with $a b \in I_{0}$ but $a, b \notin I_{0}$. By Corollary 2.15 , if $a^{k} \in I_{0}$ for some $k \in \mathbb{Z}^{+}$, then I_{0} is not an n-sequence prime ideal, which is a contradiction. Similarly, we get a contradiction if $b^{k} \in I_{0}$. Suppose that $c \in R$ divides a and $c^{k} \in I_{0}$ for some $k \in \mathbb{Z}^{+}$. Then there is an elements x in R such that $a=x c$. If $c^{k} \in I_{0}$, then $x^{k} c^{k} \in I_{0}$, implies that $a^{k} \in I_{0}$. This is a contradiction with $a^{k} \notin I_{0}$.
Corollary 2.24. If I_{0} is an n-sequence prime ideal of R, then there are two elements $a, b \in R$ with $a b \in I_{0}$ but $a, b \notin \sqrt{I_{0}}$.
Corollary 2.25. Let I_{0} be an n-sequence prime ideal of R and $I_{0} \subset I_{1} \subset I_{2} \subset \cdots$ be a prime ascending chain of ideals with stabilizer ideal I_{n}. Then $I_{n} \neq \sqrt{I_{0}}$.
Proof. Since I_{0} is an n-sequence prime ideal of R, then by Corollary 2.24, there are two elements $a, b \in R$ with $a b \in I_{0}$ but $a, b \notin \sqrt{I_{0}}$. Since I_{n} is the stabilizer ideal of the given prime ascending chain, then $a \in I_{n}$ or $b \in I_{n}$. This means that there is an element in I_{n} but not in $\sqrt{I_{0}}$. Therefore, $I_{n} \neq \sqrt{I_{0}}$.

3. Relations between n-sequence prime ideals and some types of ideals

In this section, we study the relation between an n-sequence prime ideal and each of primary ideal, n-prime ideal, quasi prime ideal, strongly irreducible ideal, and (k, m) closed ideal. It is shown that the concept of n-sequence prime ideal is independent of each of weakly prime, weakly irreducible, weakly 2 -absorbing, n almost prime, and 2-absorbing ideals. Moreover, we introduce the concept of n-sequence quasi prime ideal and classify the family of proper ideals for a principal ideal domain. We show that a proper ideal of a principal ideal domain is either quasi prime or n-sequence quasi prime.
Proposition 3.1. If I_{0} is an n-sequence prime ideal of R, then it is not a primary ideal. Equivalently, if I_{0} is a primary ideal, then it is not an n-sequence prime ideal.
Proof. By Proposition 2.23, there are two elements $a, b \in R$ with $a b \in I_{0}$ but $a^{k}, b^{k} \notin I_{0}$ for each $k \in \mathbb{Z}^{+}$. Therefore, I_{0} is not a primary ideal.
The following is an example for an ideal which is neither primary nor n sequence prime.
Example 3.2. Consider the ideal $I=\left(x, y^{2} z^{3}\right)$ of the polynomial ring $\mathbb{Z}[x, y, z]$. Then I is neither n-sequence prime nor primary.
Proposition 3.3. If I_{0} is an n-sequence prime ideal of R, then it is not a quasi prime ideal. Equivalently, if I_{0} is a quasi prime ideal of R, then it is not an n-sequence prime ideal.
Proof. Let I_{0} be an n-sequence prime ideal. Then by Corollary 2.24, there are two elements
$a, b \in R$ with $a b \in I_{0}$ but $a, b \notin \sqrt{I_{0}}$. Therefore, I_{0} is not a quasi prime ideal.
The following is an example of an ideal which is neither n-sequence prime nor quasi prime.

Example 3.4. The ideal $\left(x y^{2}\right)$ of $\mathbb{Z}[x, y]$ is neither n-sequence prime nor quasi prime.
Definition 3.5 [4]. A proper ideal I_{0} of R is 2-prime (resp. m-prime, $m \in \mathbb{Z}^{+}$) if $a b \in I_{0}$, implies $a^{2} \in I_{0}$ or $b^{2} \in I_{0}\left(\right.$ resp. $a^{m} \in I_{0}$ or $\left.b^{m} \in I_{0}\right)$.
Proposition 3.6. If I_{0} is an n-sequence prime ideal of R, then it is not an m-prime ideal, for each $m \in \mathbb{Z}^{+}$.
Proof. The proof is similar to the proof of Proposition 3.1.
The following definitions are needed.
Definition 3.7 [5]. A proper ideal I_{0} of R is weakly prime (resp. almost prime and n almost prime), if $a, b \in R$, with $a b \in I_{0} \backslash\{0\}$ (resp. $a b \in I_{0} \backslash I_{0}{ }^{2}$ and $a b \in I_{0} \backslash I_{0}{ }^{n} ; n>2$), implies $a \in I_{0}$ or $b \in I_{0}$.
Definition 3.8 [6]. A proper ideal I of R is said to be a 2-absorbing(resp. weakly 2-absorbing) ideal of R if $a, b, c \in R$ and $a b c \in I$ (resp. $a b c \in I \backslash\{0\}$), then $a b \in I$ or $b c \in I$ or $a c \in I$.
Definition 3.9 [7], [8]. Let I be a proper ideal of R. Then I is strongly irreducible (resp. weakly irreducible), if for each pair of ideals A and B of $\mathrm{R}, A \cap B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I($ resp. $A \subseteq \sqrt{I}$ or $B \subseteq \sqrt{I})$ and I is strongly 2-irreducible, if for each ideals A, B and C of $R, A \cap B \cap C \subseteq I$ implies $A \cap B \subseteq I$ or $A \cap C \subseteq I$ or $B \cap C \subseteq I$.
Theorem 3.10. If I_{0} is an n-sequence prime ideal of R, then it is not a strongly irreducible ideal. Equivalently, if I_{0} is a strongly irreducible ideal of R, then it is not an n-sequence prime ideal.
Proof. Let I_{0} be an n-sequence prime ideal of R. Then there are two elements $a, b \in R$ with $a b \in I_{0}$ but $a, b \notin I_{0}$. So $(a b) \subseteq I_{0}$ and, consequently, $\sqrt{(a b)} \subseteq \sqrt{I_{0}}$. By Corollary 2.16, $I_{0}=\sqrt{I_{0}}$, then $\sqrt{(a b)} \subseteq I_{0}$. Clearly, $(a b)=(a)(b)$ and $\sqrt{(a)(b)}=\sqrt{(a) \cap(b)}=\sqrt{(a)} \cap$ $\sqrt{(b)}[2]$, then $\sqrt{(a)} \cap \sqrt{(b)} \subseteq I_{0}$. On the other hand, $a, b \notin I_{0}$, then $\sqrt{(a)}, \sqrt{(b)} \nsubseteq I_{0}$. Therefore, I_{0} is not strongly irreducible.
Remark 3.11. The concept of n-sequence prime ideal is independent with each of weakly prime, weakly 2 -absorbing, weakly irreducible, 2 -absorbing, almost prime, strongly 2irreducible, and n almost prime ideals. For example the ideal (30) of \mathbb{Z} is a 2 -sequence prime ideal but it is not any one of weakly prime, weakly 2 -absorbing, weakly irreducible, 2absorbing, almost prime, strongly 2 -irreducible, and n almost prime ideals. On the other hand, the ideal (5) of \mathbb{Z} is a weakly prime, weakly 2 -absorbing, weakly irreducible, 2absorbing, almost prime, strongly 2 -irreducible, and n almost prime ideal, but it is not an nsequence prime ideal for each $n \geq 1$.
Definition 3.12 [9]. Let $m, k \in \mathbb{Z}^{+}$with $1 \leq m<k$. A proper ideal I of R is a (k, m) closed ideal if whenever $a^{k} \in I$ for some $a \in R$ implies $a^{m} \in I$.
Proposition 3.13. If I_{0} is an n-sequence prime ideal of R, then it is a (k, m) closed ideal for some $m, k \in \mathbb{Z}^{+}$and $1 \leq m<k$.
Proof. Let I_{0} be an n-sequence prime ideal. To show that I_{0} is (k, m) closed, we have to show that if $a^{k} \in I_{0}$ for some $a \in R$ and $k \in \mathbb{Z}^{+}$, then $a^{m} \in I_{0}$ for each $1 \leq m<k$. Suppose that $a^{k} \in I_{0}$ for some $a \in R$ and $k \in \mathbb{Z}^{+}$. Then by Corollary $2.12, a \in I_{0}$, which implies that $a^{m} \in I_{0}$ for each $m \in \mathbb{Z}^{+}$, in particular $a^{m} \in I_{0}$, for each $1 \leq m<k$. Then I_{0} is a (k, m) closed ideal.
The converse of the above proposition is not true in general as it is shown in the following example.
Example 3.14. The ideal (x) of $\mathbb{Z}[x, y]$ is a (k, m) closed ideal for each $m, k \in \mathbb{Z}^{+}$with $1 \leq m<k$, but it is not an n-sequence prime ideal.
One can study n-sequence prime ideals in some type of rings and study its relation with some other types of ideals given in $[10,11,12]$.
Recall that a non-zero non-unit element p of a commutative ring R is said to be prime if for
a, b in R with $p \mid a b$ implies $p \mid a$ or $p \mid b$, we prove the following result.
Remark 3.15. Let R be a principal ideal domain and p_{1}, \ldots, p_{n} be n distinct prime elements of R . Then the ideal $\left(\prod_{i=1}^{n} p_{i}\right)$ is prime in $\left(\prod_{i=1}^{n-1} p_{i}\right)$.
Proof. Let $a, b \in\left(\prod_{i=1}^{n-1} p_{i}\right)$ and $a b \in\left(\prod_{i=1}^{n} p_{i}\right)$. Then there is $x \in R$ such that $a b=$ $x \prod_{i=1}^{n} p_{i}$. Then p_{n} divides $a b$. So p_{n} divides a or b. On the other hand, $\prod_{i=1}^{n-1} p_{i}$ divides each of a, b, since $a, b \in\left(\prod_{i=1}^{n-1} p_{i}\right)$. So, $\prod_{i=1}^{n} p_{i}$ divides a or b. Therefore, $a \in\left(\prod_{i=1}^{n} p_{i}\right)$ or $b \in\left(\prod_{i=1}^{n} p_{i}\right)$.
Now, we introduce the concept of n-sequence quasi prime ideal.
Definition 3.16. A proper ideal I_{0} of R is n -sequence quasi prime if $\sqrt{I_{0}}$ is an n -sequence prime ideal.
Theorem 3.17. Let I_{0} be a proper ideal of a principal ideal domain R. Then either I_{0} is a quasi prime ideal or it is an n-sequence quasi prime ideal.
Proof. Let $I_{0}=(a)$ be a non-zero ideal of R. If $a=p^{\alpha}$, where p is a prime element and $\alpha \in \mathbb{Z}^{+}$, then clearly the ideal I_{0} is a quasi prime ideal. If $a={p_{1}}^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots p_{k}{ }^{\alpha_{k}}=\prod_{i=1}^{k} p_{i}{ }^{\alpha_{i}}$ where p_{i} 's are distinct primes and $k>1$, and $\alpha_{i} \in \mathbb{Z}^{+}$for $1 \leq i \leq k$, then $\sqrt{I_{0}}=$ $\sqrt{\left(\prod_{i=1}^{k} p_{i} \alpha_{i}\right)}=\left(\prod_{i=1}^{k} p_{i}\right)$. Let $J_{0}=\sqrt{I_{0}}$ and $J_{h}=\left(\prod_{i=1}^{k-h} p_{i}\right)$ where $1 \leq h<k$. By Remark 3.15, $J_{0} \subset J_{1} \subset \ldots$ is a prime ascending chain of ideals and stabilized at $J_{k-1}=\left(p_{1}\right)$. So that $J_{0}=\sqrt{I_{0}}$ is $(k-1)$-sequence prime ideal. This means that I_{0} is a $(k-1)$-sequence quasi prime ideal. Now, if $I_{0}=(0)$, then it is a prime ideal, so it is a quasi prime but it is not an n sequence prime ideal. Therefore, I_{0} is either quasi prime or n-sequence quasi prime.
Corollary 3.18. Let I_{0} be a proper ideal of a principal ideal domain R. Then either $\sqrt{I_{0}}$ is a prime ideal or it is an n-sequence prime ideal.

Reference

[1] M. Aghajani and A. Tarizadeh, "Quasi-Prime Ideals," arXiv:1812.02456 pp. 1-9, 2018.
[2] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, London: CRC Press, 1969.
[3] D. Bump, Algebraic Geometry, Singapore (Uto-Print) : World Scientific Publishing Co. Pte. Ltd., 1998.
[4] C. Beddani and W. Messirdi, "2-Prime ideals and their applications," Journal of Algebra and Its Applications, vol. 15, no. 3, p. 1650051 (11 pages), 2016.
[5] D. Anderson and M. Bataineh, "Generalizations of Prime Ideals," Communications in Algebra, vol. 36, no. 2, pp. 686-696, January 2008.
[6] E. Y. Celikel, "Generalizations of 1-Absorbing Primary Ideals," U.P.B. Sci. Bull., Series A, vol. 82, no. 3, pp. 167-176, 2020.
[7] H. Mostafanasab and A. Yousefian Darani, "2-Irreducible and Strongly 2-Irreducible Ideals of Commutative Rings," Miskolc Mathematical Notes, vol. 17, no. 1, p. 441-455, 2016.
[8] M. Samiei and H. Fazaeli Moghimi, "Weakly Irreducible Ideals," Journal of Algebra and Related Topics, vol. 4, no. 2, pp. 9-17, 2016.
[9] A. Badawi, M. Issoual and N. Mahdou, "On n-Absorbing Ideals and (m, n)-Closed Ideals in Trivial Ring Extensions of Commutative Rings," Journal of Algebra and Its Applications, vol. 18, no. 7, pp. 10-22, 2019.
[10] I. K. Salman and N. S. Al-Mothafar, "Almost Pure Ideals (Submodules) and Almost Regular Rings (Modules)," Iraqi Journal of Science, vol. 60, no. 8, pp. 1841-1819, 2019.
[11] H. S. Mohammed Hussein and . A. H. Majee, "On the Grobner Basis of the Toric Ideal for $3 \times n$ Contingency Tables," Iraqi Journal of Science, vol. 60, no. 6, pp. 1362-1366, 2019.
[12] S. M. Salih and N. N. Sulaiman, "Jordan Triple Higher (σ, τ)-Homomorphisms on Prime Rings," Iraqi Journal of Science, vol. 61, no. 10, pp. 2671-2680, 2020.

[^0]: *Email: hemin.ahmad@su.edu.krd

