

ISSN: 0067-2904

Continuous Classical Optimal Control of Triple Nonlinear Parabolic Partial Differential Equations

Jamil A. Ali Al-Hawasy*, Thekaa M. Rasheed
Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq
Received: 8/3/2021
Accepted: 14/4/2021

Abstract

This paper concerns with the state and proof the existence and uniqueness theorem of triple state vector solution (TSVS) for the triple nonlinear parabolic partial differential equations (TNPPDEs) , and triple state vector equations (TSVEs), under suitable assumptions. when the continuous classical triple control vector (CCTCV) is given by using the method of Galerkin (MGA). The existence theorem of a continuous classical optimal triple control vector (CCTOCV) for the continuous classical optimal control governing by the TNPPDEs under suitable conditions is proved.

Keywords: Continuous Classical Triple Optimal Control Vector, Nonlinear Triple Parabolic Boundary Value Problem.

$$
\begin{aligned}
& \text { جميل امير علي الهواسي", ذكاء ححم رشيد } \\
& \text { قسم الرياضيات, كلية العوم, , الجامعة المستنصرية, بغداد, العراق } \\
& \text { الخلاصة } \\
& \text { يهتم هذا البحث بكتابة نص و ببرهان مبرهنة وجود ووحدانية الحل لمتجه الحالة الثلاثي لثلاثي من } \\
& \text { المعادلات التغاضلية الجزئية المكافئة غير الخطية (معادلات متجه الحالة الثلاثية) بوجود شروط مناسبة } \\
& \text { وعندما يكون متجه السيطرة التقليدية المستمرة معلوما" باستخدام طريقة كالركن • تم برهان مبرهنة وجود متجه } \\
& \text { سيطرة امثلية ثلاثية لمسالة السيطرة الامثلية المستمرة التقليدية المسيطرة بثلاثي من المعادلات التفاضلية } \\
& \text { الجزئية المكافئة غير الخطية بوجود شروط مناسبة. }
\end{aligned}
$$

1. Introduction

The subject of optimal control problem is divided in to two types, the relaxed and the classical optimal control problems, the first type is mostly studied in the last century, while the second one began to study in the beginning of this century. On other hand each of these two types are studied for systems governing by ordinary or partial differential equations. The optimal control problems play an important role in many fields in life_problems, different examples for applications of such problems are studied in medicine [1], in aircraft [2], in electric power [3], in economic growth [4], and many other fields.

This role motivates many investigators in the recent years to interest about study the classical optimal control problems OPCTP that are governing by nonlinear ordinary

[^0]differential equations as [5], or by different types of nonlinear parabolic PDEs like " single" nonlinear parabolic PDEs (NLPPDEs) [6], or couple NLPPDEs (CNLPPDEs) [7], or triple linear PPDEs (TLPPDEs) [8]. On the other hand other investigators interested to study the OPCTP for CNLPPDEs and TLPPDEs but involving Neumann boundary conditions (NBCs) as [9] and [10] respectively.

All these investigations encourage us to seek about the OPCTP for triple nonlinear parabolic PDEs (TNLEPDEs). At first, our aim in this work is to state and to prove that the TNLEPDEs with a given CCTCV has a unique TSVS under a suitable conditions, by using the MGA with the compactness theorem (COMTH). The continuity of the Lipschitz operator between the TSVS, and the corresponding CCTCV are proved. Finally, we also prove theorem which ensures the existence CCTOCV for the TNLEPDEs.

2. Problem Description

Let $I=(0, T), \quad T<\infty, \Omega \subset \mathbb{R}^{3}$ be a bounded open region with Lipschitz (LIP) boundary $\Gamma=\partial \Omega, Q=\Omega \times I, \Sigma=\Gamma \times I$. Consider the following CCTOCP:
The TSVEs is given by the following TNPPDEs:

$$
\begin{array}{ll}
y_{1 t}-\Delta y_{1}+y_{1}-y_{2}-y_{3}=f_{1}\left(x, t, y_{1}, u_{1}\right) & \text { in } Q \\
y_{2 t}-\Delta y_{2}+y_{2}+y_{3}+y_{1}=f_{2}\left(x, t, y_{2}, u_{2}\right) & \text { in } Q \\
y_{3 t}-\Delta y_{3}+y_{3}+y_{1}-y_{2}=f_{3}\left(x, t, y_{3}, u_{3}\right) & \text { in } Q \\
y_{1}(x, t)=0 & \text { on } \Sigma \\
y_{1}(x, 0)=y_{1}^{0}(x) & \text { on } \Omega \\
y_{2}(x, t)=0 & \text { on } \Sigma \\
y_{2}(x, 0)=y_{2}^{0}(x) & \text { on } \Omega \\
y_{3}(x, t)=0 & \text { on } \Sigma \\
y_{3}(x, 0)=y_{3}^{0}(x), \quad \text { on } \Omega &
\end{array}
$$

Where $x=\left(x_{1}, x_{2}\right), \vec{y}=\left(y_{1}, y_{2}, y_{3}\right)=\left(y_{1}(x, t), y_{2}(x, t), y_{3}(x, t)\right) \in\left(H_{2}(Q)\right)^{3}$ is the triple state vector (TSVS), corresponding to classical triple control vector (CCTCV) $\vec{u}=$ $\left(u_{1}, u_{2}, u_{3}\right)=\left(u_{1}(x, t), u_{2}(x, t), u_{3}(x, t)\right) \in\left(L^{2}(Q)\right)^{3}$ and $\left(f_{1}, f_{2}, f_{3}\right)=$
$\left(f_{1}\left(x, t, y_{1}, u_{1}\right), f_{2}\left(x, t, y_{2}, u_{2}\right), f_{3}\left(x, t, y_{3}, u_{3}\right)\right) \in\left(L^{2}(Q)\right)^{3}$ is a vector of given function defined on $\left(Q \times \mathbb{R} \times U_{1}\right) \times\left(Q \times \mathbb{R} \times U_{2}\right) \times\left(Q \times \mathbb{R} \times U_{3}\right)$ with $U_{i} \subset \mathbb{R}$, and let $\vec{W}=$ $\mathrm{W}_{1} \times \mathrm{W}_{2} \times \mathrm{W}_{3}, \mathrm{~W}_{\mathrm{i}} \subset \mathrm{L}^{2}(\mathrm{Q}), \mathrm{i}=1,2,3$.
The set of admissible CCTCV (ADCCTCV) is

$$
\begin{equation*}
\vec{W}_{A}=\left\{\overrightarrow{\mathrm{w}} \in\left(\mathrm{~L}^{2}(\mathrm{Q})\right)^{3} \mid \overrightarrow{\mathrm{w}} \in \overrightarrow{\mathrm{U}} \text { a. e. in } \mathrm{Q}\right\} \text { with } \overrightarrow{\mathrm{U}} \subset \mathbb{R}^{3} \tag{10}
\end{equation*}
$$

The cost function (COF) is

$$
\begin{equation*}
G_{0}(\vec{u})=\sum_{i=1}^{3} \int_{Q} g_{0 i}\left(x, t, y_{i}, u_{i}\right) d x d t \tag{11}
\end{equation*}
$$

The CCTOCV is to find $\vec{u} \in \vec{W}_{A}$, s.t.

$$
\begin{equation*}
G_{0}(\vec{u})=\min _{\vec{w} \in \vec{W}_{A}} G_{0}(\vec{w}) \tag{12}
\end{equation*}
$$

Let $\vec{V}=V_{1} \times V_{2} \times V_{3}=\left\{\vec{v} \in\left(H^{1}(\Omega)\right)^{3}\right.$ with $v_{1}=v_{2}=v_{3}=0$ on $\left.\partial \Omega\right\}$.
The notations (v, v), and $\|v\|_{0}$ refer to the inner product and the norm in $L^{2}(\Omega)$, respectively. The notations $(v, v)_{1}$, and $\|v\|_{1}$ are the inner product and the norm in $\mathrm{H}^{1}(\Omega)$, the (\vec{v}, \vec{v}) and $\|\vec{v}\|_{0}$ the inner product and the norm in $\left(L^{2}(\Omega)\right)^{3}$, and $(\vec{v}, \vec{v})_{1}=\left(v_{1}, v_{1}\right)_{1}+\left(v_{2}, v_{2}\right)_{1}+$ $\left(v_{3}, v_{3}\right)_{1},\|\vec{v}\|_{1}^{2}=\left\|v_{1}\right\|_{1}^{2}+\left\|v_{2}\right\|_{1}^{2}+\left\|v_{3}\right\|_{1}^{2}$ the inner product and the norm in \vec{V} and \vec{V}^{*} is the dual of \vec{V}, also the notations $\longrightarrow, \longrightarrow$ will indicate to the convergence of a sequence is weakly and strongly respectively.
The weak form (W.F) of the TSVEs (1-9) when $\left.\vec{y} \in H_{0}^{1}(\Omega)\right)^{3}$ is given by

$$
\begin{align*}
& \left\langle y_{1 t}, v_{1}\right\rangle+\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)-\left(y_{2}, v_{1}\right)-\left(y_{3}, v_{1}\right)=\left(f_{1}, v_{1}\right) \tag{13a}\\
& \left(y_{1}^{0}, v_{1}\right)=\left(y_{1}(0), v_{1}\right), \quad \forall v_{1} \in V \tag{13b}\\
& \left\langle y_{2 t}, v_{2}\right\rangle+\left(\nabla y_{2}, \nabla v_{2}\right)+\left(y_{2}, v_{1}\right)+\left(y_{3}, v_{2}\right)+\left(y_{1}, v_{2}\right)=\left(f_{2}, v_{2}\right) \tag{14a}
\end{align*}
$$

$$
\begin{align*}
& \left(y_{2}^{0}, v_{2}\right)=\left(y_{2}(0), v_{2}\right), \quad \forall v_{2} \in V \tag{14b}\\
& \left\langle y_{33}, v_{3}\right\rangle+\left(\nabla y_{3}, \nabla v_{3}\right)+\left(y_{3}, v_{3}\right)+\left(y_{1}, v_{3}\right)-\left(y_{2}, v_{3}\right)=\left(f_{3}, v_{3}\right) \tag{15a}\\
& \left(y_{2}^{0}, v_{3}\right)=\left(y_{3}(0), v_{3}\right), \quad \forall v_{3} \in V \tag{15b}
\end{align*}
$$

Assumptions (A):

(i) f_{i} is Carathéodory type (CAT) on $\mathrm{Q} \times(\mathbb{R} \times \mathbb{R})$, satisfies

$$
\left|f_{i}\left(x, t, y_{i}, u_{i}\right)\right| \leq \eta_{i}(x, t)+c_{i}\left|y_{i}\right|+\dot{c}_{i}\left|u_{i}\right|
$$

where $(x, t) \in Q, y_{i}, u_{i} \in \mathbb{R}, c_{i}, \dot{c}_{i}>0$ and $\eta_{i} \in L^{2}(Q) \forall i=1,2,3$
(ii) f_{i} is Lip w.r.t. y_{i}, i.e. $\left|f_{i}\left(x, t, y_{i}, u_{i}\right)-f_{i}\left(x, t, \bar{y}_{i}, u_{i}\right)\right| \leq L_{i}\left|y_{i}-\bar{y}_{i}\right|$
where $(x, t) \in Q, y_{i}, \bar{y}_{i}, u_{i} \in \mathbb{R}$ and $L_{i}>0, \forall i=1,2,3$.
Theorem 2.1 (Projection Theorem) [7]: Let \mathcal{F} be a closed linear subspace of a Hilbert space \mathcal{H}, then for any $h \in \mathcal{H}$ there is a unique $u_{0} \in \mathcal{F}$, s.t. $\left\|h-u_{0}\right\| \leq\|h-u\|, \quad \forall u \in \mathcal{F}$.
Furthermore, $h-u_{0}$ is orthogonal to the subspace \mathcal{F}, i.e. $\left\langle h-u_{0}, u\right\rangle=0, \forall u \in \mathcal{F}$.
Theorem 2.2 (Alaoglu's theorem) [7]: Let $\left\{k_{n}\right\}_{n \in \mathbb{N}}$ be a bounded sequence in a Hilbert space \mathcal{H}, then there is a subsequence of $\left\{k_{n}\right\}_{n \in \mathbb{N}}$, which converges weakly to some $u \in \mathcal{H}$.
Main Results

3. The TSVS:

Theorem (3.1): Existence and Uniqueness Of The W.F: With Assumptions (A) for each \vec{u} $\in\left(L^{2}(\Omega)\right)^{3}$, the W.F of TSVEs (13-15) has a unique solution $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right), \vec{y} \in$ $\left(L^{2}(I, V)\right)^{3}$, s.t $\vec{y}_{t}=\left(y_{1 t}, y_{2 t}, y_{3 t}\right) \in\left(L^{2}\left(I, V^{*}\right)\right)^{3}$
Proof: Let V_{n} be the set of piecewise affine function in $\Omega, \vec{v}_{n}=\left(v_{1 n}, v_{2 n}, v_{3 n}\right)$ with $v_{i n} \in V_{n}$ $, \forall i=1,2,3$ and $\vec{y}_{n}=\left(y_{1 n}, y_{2 n}, y_{3 n}\right), \forall n$, then the solution of $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right)$ can be approximated by

$$
\begin{align*}
& y_{1 n}=\sum_{j=1}^{n} c_{1 j}(t) v_{1 j}(x) \tag{16}\\
& y_{2 n}=\sum_{j=1}^{n} c_{2 j}(t) v_{2 j}(x) \tag{17}\\
& y_{3 n}=\sum_{j=1}^{n} c_{3 j}(t) v_{3 j}(x) \tag{18}
\end{align*}
$$

Where $c_{i j}(t)$ is known as function of $\mathrm{t} \forall i=1,2,3 \& \forall j=1,2,3, \ldots, n$.
The W.F of the TSVEs (13-15) is approximated w.r.t. x, using the MGA $\forall v_{i} \in V, i=1,2,3$:

$$
\begin{align*}
& \left\langle y_{1 n t}, v_{1}\right\rangle+\left(\nabla y_{1 n}, \nabla v_{1}\right)+\left(y_{1 n}, v_{1}\right)-\left(y_{2 n}, v_{1}\right)-\left(y_{3 n}, v_{1}\right)=\left(f_{1}\left(y_{1 n}, u_{1}\right), v_{1}\right) \tag{19a}\\
& \left(y_{1 n}^{0}, v_{1}\right)=\left(y_{1}^{0}, v_{1}\right) \tag{19b}\\
& \left\langle y_{2 n t}, v_{2}\right\rangle+\left(\nabla y_{2 n}, \nabla v_{2}\right)+\left(y_{2 n}, v_{2}\right)+\left(y_{3 n}, v_{2}\right)+\left(y_{1}, v_{2}\right)=\left(f_{2}\left(y_{2 n}, u_{2}\right), v_{2}\right) \tag{20a}\\
& \left(y_{2 n}^{0}, v_{2}\right)=\left(y_{2}^{0}, v_{2}\right) \tag{20b}\\
& \left\langle y_{3 n t}, v_{3}\right\rangle+\left(\nabla y_{3 n}, \nabla v_{3}\right)+\left(y_{3 n}, v_{3}\right)+\left(y_{1 n}, v_{3}\right)-\left(y_{2 n}, v_{3}\right)=\left(f_{3}\left(y_{3 n}, u_{3}\right), v_{3}\right) \tag{21a}\\
& \left(y_{3 n}^{0}, v_{3}\right)=\left(y_{3}^{0}, v_{3}\right) \tag{21b}
\end{align*}
$$

Where $y_{i n}^{0}=y_{i n}^{0}(x)=y_{i n}(x, 0) \in V_{n} \subset V \subset L^{2}(\Omega)$ is the projection of y_{i}^{0} w.r.t. the norm $\|$. $\|_{0}$, i.e. $\left(y_{i n}^{0}, v_{i}\right)=\left(y_{i}^{0}, v_{i}\right), \Leftrightarrow\left\|y_{i n}^{0}-v_{i}\right\|_{0} \leq\left\|y_{i}^{0}-v_{i}\right\|_{0}, \quad \forall i=1,2,3$ and $\forall v_{i} \in V_{n}$.
By substituting ((16)-(18)) in ((19)-(21)) and setting $v_{1}=v_{1 i}, v_{2}=v_{2 i}$, and $v_{3}=v_{3 i}$ we get the following system, which has a unique solution \vec{y}_{n} because of all the coefficient matrices are continuous.

$$
\begin{align*}
& A C_{1}(t)+D C_{1}(t)-E C_{2}(t)-K C_{3}(t)=b_{1}\left(\bar{V}_{1}^{T}(x) C_{1}(t)\right) \\
& A C_{1}(0)=b_{1}^{0} \\
& B C_{2}(t)+F C_{2}(t)+M C_{3}(t)+H C_{1}(t)=b_{2}\left(\bar{V}_{2}^{T}(x) C_{2}(t)\right) \\
& B C_{2}(0)=b_{2}^{0} \tag{18b'}\\
& P \dot{C}_{3}(t)+O C_{3}(t)+S C_{1}(t)-Z C_{2}(t)=b_{3}\left(\bar{V}_{3}^{T}(x) C_{3}(t)\right) \\
& P C_{3}(0)=b_{3}^{0} \tag{19b́b}
\end{align*}
$$

Where $A=\left(a_{i j}\right)_{n \times n}, \quad a_{i j}=\left(v_{1 j}, v_{1 i}\right), D=\left(d_{i j}\right)_{n \times n}, d_{i j}=\left[\left(\nabla v_{1 j}, \nabla v_{1 i}\right)+\left(v_{1 j}, v_{1 i}\right)\right]$,
$E=\left(e_{i j}\right)_{n \times n} \quad, e_{i j}=\left(v_{2 j}, v_{1 i}\right), K=\left(k_{i j}\right)_{n \times n}, k_{i j}=\left(v_{3 j}, v_{1 i}\right)$,
$C_{l}(t)=\left(C_{l j}(t)\right)_{n \times 1}, \dot{C}_{l}(t)=\left(\dot{C}_{l j}(t)\right)_{n \times 1}, C_{l}(0)=\left(C_{l j}(0)\right)_{n \times 1}, b_{l}=\left(b_{l i}\right)_{n \times 1}, b_{l i}=$
$\left(f_{l}\left(\bar{V}_{l}^{T} C_{l}(t), u_{l}\right), v_{l i}\right), \bar{V}_{l}=\left(v_{l}\right)_{n \times 1}, \quad b_{l}^{0}=\left(b_{l i}^{0}\right), \quad\left(b_{l i}^{0}\right)=\left(y_{l}^{0}, v_{l i}\right), \quad, \quad B=\left(b_{i j}\right)_{n \times n} b_{i j}=$ $\left(v_{2 j}, v_{2 i}\right), F=\left(f_{i j}\right)_{n \times n}, \quad f_{i j}=\left[\left(\nabla v_{2 j}, \nabla v_{2 i}\right)+\left(v_{2 j}, v_{2 i}\right)\right], \quad, M=\left(m_{i j}\right)_{n \times n^{\prime}}, m_{i j}=$ $\left(v_{3 j}, v_{2 i}\right), H=\left(h_{i j}\right)_{n \times n}, h_{i j}=\left(v_{1 j}, v_{2 i}\right), \quad P=\left(p_{i j}\right)_{n \times n} \quad, \quad p_{i j}=\left(v_{3 j}, v_{3 i}\right), 0=$ $\left(o_{i j}\right)_{n \times n}, o_{i j}=\left[\left(\nabla v_{3 j}, \nabla v_{3 i}\right)+\left(v_{3 j}, v_{3 i}\right)\right], S=\left(s_{i j}\right)_{n \times n}, s_{i j}=\left(v_{1 j}, v_{3 i}\right), Z=$ $\left(z_{i j}\right)_{n \times n}, z_{i j}=\left(v_{2 j}, v_{3 i}\right), \forall l=1,2,3$.
The norm $\left\|\vec{y}_{n}^{0}\right\|_{0}$ is bounded: Since $\vec{y}^{0} \in\left(L^{2}(\Omega)\right)^{3}$ then there is $\left\{\vec{v}_{n}^{0}\right\}, \vec{v}_{n}^{0} \in \vec{V}_{n}$ s.t $\vec{v}_{n}^{0} \rightarrow \vec{y}^{0}$ in $\left(L^{2}(\Omega)\right)^{3}$, from theorem 2.1 and $((19 b)-(21 \mathrm{~b}))$ one has $\vec{y}_{n}^{0} \rightarrow \vec{y}^{0}$ in $\left(L^{2}(\Omega)\right)^{3}$, and $\left\|\vec{y}_{n}^{0}\right\|_{0} \leq b_{1}$. The norm $\left\|\overrightarrow{\boldsymbol{y}}_{\boldsymbol{n}}(\boldsymbol{t})\right\|_{\boldsymbol{L}^{\infty}\left(1, L^{2}(\Omega)\right)}$ and $\left\|\overrightarrow{\boldsymbol{y}}_{\boldsymbol{n}}(\boldsymbol{t})\right\|_{Q}$ are bounded: Setting $v_{i}=y_{i n}$, for $i=1,2,3$ in (19a), (20a), and (20a), integrating both sides (IBS) w.r.t. t from 0 to T, adding them, this gives
$\int_{0}^{T}\left\langle\vec{y}_{n t}, \vec{y}_{n}\right\rangle d t+\int_{0}^{T}\left\|\vec{y}_{n}\right\|_{1}^{2} d t=$
$\left.\left.\left.\int_{0}^{T}\left[f_{1}\left(y_{1 n}, u_{1}\right), y_{1 n}\right)+f_{2}\left(y_{2 n}, u_{2}\right), y_{2 n}\right)+f_{3}\left(y_{3 n}, u_{3}\right), y_{3 n}\right)\right] d t$
Since the $2^{\text {nd }}$ term of the L.H.S. of (22) is positive, then using Lemma 1.2 in [11] for the $1^{\text {st }}$ term of it, taking $\mathrm{T}=\mathrm{t} \in[0 . \mathrm{T}]$, finally applying Assum (A-i) for the R.H.S. of (22), one has
$\int_{0}^{t} \frac{d}{d t}\left\|\vec{y}_{n}(t)\right\|_{0}^{2} d t \leq$
$\int_{0}^{t} \int_{\Omega}\left(\eta_{1}^{2}+\left|y_{1 n}\right|^{2}\right) d x d t+2 \int_{0}^{t} \int_{\Omega} c_{1}\left|y_{1 n}\right|^{2} d x d t+c_{1}^{\prime} \int_{0}^{t} \int_{\Omega}\left(\left|u_{1}\right|^{2}+\left|y_{1 n}\right|^{2}\right) d x d t$
$+\int_{0}^{t} \int_{\Omega}\left(\eta_{2}^{2}+\left|y_{2 n}\right|^{2}\right) d x d t+2 \int_{0}^{t} \int_{\Omega} c_{2}\left|y_{2 n}\right|^{2} d x d t+2 \int_{0}^{t} \int_{\Omega} c_{2}\left|y_{2 n}\right|^{2} d x d t$
$+\dot{c}_{2}^{\prime} \int_{0}^{t} \int_{\Omega}\left(\left|u_{2}\right|^{2}+\left|y_{2 n}\right|^{2}\right) d x d t+\int_{0}^{t} \int_{\Omega}\left(\eta_{3}^{2}+\left|y_{3 n}\right|^{2}\right) d x d t+\int_{0}^{t} \int_{\Omega}\left(\eta_{3}^{2}+\left|y_{3 n}\right|^{2}\right) d x d t$
$+2 \int_{0}^{t} \int_{\Omega} c_{3}\left|y_{3 n}\right|^{2} d x d t+\dot{c}_{3}^{\prime} \int_{0}^{t} \int_{\Omega}\left(\left|u_{3}\right|^{2}+\left|y_{3 n}\right|^{2}\right) d x d t$
Since $\left\|\eta_{i}\right\|_{Q} \leq \tilde{b}_{i},\left\|u_{i}\right\|_{Q} \leq c_{i 1}, \forall i=1,2,3$ and $\left\|\vec{y}_{n}(t)\right\|_{0}^{2} \leq b$,then (23) becomes
$\left\|\vec{y}_{n}(t)\right\|_{0}^{2} \leq c_{1}^{*}+c_{7} \int_{0}^{t}\left\|\vec{y}_{n}\right\|_{0}^{2} d t$ with $c_{1}^{*}=c_{11}+c_{21}+c_{31}+b+\hat{b}_{1}+\dot{b}_{2}+\dot{b}_{3}$.
Where $c_{7}=\max \left(c_{4}, c_{5}, c_{6}\right)$ with $c_{4}=1+\dot{c}_{1}^{\prime}+2 c_{1}, c_{5}=1+\dot{c}_{2}^{\prime}+2 c_{2}$ and $c_{6}=\left(1+c_{3}^{\prime}+2 c_{3}\right)$.
We use the Bellman- Gronwall (BGIN) inequality to get
$\left\|\vec{y}_{n}(t)\right\|_{0}^{2} \leq c_{1}^{*} e^{c_{7} T}=b^{2}(c), \forall t \in[0, T]$ we can easily obtain the following
$\left\|\vec{y}_{n}(t)\right\|_{L^{\infty}\left(I . L^{2}(\Omega)\right)} \leq b(c)$ and $\left\|\vec{y}_{n}(t)\right\|_{Q} \leq b_{1}(c)$.
The norm $\left\|\overrightarrow{\boldsymbol{y}}_{\boldsymbol{n}}(\boldsymbol{t})\right\|_{L^{2}(I, V)}$ is bounded: By using the same previous steps in (21), but with $t=T$, and $\left\|\vec{y}_{n}(T)\right\|_{0}^{2}$ is positive, one can easily obtain that
$\left\|\vec{y}_{n}\right\|_{L^{2}(I, V)}=\int_{0}^{T}\left\|\vec{y}_{n}\right\|_{1}^{2} d t \leq b_{2}^{2}(c)=0.5\left(\mathrm{~b}_{1}^{\prime}+\mathrm{b}_{2}^{\prime}+\mathrm{b}_{3}^{\prime}+\dot{c}_{1}^{\prime} \mathrm{d}_{1+} \mathrm{c}_{2}^{\prime} \mathrm{d}_{2}+\mathrm{c}_{3}^{\prime} \mathrm{d}_{3}+\mathrm{c}_{7} \mathrm{~b}_{1}(\mathrm{c})\right)$.
The convergence of the solution: Let $\left\{\vec{V}_{n}\right\}$ be a sequence of subspace of \vec{V} s.t $\forall \vec{v}=$ $\left(v_{1}, v_{2}, v_{3}\right) \in \vec{V}$, there is a sequence $\left\{\vec{v}_{n}\right\}, \vec{v}_{n}=\left(v_{1 n}, v_{2 n}, v_{3 n}\right) \in \vec{V}_{n}, \forall n$ and $\vec{v}_{n} \rightarrow \vec{v}$ in \vec{V} $\Rightarrow \vec{v}_{n} \rightarrow \vec{v}$ in $\left(L^{2}(\Omega)\right)^{3}$.
Since for any n, ($\left.\vec{V}_{n} \subset \vec{V}\right)$, problem ((19)-21)) has a unique solution \vec{y}_{n}, hence corresponding to the sequence of subspaces $\left\{\vec{V}_{n}\right\}$, there is a sequence of approximation problems (19-21), so by substituting $\vec{v}=\vec{v}_{n} \in \vec{V}_{n}$ for $n=1,2,3$, one gets
$\left\langle y_{1 n t}, v_{1 n}\right\rangle+\left(\nabla y_{1 n}, \nabla v_{1 n}\right)+\left(y_{1 n}, v_{1 n}\right)-\left(y_{2 n}, v_{1 n}\right)-\left(y_{3 n}, v_{1 n}\right)=\left(f_{1}\left(y_{1 n}, u_{1}\right), v_{1 n}\right)$ (24a) $\left(y_{1 n}^{0}, v_{1 n}\right)=\left(y_{1}^{0}, v_{1 n}\right)$,
$\left\langle y_{2 n t}, v_{2 n}\right\rangle+\left(\nabla y_{2 n}, \nabla v_{2 n}\right)+\left(y_{2 n}, v_{2 n}\right)+\left(y_{3 n}, v_{2 n}\right)+\left(y_{1 n}, v_{2 n}\right)=\left(f_{2}\left(y_{2 n}, u_{2}\right), v_{2 n}\right)(25 \mathrm{a})$
$\left(y_{2 n}^{0}, v_{2 n}\right)=\left(y_{2}^{0}, v_{2 n}\right)$,
$\left\langle y_{3 n t}, v_{3 n}\right\rangle+\left(\nabla y_{3 n}, \nabla v_{3 n}\right)+\left(y_{3 n}, v_{3 n}\right)+\left(y_{1 n}, v_{3 n}\right)-\left(y_{2 n}, v_{3 n}\right)=\left(f_{3}\left(y_{3 n}, u_{3}\right), v_{3 n}\right)$
$\left(y_{3 n}^{0}, v_{3 n}\right)=\left(y_{3}^{0}, v_{3 n}\right)$,

Which has a sequence of solutions $\left\{\vec{y}_{n}\right\}_{n=1}^{\infty}$, from the previous steps we get that $\left\|\vec{y}_{n}\right\|_{L^{2}(Q)}$, and $\left\|\vec{y}_{n}\right\|_{L^{2}(I, V)}$ are bounded. By theorem 2.2, there is a subsequence of $\left\{\vec{y}_{n}\right\}_{n \in N}^{\infty}$, such that $\vec{y}_{n} \rightharpoonup \vec{y}$ in $\left(L^{2}(\Omega)\right)^{3}$ and $\vec{y}_{n} \rightharpoonup \vec{y}$ in $\left.L^{2}(I, V)\right)^{3}$.
From the Assumptions (A-i), and the bounded of the norms, one gets through the COMTH in [11], $\vec{y}_{n} \rightarrow \vec{y}$ in $\left(L^{2}(Q)\right)^{3}$.
Now, consider the W.F ((24)-(26)), from the MGA for any arbitrary $\vec{v} \in \vec{V}$ there exists a sequence $\left\{\vec{v}_{n}\right\}, \vec{v}_{n} \in \vec{V}_{n}$, $\forall n$ s.t $\vec{v}_{n} \rightarrow \vec{v}$ in V (then in $L^{2}(\Omega)$), so MBS of ((24)a-(26)a) by $\varphi_{i}(t) \in C^{1}[0, T]$ with $\varphi_{i}(T)=0, \forall i=1,2,3$, IBS w.r.t. t from 0 to T, and then we integrate (IBPs) the $1^{\text {st }}$ term in the L.H.S. of each obtained equation, one obtains
$-\int_{0}^{T}\left(y_{1 n}, v_{1 n}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1 n}, \nabla v_{1 n}\right) \varphi_{1}(t)+\left(y_{1 n}, v_{1 n}\right) \varphi_{1}(t)-\left(y_{2 n}, v_{1 n}\right) \varphi_{1}(t)-\right.$
$\left.\left.\left(y_{3 n}, v_{1 n}\right) \varphi_{1}(t)\right] d t=\int_{0}^{T} f_{1}\left(y_{1 n}, u_{1}\right), v_{1 n}\right) \varphi_{1}(t) d t+\left(y_{1 n}^{0}, v_{1 n}\right) \varphi_{1}(0)$
$-\int_{0}^{T}\left(y_{2 n}, v_{2 n}\right) \dot{\varphi}_{2}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2 n}, \nabla v_{2 n}\right) \varphi_{2}(t)+\left(y_{2 n}, v_{2 n}\right) \varphi_{2}(t)+\left(y_{3 n}, v_{2 n}\right) \varphi_{2}(t)+\right.$
$\left.\left.\left(y_{1 n}, v_{2 n}\right) \varphi_{2}(t)\right] d t=\int_{0}^{T} f_{2}\left(y_{2 n}, u_{2}\right), v_{2 n}\right) \varphi_{2}(t) d t+\left(y_{2 n}^{0}, v_{2 n}\right) \varphi_{2}(0)$
$-\int_{0}^{T}\left(y_{3 n}, v_{3 n}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3 n}, \nabla v_{3 n}\right) \varphi_{3}(t)+\left(y_{3 n}, v_{3 n}\right) \varphi_{3}(t)+\left(y_{1 n}, v_{3 n}\right) \varphi_{3}(t)-\right.$
$\left.\left.\left(y_{2 n}, v_{3 n}\right) \varphi_{3}(t)\right] d t=\int_{0}^{T} f_{3}\left(y_{3 n}, u_{3}\right), v_{3 n}\right) \varphi_{3}(t) d t+\left(y_{3 n}^{0}, v_{3 n}\right) \varphi_{3}(0)$
Since $y_{n} \rightharpoonup y$ in $\left.L^{2}(\mathrm{Q})\right)^{3}, y_{n}^{0} \rightarrow y^{0}$ in $\left.L^{2}(\Omega)\right)^{3}$ and
$\left.\begin{array}{l}\left.v_{n} \rightarrow \vec{v} \text { in } L^{2}(\Omega)\right)^{3} \\ v_{n} \rightarrow \vec{v} \text { in } V\end{array}\right\} \rightarrow\left\{\begin{array}{c}v_{\text {in }} \dot{\varphi}_{i} \rightarrow v_{i} \dot{\varphi}_{i} \text { in } \mathrm{L}^{2}(\mathrm{Q}) \\ v_{\text {in }} \varphi_{i} \rightarrow v_{i} \varphi_{i} \text { in } L^{2}(I, V)\end{array}\right.$
Then
$\int_{0}^{T}\left(y_{1 n}, v_{1 n}\right) \dot{\varphi}_{1}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1 n}, \nabla v_{1 n}\right) \varphi_{1}(t)+\left(y_{1 n}, v_{1 n}\right) \varphi_{1}(t)-\left(y_{2 n}, v_{1 n}\right) \varphi_{1}(t)-\right.$
$\left.\left(y_{3 n}, v_{1 n}\right) \varphi_{1}(t)\right] d t \rightarrow \int_{0}^{T}\left(y_{1}, v_{1}\right) \dot{\varphi}_{1}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right) \varphi_{1}(t)+\left(y_{1}, v_{1}\right) \varphi_{1}(t)-\right.$
$\left.\left(y_{2}, v_{1}\right) \varphi_{1}(t)-\left(y_{3}, v_{1}\right) \varphi_{1}(t)\right] d t$
$\int_{0}^{T}\left(y_{2 n}, v_{2 n}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2 n}, \nabla v_{2 n}\right) \varphi_{2}(t)+\left(y_{2 n}, v_{2 n}\right) \varphi_{2}(t)+\left(y_{3 n}, v_{2 n}\right) \varphi_{2}(t)+\right.$
$\left.\left(y_{1 n}, v_{2 n}\right) \varphi_{2}(t)\right] d t \rightarrow \int_{0}^{T}\left(y_{2}, v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right) \varphi_{2}(t)+\left(y_{2}, v_{2}\right) \varphi_{2}(t)+\right.$
$\left.\left(y_{3}, v_{2}\right) \varphi_{2}(t)+\left(y_{1}, v_{2}\right) \varphi_{2}(t)\right] d t$
$\int_{0}^{T}\left(y_{3 n}, v_{3 n}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3 n}, \nabla v_{3 n}\right) \varphi_{3}(t)+\left(y_{3 n}, v_{3 n}\right) \varphi_{3}(t)+\left(y_{1 n}, v_{3 n}\right) \varphi_{3}(t)-\right.$
$\left.\left(y_{2 n}, v_{3 n}\right) \varphi_{3}(t)\right] d t \rightarrow \int_{0}^{T}\left(y_{3}, v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right) \varphi_{3}(t)+\left(y_{3}, v_{3}\right) \varphi_{3}(t)+\right.$
$\left.\left(y_{1}, v_{3}\right) \varphi_{3}(t)-\left(y_{2}, v_{3}\right) \varphi_{3}(t)\right] d t$
(32)

Now, let $w_{i n}=v_{i} \varphi_{i}, \forall i=1,2,3$, then $w_{i n} \rightarrow w_{i}$ in $L^{2}(Q)$ with $w_{i}=v_{i} \varphi_{i}$, from applying the Assumptions (A-i), then using proposition 3.1 in [12], we get $\int_{Q} f_{i}\left(x, t, y_{i n}, u_{i}\right) w_{i n} d x d t$ is continuous w.r.t $\left(y_{i n}, u_{i}, w_{i n}\right)$, but $y_{i n} \rightarrow y_{i}$ in $\left(L^{2}(Q)\right)^{3}$ and $w_{i n} \rightarrow w_{i}$ in $L^{2}(Q)$, therefore $\int_{0}^{T}\left(f_{i}\left(y_{i n} u_{i}\right), v_{i n}\right) \varphi_{i}(t) d t \rightarrow \int_{0}^{T}\left(f_{i}\left(y_{i} u_{i}\right), v_{i}\right) \varphi_{i}(t) d t, \forall i=1,2,3$
From ((30-32)) and (33), (27-29) becomes
$-\int_{0}^{T}\left(y_{1}, v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right) \varphi_{1}(t)+\left(y_{1}, v_{1}\right) \varphi_{1}(t)-\left(y_{2}, v_{1}\right) \varphi_{1}(t)-\right.$
$\left.\left(y_{3}, v_{1}\right) \varphi_{1}(t)\right] d t=\int_{0}^{T}\left(f_{1}\left(y_{1}, u_{1}\right) v_{1}\right) \varphi_{1}(t) d t+\left(y_{1}^{0}, v_{1}\right) \varphi_{1}(0)$
$-\int_{0}^{T}\left(y_{2}, v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right) \varphi_{2}(t)+\left(y_{2}, v_{2}\right) \varphi_{2}(t)+\left(y_{3}, v_{2}\right) \varphi_{2}(t)+\right.$
$\left(y_{1}, v_{2}\right) \varphi_{2}(t) d t=\int_{0}^{T}\left(f_{2}\left(y_{2}, u_{2}\right), v_{2}\right) \varphi_{2}(t) d t+\left(y_{2}^{0}, v_{2}\right) \varphi_{2}(t)$
$-\int_{0}^{T}\left(y_{3}, v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right) \varphi_{3}(t)+\left(y_{3}, v_{3}\right) \varphi_{3}(t)+\left(y_{1}, v_{3}\right) \varphi_{3}(t)-\right.$
$\left(y_{2}, v_{3}\right) \varphi_{3}(t) d t=\int_{0}^{T}\left(f_{3}\left(y_{3}, u_{3}\right), v_{3}\right) \varphi_{3}(t) d t+\left(y_{3}^{0}, v_{3}\right) \varphi_{3}(0)$
Case1: Choose $\varphi_{i} \in D[0, T]$, i.e. $\varphi_{i}(0)=\varphi_{i}(T)=0, \forall i=1,2,3$ in (34-36), IBPs for the $1^{\text {st }}$
terms in the L.H.S. of each one of the obtained equations, this yields
$\int_{0}^{T}\left\langle y_{1}, v_{1}\right\rangle \varphi_{1}(t) d t+$
$\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right) \varphi_{1}(t)+\left(y_{1}, v_{1}\right) \varphi_{1}(t)-\left(y_{2}, v_{1}\right) \varphi_{1}(t)-\left(y_{3}, v_{1}\right) \varphi_{1}(t)\right] d t=$
$\int_{0}^{T}\left(f_{1}\left(y_{1}, u_{1}\right) v_{1}\right) \varphi_{1}(t) d t$
$\int_{0}^{T}\left\langle y_{2 t}, v_{2}\right\rangle \varphi_{2}(t) d t+$
$\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right) \varphi_{2}(t)+\left(y_{2}, v_{2}\right) \varphi_{2}(t)+\left(y_{3}, v_{2}\right) \varphi_{2}(t)+\left(y_{1}, v_{2}\right) \varphi_{2}(t)\right] d t=$
$\int_{0}^{T}\left(f_{2}\left(y_{2}, u_{2}\right), v_{2}\right) \varphi_{2}(t) d t$
$\int_{0}^{T}\left\langle y_{3 t}, v_{3}\right\rangle \varphi_{3}(t) d t+$
$\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right) \varphi_{3}(t)+\left(y_{3}, v_{3}\right) \varphi_{1}(t)+\left(y_{1}, v_{3}\right) \varphi_{1}(t)-\left(y_{2}, v_{3}\right) \varphi_{3}(t)\right] d t=$
$\int_{0}^{T}\left(f_{3}\left(y_{3}, u_{3}\right), v_{3}\right) \varphi_{3}(t) d$
Which gives
$\left\langle y_{1 t}, v_{1}\right\rangle+\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)-\left(y_{2}, v_{1}\right)-\left(y_{3}, v_{1}\right)=\left(f_{1}\left(y_{1}, u_{1}\right), v_{1}\right)$, a.e. in I
$\left\langle y_{2 t}, v_{2}\right\rangle+\left(\nabla y_{2}, \nabla v_{2}\right)+\left(y_{2}, v_{2}\right)+\left(y_{3}, v_{2}\right)+\left(y_{1}, v_{2}\right)=\left(f_{2}\left(y_{2}, u_{2}\right), v_{2}\right)$, a.e. in I
$\left\langle y_{3 t}, v_{3}\right\rangle+\left(\nabla y_{3}, \nabla v_{3}\right)+\left(y_{3}, v_{3}\right)+\left(y_{1}, v_{3}\right)-\left(y_{2}, v_{3}\right)=\left(f_{3}\left(y_{3}, u_{3}\right), v_{3}\right)$, a.e. in I
i.e. \vec{y} is a solution of the TSVEs ((13)a-(15)a).

Case 2: Choose $\varphi_{i} \in C^{1}[0, T], \forall i=1,2,3$, s.t $\varphi_{i}(T)=0 \& \varphi_{i}(0) \neq 0$,
IBPs for $1^{\text {st }}$ term in the L.H.S. of (37-39), to get
$-\int_{0}^{T}\left(y_{1}, v_{1}\right) \dot{\varphi}_{1}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right) \varphi_{1}(t)+\left(y_{1}, v_{1}\right) \varphi_{1}(t)-\left(y_{2}, v_{1}\right) \varphi_{1}(t)\right.$

$$
\begin{equation*}
\left.-\left(y_{3}, v_{1}\right) \varphi_{1}(t)\right] d t=\int_{0}^{T}\left(f_{1}\left(y_{1}, u_{1}\right) v_{1}\right) \varphi_{1}(t) d t+\left(y_{1}(0), v_{1}\right) \varphi_{1}(0) \tag{40}
\end{equation*}
$$

$-\int_{0}^{T}\left(y_{2}, v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right) \varphi_{2}(t)+\left(y_{2}, v_{2}\right) \varphi_{2}(t)+\left(y_{3}, v_{2}\right) \varphi_{2}(t)\right.$
$+\left(y_{1}, v_{2}\right) \varphi_{2}(t) d t=\int_{0}^{T}\left(f_{2}\left(y_{2}, u_{2}\right), v_{2}\right) \varphi_{2}(t) d t+\left(y_{2}(0), v_{2}\right) \varphi_{2}(t)$
$-\int_{0}^{T}\left(y_{3}, v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right) \varphi_{3}(t)+\left(y_{3}, v_{3}\right) \varphi_{3}(t)+\left(y_{1}, v_{3}\right) \varphi_{3}(t)\right.$

$$
\begin{equation*}
-\left(y_{2}, v_{3}\right) \varphi_{3}(t) d t=\int_{0}^{T}\left(f_{3}\left(y_{3}, u_{3}\right), v_{3}\right) \varphi_{3}(t) d t+\left(y_{3}(0), v_{3}\right) \varphi_{3}(0) \tag{42}
\end{equation*}
$$

Subtracting ((40)-(42)) from ((34)-(36)) resp., to get that ((13)b-(15)b) are held.
The strong convergence for $\overrightarrow{\boldsymbol{y}}_{\boldsymbol{n}}$ in $\boldsymbol{L}^{2}(\boldsymbol{I}, \boldsymbol{V}):$ Substituting $v_{i}=y_{i}, \forall i=1,2,3$ in ((13)a(15)a), and then we add them together, on the other hand substitute $v_{i}=y_{i n}, \forall i=1,2,3$ in ((19)a-(21)a) resp. and then we add them together, and integrat the three obtained equations from 0 to T, one has
$\left.\int_{0}^{T}\left\langle\vec{y}_{t}, \vec{y}\right\rangle d t+\int_{0}^{T} a(\vec{y}, \vec{y}) d t=\int_{0}^{T}\left[\left(f_{1}\left(y_{1}, u_{1}\right), y_{1}\right)+\left(f_{2}\left(y_{2}, u_{2}\right), y_{2}\right)+f_{3}\left(y_{3}, u_{3}\right), y_{3}\right)\right] d t$
$\int_{0}^{T}\left\langle\vec{y}_{n t}, \vec{y}_{n}\right\rangle d t+\int_{0}^{T} a\left(\vec{y}_{n}, \vec{y}_{n}\right) d t=$ $\left.\int_{0}^{T}\left[\left(f_{1}\left(y_{1 n}, u_{1}\right), y_{1 n}\right)+\left(f_{2}\left(y_{2 n}, u_{2}\right), y_{2 n}\right)+f_{3}\left(y_{3 n}, u_{3}\right), y_{3 n}\right)\right] d t$
Where $a(\vec{y}, \vec{y})=a_{1}\left(y_{1}, y_{1}\right)+a_{2}\left(y_{2}, y_{2}\right)+a_{3}\left(y_{3}, y_{3}\right)$, with $a_{i}\left(y_{i}, v_{i}\right)=\left(\nabla y_{i}, \nabla v_{i}\right)+\left(y_{i}, v_{i}\right)$. Using Lemma 1.2 in [11] for the $1^{\text {st }}$ terms in the L.H.S. of (43a\&b), they become
$\frac{1}{2}\|\vec{y}(T)\|_{0}^{2}-\frac{1}{2}\|\vec{y}(0)\|_{0}^{2}+\int_{0}^{T} a(\vec{y}, \vec{y}) d t=$

$$
\begin{equation*}
\left.\int_{0}^{T}\left[\left(f_{1}\left(y_{1}, u_{1}\right), y_{1}\right)+\left(f_{2}\left(y_{2}, u_{2}\right), y_{2}\right)+f_{3}\left(y_{3}, u_{3}\right), y_{3}\right)\right] d t \tag{44a}
\end{equation*}
$$

$\frac{1}{2}\left\|\vec{y}_{n}(T)\right\|_{0}^{2}-\frac{1}{2}\left\|\vec{y}_{n}(0)\right\|_{0}^{2}+\int_{0}^{T} a\left(\vec{y}_{n}, \vec{y}_{n}\right) d t=$

$$
\begin{equation*}
\left.\int_{0}^{T}\left[\left(f_{1}\left(y_{1 n}, u_{1}\right), y_{1 n}\right)+\left(f_{2}\left(y_{2 n}, u_{2}\right), y_{2 n}\right)+f_{3}\left(y_{3 n}, u_{3}\right), y_{3 n}\right)\right] \tag{44b}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{1}{2}\left\|\vec{y}_{n}(T)-\vec{y}(T)\right\|_{0}^{2}-\frac{1}{2}\left\|\vec{y}_{n}(0)-\vec{y}(0)\right\|_{0}^{2}+\int_{0}^{T} a\left(\vec{y}_{n}-\vec{y}, \vec{y}_{n}-\vec{y}\right) d t=\alpha-\beta-\zeta \tag{45}
\end{equation*}
$$

where
$\alpha=\frac{1}{2}\left\|\vec{y}_{n}(T)\right\|_{0}^{2}-\frac{1}{2}\left\|\vec{y}_{n}(0)\right\|_{0}^{2}+\int_{0}^{T} a\left(\vec{y}_{n}(t), \vec{y}_{n}(t)\right) d t$
$\beta=\frac{1}{2}\left(\vec{y}_{n}(T), \vec{y}(T)\right)-\frac{1}{2}\left(\vec{y}_{n}(0), \vec{y}(0)\right)+\int_{0}^{T} a\left(\vec{y}_{n}(t), \vec{y}(t)\right) d t$ and
$\zeta=\frac{1}{2}\left(\vec{y}(T), \vec{y}_{n}(T)-\vec{y}(T)\right)-\frac{1}{2}\left(\vec{y}(0), \vec{y}_{n}(0)-y(0)\right)+\int_{0}^{T} a\left(\vec{y}(t), \vec{y}_{n}(t)-\vec{y}(t)\right) d t$
Since

$$
\begin{align*}
& \vec{y}_{n}^{0}=\vec{y}_{n}(0) \rightarrow \vec{y}^{0}=\vec{y}(0) \text { in }\left(L^{2}(\Omega)\right)^{3} \tag{46a}\\
& \vec{y}_{n}(T) \rightarrow \vec{y}(T) \text { in }\left(L^{2}(\Omega)\right)^{3} \tag{46b}
\end{align*}
$$

Then

$$
\begin{align*}
& \left.\vec{y}(T), \vec{y}_{n}(T)-\vec{y}(T)\right) \rightarrow 0 \text { and }\left(\vec{y}(0), \vec{y}_{n}(0)-\vec{y}(0)\right) \rightarrow 0 \tag{46c}\\
& \left\|\vec{y}_{n}(T)-\vec{y}(T)\right\|_{0}^{2} \rightarrow 0 \text { and }\left\|\vec{y}_{n}(0)-\vec{y}(0)\right\|_{0}^{2} \rightarrow 0
\end{align*}
$$

And since $\vec{y}_{n} \rightharpoonup \vec{y}$ in $\left(L^{2}(I, V)\right)^{3}$, then

$$
\begin{equation*}
\int_{0}^{T} a\left(\vec{y}(t), \vec{y}_{n}(t)-\vec{y}(t)\right) d t \rightarrow 0 \tag{46e}
\end{equation*}
$$

Since $\int_{0}^{T}\left(f_{i}\left(y_{i n}, u_{i}\right), y_{i n}\right) d t$ is continuous w.r.t. y_{i} and since $\vec{y}_{n} \rightarrow \vec{y}$ in $\left(L^{2}(Q)\right)^{3}, \forall i=$ 1,2,3, then

$$
\begin{align*}
& \left.\int_{0}^{T}\left[\left(f_{1}\left(y_{1 n}, u_{1}\right), y_{1 n}\right)+\left(f_{2}\left(y_{2 n}, u_{2}\right), y_{2 n}\right)+f_{3}\left(y_{3 n}, u_{3}\right), y_{3 n}\right)\right] d t \rightarrow \int_{0}^{T}\left[\left(f_{1}\left(y_{1}, u_{1}\right), y_{1}\right)+\right. \\
& \left.\left.\left(f_{2}\left(y_{2}, u_{2}\right), y_{2}\right)+f_{3}\left(y_{3}, u_{3}\right), y_{3}\right)\right] d t \tag{46f}
\end{align*}
$$

Now, as $n \rightarrow \infty$ in (45), the following results are obtained:
(1) using (46d), the first two terms in the L.H.S. of (45) tend to zero from
(2) Eq. $\left.\alpha=\int_{0}^{T}\left[\left(f_{1}\left(y_{1 n}, u_{1}\right), y_{1 n}\right)+\left(f_{2}\left(y_{2 n}, u_{2}\right), y_{2 n}\right)+f_{3}\left(y_{3 n}, u_{3}\right), y_{3 n}\right)\right]$
(44b)
from
$\left.\underset{\text { 46f) }}{\rightarrow} \int_{0}^{T}\left[\left(f_{1}\left(y_{1}, u_{1}\right), y_{1}\right)+\left(f_{2}\left(y_{2}, u_{2}\right), y_{2}\right)+f_{3}\left(y_{3}, u_{3}\right), y_{3}\right)\right] d t$
(3) Eq. $\beta \rightarrow$ L.H.S. of (44a) $=\int_{0}^{T}\left[\left(f_{1}\left(y_{1}, u_{1}\right), y_{1}\right)+\left(f_{2}\left(y_{2}, u_{2}\right), y_{2}\right)+\left(f_{3}\left(y_{3}, u_{3}\right), y_{3}\right)\right] d t$
(4) using (46c) and (46e), all the terms in Eq. ζ tend to zero.

Hence, (45) gives $\int_{0}^{T}\left\|\vec{y}_{n}-\vec{y}\right\|_{1}^{2} d t=\int_{0}^{T} a\left(\vec{y}_{n}-\vec{y}, \vec{y}_{n}-\vec{y}\right) d t \rightarrow 0 \Rightarrow \vec{y}_{n} \rightarrow \vec{y}$ in $\left(L^{2}(I, V)\right)^{3}$
Uniqueness of the solution: Let $\vec{y}, \overrightarrow{\bar{y}}$ be two TSVEs of ((13)a-(15)a), we subtract each equation from the other and then set $v_{i}=y_{i}-\bar{y}_{i}$, for $i=1,2,3$, one obtains

$$
\begin{align*}
& \left\langle\left(y_{1}-\bar{y}_{1}\right)_{t}, y_{1}-\bar{y}_{1}\right\rangle+a_{1}\left(y_{1}-\bar{y}_{1}, y_{1}-\bar{y}_{1}\right)-\left(y_{2}-\bar{y}_{2}, y_{1}-\bar{y}_{1}\right)-\left(y_{3}-\bar{y}_{3}, y_{1}-\bar{y}_{1}\right) \\
& =\left(f_{1}\left(y_{1}, u_{1}\right)-f_{1}\left(\bar{y}_{1}, u_{1}\right), y_{1}-\bar{y}_{1}\right) \\
& \left\langle\left(y_{2}-\bar{y}_{2}\right)_{t}, y_{2}-\bar{y}_{2}\right\rangle+a_{2}\left(y_{2}-\bar{y}_{2}, y_{2}-\bar{y}_{2}\right)+\left(y_{3}-\bar{y}_{3}, y_{2}-\bar{y}_{2}\right)+\left(y_{1}-\bar{y}_{1}, y_{2}-\bar{y}_{2}\right) \\
& =\left(f_{2}\left(y_{2}, u_{2}\right)-f_{2}\left(\bar{y}_{2}, u_{2}\right), y_{2}-\bar{y}_{2}\right) \tag{48}\\
& \left\langle\left(y_{3}-\bar{y}_{3}\right)_{t}, y_{3}-\bar{y}_{3}\right\rangle+a_{3}\left(y_{3}-\bar{y}_{3}, y_{3}-\bar{y}_{3}\right)+\left(y_{1}-\bar{y}_{1}, y_{3}-\bar{y}_{3}\right)-\left(y_{2}-\bar{y}_{2}, y_{3}-\bar{y}_{3}\right) \\
& =\left(f_{3}\left(y_{3}, u_{3}\right)-f_{3}\left(\bar{y}_{3}, u_{3}\right), y_{3}-\bar{y}_{3}\right) \tag{49}
\end{align*}
$$

Adding (47)-(49), the $2^{\text {nd }}$ term of the L.H.S. is positive, applying Lemma 1.2 in [11] for the $1^{\text {st }}$ term of L.H.S, it gives
$\left.\frac{1}{2} \frac{d}{d t}\|\vec{y}-\vec{y}\|_{0}^{2}+\int_{0}^{T}\|\vec{y}-\vec{y}\|_{1}^{2} d t \leq f_{1}\left(y_{1}, u_{1}\right)-f_{1}\left(\bar{y}_{1}, u_{1}\right), y_{1}-\bar{y}_{1}\right)+$
$\left(f_{2}\left(y_{2}, u_{2}\right)-f_{2}\left(\bar{y}_{2}, u_{2}\right), y_{2}-\bar{y}_{2}\right)-\left(f_{3}\left(y_{3}, u_{3}\right)-f_{3}\left(\bar{y}_{3}, u_{3}\right), y_{3}-\bar{y}_{3}\right)$
The $2^{\text {nd }}$ term in the L.H.S of is positive, IBS w.r.t. t from 0 to t, by using Assumption (A-ii) of the R.H.S., one gets

$$
\begin{aligned}
& \int_{0}^{t} \frac{d}{d t}\|\vec{y}-\vec{y}\|_{0}^{2} d t \leq \int_{0}^{t} 2 L\|\vec{y}-\vec{y}\|_{0}^{2} d t \quad, \quad L=\max \left\{L_{1}, L_{2}, L_{3}\right\} \Rightarrow \\
& \|(\vec{y}-\vec{y})(t)\|_{0}^{2} \leq \int_{0}^{t} 2 L\|\vec{y}-\vec{y}\|_{0}^{2} d t,
\end{aligned}
$$

The BGIN is applied to give that $\|(\vec{y}-\vec{y})(t)\|_{0}^{2}=0, \forall t \in I$.
Again, IBS of (50) w.r.t. from 0 to T, Assumptions (A-ii) of the R.H.S., one has
$\int_{0}^{\mathrm{T}} \frac{d}{d t}\|\vec{y}-\vec{y}\|_{0}^{2} d t+\int_{0}^{T}\|\vec{y}-\vec{y}\|_{1}^{2} d t \leq L \int_{0}^{\mathrm{T}}\|\vec{y}-\vec{y}\|_{0}^{2} d t$
$\Rightarrow \int_{0}^{\mathrm{T}}\|\vec{y}-\vec{y}\|_{1}^{2} d t \leq L \int_{0}^{\mathrm{T}}\|\vec{y}-\vec{y}\|_{0}^{2} d t=0 \Rightarrow\|\vec{y}-\vec{y}\|_{L^{2}(I, V)}=0 \Rightarrow \vec{y}=\vec{y}$.
Theorem (3.2): In addition to Assumptions (A), if \vec{y} and $\vec{y}+\overrightarrow{\delta y}$ are the TSVS corresponding to the CCTCV $\vec{u}, \vec{u}+\overrightarrow{\delta u} \in\left(L^{2}(Q)\right)^{3}$, resp., then

$$
\|\overrightarrow{\delta y}\|_{L^{\infty}\left(I, L^{2}(\Omega)\right.} \leq \mathrm{M}\|\overrightarrow{\delta u}\|_{Q},\|\overrightarrow{\delta y}\|_{L^{2}(\boldsymbol{Q})} \leq \mathrm{M}\|\overrightarrow{\delta u}\|_{Q},\|\overrightarrow{\delta y}\|_{L^{2}(I, V)} \leq \mathrm{M}\|\overrightarrow{\delta u}\|_{Q}
$$

Proof: For given $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$, then by theorem (3.1)W.F (13-15) has a unique TSVS \vec{y}, also for given $\overrightarrow{\vec{u}}=\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right)$, then $\overrightarrow{\bar{y}}=\left(\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}\right)$ is the solution of

$$
\begin{align*}
& \left\langle\bar{y}_{1 t}, v_{1}\right\rangle+\left(\nabla \bar{y}_{1}, \nabla v_{1}\right)+\left(\bar{y}_{1}, v_{1}\right)-\left(\bar{y}_{2}, v_{1}\right)-\left(\bar{y}_{3}, v_{1}\right)=\left(f_{1}\left(\bar{y}_{1}, \bar{u}_{1}\right), v_{1}\right) \tag{51a}\\
& \left(\bar{y}_{1}(0), v_{1}\right)=\left(y_{1}^{0}, v_{1}\right) \tag{51b}\\
& \left\langle\bar{y}_{2 t}, v_{2}\right\rangle+\left(\nabla \bar{y}_{2}, \nabla v_{2}\right)+\left(\bar{y}_{2}, v_{2}\right)+\left(\bar{y}_{3}, v_{2}\right)+\left(\bar{y}_{1}, v_{2}\right)=\left(f_{2}\left(\bar{y}_{2}, \bar{u}_{2}\right), v_{2}\right) \tag{52a}\\
& \left(\bar{y}_{2}(0), v_{2}\right)=\left(y_{2}^{0}, v_{2}\right) \tag{52b}\\
& \left\langle\bar{y}_{3 t}, v_{3}\right\rangle+\left(\nabla \bar{y}_{3}, \nabla v_{3}\right)+\left(\bar{y}_{3}, v_{3}\right)+\left(\bar{y}_{1}, v_{3}\right)-\left(\bar{y}_{2}, v_{3}\right)=\left(f_{3}\left(\bar{y}_{3}, \bar{u}_{3}\right), v_{3}\right) \tag{53a}\\
& \left(\bar{y}_{3}(0), v_{3}\right)=\left(y_{3}^{0}, v_{3}\right) \tag{53b}
\end{align*}
$$

Subtracting ((13)-(15))from((51)-(53)), putting $\delta y_{i}=\bar{y}_{i}-y_{i}, \delta u_{i}=\bar{u}_{i}-u_{i}, \quad \forall i=1,2,3$, to get

$$
\begin{align*}
& \left\langle\delta y_{1 t}, v_{1}\right\rangle+\left(\nabla \delta y_{1}, \nabla v_{1}\right)+\left(\delta y_{1}, v_{1}\right)-\left(\delta y_{2}, v_{1}\right)-\left(\delta y_{3}, v_{1}\right)= \\
& \quad\left(f_{1}\left(y_{1}+\delta y_{1}, u_{1}+\delta u_{1}\right), v_{1}\right)-\left(f_{1}\left(y_{1}, u_{1}\right), v_{1}\right) \tag{54a}\\
& \quad\left(\delta y_{1}(0), v_{1}\right)=0 \tag{54b}\\
& \left\langle\delta y_{2 t}, v_{2}\right\rangle+\left(\nabla \delta y_{2}, \nabla v_{2}\right)+\left(\delta y_{2}, v_{2}\right)+\left(\delta y_{3}, v_{2}\right)+\left(\delta y_{1}, v_{2}\right)= \\
& \left(f_{2}\left(y_{2}+\delta y_{2}, u_{2}+\delta u_{2}\right), v_{2}\right)-\left(f_{2}\left(y_{2}, u_{2}\right), v_{2}\right) \tag{55a}\\
& \left(\delta y_{2}(0), v_{2}\right)=0 \tag{55b}\\
& \left\langle\delta y_{3 t}, v_{3}\right\rangle+\left(\nabla \delta y_{2}, \nabla v_{3}\right)+\left(\delta y_{2}, v_{3}\right)+\left(\delta y_{3}, v_{3}\right)-\left(\delta y_{1}, v_{3}\right)= \\
& \quad\left(f_{3}\left(y_{3}+\delta y_{3}, u_{3}+\delta u_{3}\right), v_{3}\right)-\left(f_{3}\left(y_{3}, u_{3}\right), v_{3}\right) \tag{56a}\\
& \left(\delta y_{3}(0), v_{3}\right)=0 \tag{56b}
\end{align*}
$$

By substituting $v_{i}=\delta y_{i}, \forall i=1,2,3$ in ((54-56)a, and adding the result equations, we apply Lemma 1.2 in [11] for the $1^{\text {st }}$ term in the L.H.S. of, we get

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\|\overrightarrow{\delta y}\|_{0}^{2}+\|\overrightarrow{\delta y}\|_{1}^{2}= & \left(f_{1}\left(y_{1}+\delta y_{1}, u_{1}+\delta u_{1}\right), v_{1}\right)-\left(f_{1}\left(y_{1}, u_{1}\right), \delta y_{1}\right) \\
& +\left(f_{2}\left(y_{2}+\delta y_{2}, u_{2}+\delta u_{2}\right), v_{2}\right)-\left(f_{2}\left(y_{2}, u_{2}\right), \delta y_{2}\right) \\
& +\left(f_{3}\left(y_{3}+\delta y_{3}, u_{3}+\delta u_{3}\right), v_{3}\right)-\left(f_{3}\left(y_{3}, u_{3}\right), \delta y_{3}\right) \tag{57}
\end{align*}
$$

The $2^{\text {nd }}$ term of L.H.S. is positive, IBS w.r.t. t from 0 to t, by taking the absolute value, and using Assumptions (A-ii), it gives $\forall t \in[0, T]$

$$
\begin{aligned}
& \|\overrightarrow{\delta y}(t)\|_{0}^{2} \leq 2 L_{1} \int_{0}^{t}\left\|\delta y_{1}\right\|_{0}^{2} d t+\bar{L}_{1} \int_{0}^{T}\left\|\delta u_{1}\right\|_{0}^{2} d t+\bar{L}_{1} \int_{0}^{t}\left\|\delta y_{1}\right\|_{0}^{2} d t+ \\
& \quad 2 L_{2} \int_{0}^{t}\left\|\delta y_{2}\right\|_{0}^{2} d t+\bar{L}_{2}\left(\int_{0}^{T}\left\|\delta u_{2}\right\|_{0}^{2} d t+\int_{0}^{t}\left\|\delta y_{2}\right\|_{0}^{2} d t\right)+ \\
& 2 L_{3} \int_{0}^{t}\left\|\delta y_{3}\right\|_{0}^{2} d t+\bar{L}_{3}\left(\int_{0}^{T}\left\|\delta u_{3}\right\|_{0}^{2} d t+\int_{0}^{t}\left\|\delta y_{3}\right\|_{0}^{2}\right) d t
\end{aligned} \quad \begin{aligned}
& \Rightarrow \overrightarrow{\delta y}(t)\left\|_{0}^{2} \leq \tilde{L}_{1}\right\| \overrightarrow{\delta u}\left\|_{Q}^{2}+\tilde{L}_{2} \int_{0}^{t}\right\| \overrightarrow{\delta y} \|_{0}^{2} d t
\end{aligned}
$$

Where $\tilde{L}_{1}=\max \left\{\bar{L}_{1}, \bar{L}_{2}, \bar{L}_{3}\right\}, \tilde{L}_{2}=\max \left\{2 L_{1}+\bar{L}_{1}, 2 L_{2}+\bar{L}_{2}, 2 L_{3}+\bar{L}_{3}\right\}$.
Applying BGIN, to give
$\|\overrightarrow{\delta y}(t)\|_{0}^{2} \leq \mathrm{M}^{2}\|\overrightarrow{\delta u}\|_{Q}^{2} \Rightarrow\|\overrightarrow{\delta y}(t)\|_{0} \leq M\|\overrightarrow{\delta u}\|_{Q}, \mathrm{t} \in[0, \mathrm{~T}] \Rightarrow\|\overrightarrow{\delta y}\|_{L^{\infty}\left(\boldsymbol{I}, L^{2}(\Omega)\right)} \leq M\|\overrightarrow{\delta u}\|_{Q}$
then, $\|\overrightarrow{\delta y}\|_{L^{2}(\boldsymbol{Q})}^{2} \leq M\|\overrightarrow{\delta u}\|_{Q}$, where M denotes to various constants.
The same previous way can be used for the R.H.S. of (57) with $t=T$, to get
$\frac{1}{2} \int_{0}^{T} \frac{d}{d t}\|\overrightarrow{\delta y}\|_{0}^{2}+\int_{0}^{T}\|\overrightarrow{\delta y}\|_{1}^{2} d t \leq \tilde{L}_{1}\|\overrightarrow{\delta u}\|_{Q}^{2}+\tilde{L}_{2} \int_{0}^{T}\|\overrightarrow{\delta y}\|_{0}^{2} d t$
$\Rightarrow \int_{0}^{T}\|\overrightarrow{\delta y}\|_{1}^{2} d t \leq\left(\tilde{L}_{1}+\tilde{L}_{2} \mathrm{M}^{2}\right)\|\overrightarrow{\delta u}\|_{Q}^{2}$
$\Rightarrow\|\overrightarrow{\delta y}\|_{L^{2}(I, V)}^{2} \leq \mathrm{M}^{2}\|\overrightarrow{\delta u}\|_{Q}$, where M denotes to various constants.
Theorem (3.3): With Assumptions (A) the operator $\vec{u} \mapsto \vec{y}_{\vec{u}}$ is continuous from $\left(L^{2}(Q)\right)^{3}$ in to $\left(L^{\infty}\left(I, L^{2}(\Omega)\right)\right)^{3}$,or into $\left(L^{2}(I, V)\right)^{3}$ is continuous
Proof: let $\overrightarrow{\delta u}=\overrightarrow{\vec{u}}-\vec{u}$ and $\overrightarrow{\delta y}=\vec{y}-\vec{y}$ where \vec{y} and \vec{y} are the correspond TSVS to the CCTCV $\overrightarrow{\vec{u}}$ and \vec{u} resp., using the first results in (theorem 3.1), one has $\|\overrightarrow{\bar{y}}-\vec{y}\|_{L^{\infty}\left(I, L^{2}(\Omega)\right.} \leq$ $\|\overrightarrow{\vec{u}}-\vec{u}\|_{Q}$, now if $\overrightarrow{\vec{u}} \xrightarrow[\left(L^{2}(Q)\right)^{3}]{ } \vec{u}$ then $\overrightarrow{\bar{y}} \xrightarrow\left[\left(L^{\infty}\left(I V^{2}(\Omega)\right)^{3}\right]{\vec{y}} \text {, thus the operator } \vec{u} \mapsto \vec{y}_{\vec{u}} \text { is Lip }\right.$ continuous from $\left(L^{2}(Q)\right)^{3}$ in to $\left(L^{\infty}\left(I, L^{2}(\Omega)\right)\right)^{3}$. One can easily obtained the other results.

4. Existence of a CCTOCV

To study the existence of a CCTOCV we need the following assumptions and lemma.
Assumptions (B): Consider $g_{0 i}(\forall i=1,2,3)$ is of CAT on $Q \times(\mathbb{R} \times \mathbb{R})$ which satisfies: $\left|g_{0 i}\left(x, t, y_{i}, u_{i}\right)\right| \leq \eta_{0 i}(x, t)+c_{0 i 1}\left(y_{i}\right)^{2}+c_{0 i 2}\left(u_{i}\right)^{2}$, where $y_{i}, u_{i} \in \mathbb{R}$ with $\eta_{0 i} \in L^{1}(Q)$
Lemma (4.1): If assumptions (B) are held, then $\vec{u} \mapsto G_{0}(\vec{u})$ is continuous functional on $\left(L^{2}(Q)\right)^{3}$.
Proof: By employing assumptions (B) on $g_{0 i}\left(x, t, y_{i}, u_{i}\right)$, then we apply Lemma 1.2 in [11], to get $\int_{\Omega} g_{0 i}\left(x, t, y_{i}, u_{i}\right) d x d t$ which is continuous on $L^{2}(Q)$ for each $i=1,2,3$.
Theorem (4.1): Consider the set $\overrightarrow{\mathrm{W}}_{\mathrm{A}} \neq \emptyset$, the functions $f_{i}, \forall i=1,2,3$, have the form $f_{i}\left(x, t, y_{i}, u_{i}\right)=f_{i 1}\left(x, t, y_{i}\right)+f_{i 2}(x, t) u_{i}$
With $\left|f_{i 1}\left(x, t, y_{i}\right)\right| \leq \eta_{i}(x, t)+c_{i}\left|y_{i}\right|$ where $\eta_{i} \in L^{2}(Q)$ and $\left|f_{i 2}(x, t)\right| \leq k_{i}$,
If $\forall i=1,2,3, g_{0 i}$ is convex w.r.t. u_{i} for fixed $\left(x, t, y_{i}\right)$. Then there exists a CCTOCV.
Proof: Since W_{i} is convex, closed and bounded for each $i=1,2,3$ then $W_{1} \times W_{2} \times W_{3}$ is convex, closed and bounded and then it is weakly compact. Because of $\vec{W}_{A} \neq \emptyset$, then there exist $\overrightarrow{\vec{u}} \in \vec{W}_{A}$ and a minimum sequence $\left\{\vec{u}_{k}\right\}$ with $\vec{u}_{k} \in \vec{W}_{A}$, $\forall k$. s.t

$$
\lim _{k \rightarrow \infty} G_{0}\left(\vec{u}_{k}\right)=\inf _{\overrightarrow{\vec{u}} \in \vec{W}_{A}} G_{0}(\overrightarrow{\vec{u}})
$$

Since $\vec{u}_{k} \in \vec{W}_{A}, \forall k$, there is a subsequence of $\left\{\vec{u}_{k}\right\}$ say again $\left\{\vec{u}_{k}\right\}$, s.t
$\vec{u}_{k} \rightharpoonup \vec{u} \in \vec{W}$ in $\left(L^{2}(Q)\right)^{3}$, and $\left\|\vec{u}_{k}\right\|_{Q} \leq c, \forall k$
From theorem (3.1), for each CCTCV \vec{u}_{k}, the W.F of the TSVEs has a unique solution $\vec{y}_{k}=\vec{y}_{\vec{u}_{k}}$ with $\left\|\vec{y}_{k}\right\|_{L^{\infty}\left(I, L^{2}(\Omega)\right)},\left\|\vec{y}_{k}\right\|_{L^{2}(Q)}$ and $\left\|\vec{y}_{k}\right\|_{L^{2}(I, V)}$ are bounded, then by theorem 2.2 there is subsequence of $\left\{\vec{y}_{k}\right\}$ say again $\left\{\vec{y}_{k}\right\}$ s.t. $\vec{y}_{k} \rightharpoonup \vec{y}$ in $L^{\infty}\left(I, L^{2}(\Omega)\right)^{3},\left(L^{2}(Q)\right)^{3}$, and in $\left(L^{2}(I, V)\right)^{3}$. Also, from theorem (3.1), $\left\|\vec{y}_{k}\right\|_{L^{2}\left(I, V^{*}\right)^{*}}$ is bounded and since
$\left(L^{2}(I, V)\right)^{3} \subset\left(L^{2}(Q)\right)^{3} \cong\left(\left(L^{2}(Q)\right)^{*}\right)^{3} \subset\left(L^{2}\left(I, V^{*}\right)\right)^{3}$
So, by the COMTH in [11] a subsequence of $\left\{\vec{y}_{k}\right\}$ can be found say again $\left\{\vec{y}_{k}\right\}$ s.t $\vec{y}_{k} \rightarrow \vec{y}$ in $\left(L^{2}(Q)\right)^{3}$. Since $\forall k, \vec{y}_{k}$ is the TSVS of the W.F corresponding to the CCTCV \vec{u}_{k}, then
$\left\langle y_{1 k t}, v_{1}\right\rangle+\left(\nabla y_{1 k}, \nabla v_{1}\right)+\left(y_{1 k}, v_{1}\right)-\left(y_{2 k}, v_{1}\right)-\left(y_{3 k}, v_{1}\right)$
$=\left(f_{11}\left(x, t, y_{1 k}\right)+\left(f_{12}(x, t) u_{1 k}, v_{1}\right)\right.$
$\left\langle y_{2 k t}, v_{2}\right\rangle+\left(\nabla y_{2 k}, \nabla v_{2}\right)+\left(y_{2 k}, v_{2}\right)+\left(y_{3 k}, v_{2}\right)+\left(y_{1 k}, v_{2}\right)$
$=\left(f_{21}\left(x, t, y_{2 k}\right)+\left(f_{22}(x, t) u_{2 k}, v_{2}\right)\right.$
$\left\langle y_{3 k t}, v_{3}\right\rangle+\left(\nabla y_{3 k}, \nabla v_{3}\right)+\left(y_{3 k}, v_{3}\right)+\left(y_{1 k}, v_{3}\right)-\left(y_{2 k}, v_{3}\right)$
$=\left(f_{31}\left(x, t, y_{3 k}\right)+\left(f_{32}(x, t) u_{3 k}, v_{3}\right)\right.$
Let $\varphi_{i} \in C^{1}[I]$, then MBS of $((58)-(60))$ by $\varphi_{i}(t)(\forall i=1,2,3)$ resp. with $\varphi_{i}(T)=0$, then IBS w.r.t t from 0 to T and then using IBPS for the $1^{\text {st }}$ term in the L.H.S., one gets

$$
\begin{gather*}
-\int_{0}^{T}\left(y_{1 k}, v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1 k}, \nabla v_{1}\right) \varphi_{1}(t)+\left(y_{1 k}, v_{1}\right) \varphi_{1}(t)-\left(y_{2 k}, v_{1}\right) \varphi_{1}(t)-\right. \\
\left.\left(y_{3 k}, v_{1}\right) \varphi_{1}(t)\right] d t=\int_{0}^{T}\left(f_{11}\left(x, t, y_{1 k}\right), v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left(f_{12}(x, \mathrm{t}) u_{1 k}, v_{1} \varphi_{1}(t)\right) d t+ \\
\left(y_{1 k}(0), v_{1}\right) \varphi_{1}(0) \tag{61}
\end{gather*}
$$

$$
\begin{gather*}
-\int_{0}^{T}\left(y_{2 k}, v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2 k}, \nabla v_{2}\right) \varphi_{2}(t)+\left(y_{2 k}, v_{2}\right) \varphi_{2}(t)+\left(y_{3 k}, v_{2}\right) \varphi_{2}(t)+\right. \\
\left.\left(y_{1 k}, v_{2}\right) \varphi_{2}(t)\right] d t=\int_{0}^{T}\left(f_{21}\left(x, t, y_{2 k}\right), v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left(f_{22}(x, \mathrm{t}) u_{2 k}, v_{2} \varphi_{2}(t)\right) d t+ \\
\quad\left(y_{2 k}(0), v_{2}\right) \varphi_{2}(0) \tag{62}\\
-\int_{0}^{T}\left(y_{3 k}, v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3 k}, \nabla v_{3}\right) \varphi_{3}(t)+\left(y_{3 k}, v_{3}\right) \varphi_{3}(t)+\left(y_{1 k}, v_{3}\right) \varphi_{3}(t)-\right. \\
\left.\left(y_{2 k}, v_{3}\right) \varphi_{3}(t)\right] d t=\int_{0}^{T}\left(f_{31}\left(x, t, y_{3 k}\right), v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left(f_{32}(x, \mathrm{t}) u_{3 k}, v_{3} \varphi_{3}(t)\right) d t+ \\
\quad\left(y_{3 k}(0), v_{3}\right) \varphi_{3}(0) \tag{63}
\end{gather*}
$$

Since $\vec{y}_{k} \rightharpoonup \vec{y}$ in $\left(L^{2}(Q)\right)^{3}$, and in $\left(L^{2}(I, V)\right)^{3}$, then
$-\int_{0}^{T}\left(y_{1 k}, v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1 k}, \nabla v_{1}\right) \varphi_{1}(t)+\left(y_{1 k}, v_{1}\right) \varphi_{1}(t)-\left(y_{2 k}, v_{1}\right) \varphi_{1}(t)-\right.$
$\left.\left(y_{3 k}, v_{1}\right) \varphi_{1}(t)\right] d t \rightarrow-\int_{0}^{T}\left(y_{1}, v_{1}\right) \varphi_{1}(t) d t+$
$\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right) \varphi_{1}(t)+\left(y_{1}, v_{1}\right) \varphi_{1}(t)-\left(y_{2}, v_{1}\right) \varphi_{1}(t)-\left(y_{3}, v_{1}\right) \varphi_{1}(t)\right] d t$
$-\int_{0}^{T}\left(y_{2 k}, v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2 k}, \nabla v_{2}\right) \varphi_{2}(t)+\left(y_{2 k}, v_{2}\right) \varphi_{2}(t)+\left(y_{3 k}, v_{2}\right) \varphi_{2}(t)+\right.$ $\left.\left(y_{1 k}, v_{2}\right) \varphi_{2}(t)\right] d t \rightarrow-\int_{0}^{T}\left(y_{2}, v_{2}\right) \varphi_{2}(t) d t+$

$$
\begin{equation*}
\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right) \varphi_{2}(t)+\left(y_{2}, v_{2}\right) \varphi_{2}(t)+\left(y_{3}, v_{2}\right) \varphi_{2}(t)+\left(y_{1}, v_{2}\right) \varphi_{2}(t)\right] d t \tag{65}
\end{equation*}
$$

$-\int_{0}^{T}\left(y_{3 k}, v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3 k}, \nabla v_{3}\right) \varphi_{3}(t)+\left(y_{3 k}, v_{3}\right) \varphi_{3}(t)+\left(y_{1 k}, v_{3}\right) \varphi_{3}(t)-\right.$ $\left.\left(y_{2 k}, v_{3}\right) \varphi_{3}(t)\right] d t \rightarrow-\int_{0}^{T}\left(y_{3}, v_{3}\right) \varphi_{3}(t) d t+$

$$
\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right) \varphi_{3}(t)+\left(y_{3}, v_{3}\right) \varphi_{3}(t)+\left(y_{1}, v_{3}\right) \varphi_{3}(t)-\left(y_{2}, v_{3}\right) \varphi_{3}(t)\right] d t
$$

Since $\vec{y}_{k}(0)$ are bounded in $\left(L^{2}(\Omega)\right)^{3}$ and from theorem 2.1 one has

$$
\begin{equation*}
\left(y_{i k}(0), v_{i}\right) \varphi_{i}(0) \longrightarrow\left(y_{i}^{0}, v_{i}\right) \varphi_{i}(0), \text { for } i=1,2,3 \tag{67}
\end{equation*}
$$

Let $w_{i}=v_{i} \varphi_{i}$, then for fixed $(x, t) \in Q, f_{i 1}\left(x, t, y_{i}\right) w_{i}$ is continuous w.r.t. $y_{i k}$, from Assumptions on $f_{i 1}$ and then by applying Proposition 3.1in [12], for $i=1,2,3$ the integral $\int_{Q} f_{i 1}\left(y_{i k}\right) w_{i} d x d t$ is continuous w.r.t. $y_{1 k}$ but $y_{i k} \rightarrow y_{i}$ in $L^{2}(Q)$, then $\int_{Q} f_{i 1}\left(y_{i k}\right) w_{i} d x d t \rightarrow \int_{Q} f_{i 1}\left(y_{i}\right) w_{1} d x d t, \forall w_{1} \in C[\bar{Q}]$
Since $u_{i k} \rightharpoonup u_{i} \operatorname{in}\left(L^{2}(Q)\right.$, with $\left|f_{i 2}\right| \leq k_{i}$, then

$$
\int_{Q}\left(f_{i 2}(x, t) u_{i k}, v_{i}\right) d x d t-\int_{Q}\left(f_{i 2}(x, t) u_{i}, v_{i}\right) d x d t
$$

Finally, we use ((64)-(66)), ((67)-(69)) in ((61)-(63)), to obtain that
$-\int_{0}^{T}\left(y_{1}, v_{1}\right) \dot{\varphi}_{1}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right) \varphi_{1}(t)+\left(y_{1}, v_{1}\right) \varphi_{1}(t)-\left(y_{2}, v_{1}\right) \varphi_{1}(t)-\right.$
$\left.\left(y_{3}, v_{1}\right) \varphi_{1}(t)\right] d t$

$$
\begin{equation*}
=\int_{0}^{T}\left(f_{11}\left(x, t, y_{1}\right), v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left(f_{12}(x, t) u_{1}, v_{1}\right) \varphi_{1}(t) d t++\left(y_{1}^{0}, v_{1}\right) \varphi_{1}(0) \tag{70}
\end{equation*}
$$

$-\int_{0}^{T}\left(y_{2}, v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right) \varphi_{2}(t)+\left(y_{2}, v_{2}\right) \varphi_{2}(t)+\left(y_{3}, v_{2}\right) \varphi_{2}(t)+\right.$
$\left.\left(y_{1}, v_{2}\right) \varphi_{2}(t)\right] d t=\int_{0}^{T}\left(f_{21}\left(x, t, y_{2}\right), v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left(f_{22}(x, t) u_{2}, v_{2}\right) \varphi_{2}(t) d t+$

$$
\begin{equation*}
\left(y_{2}^{0}, v_{2}\right) \varphi_{2}(0) \tag{71}
\end{equation*}
$$

$-\int_{0}^{T}\left(y_{3}, v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3 k}, \nabla v_{3}\right) \varphi_{3}(t)+\left(y_{3}, v_{3}\right) \varphi_{3}(t)+\left(y_{1}, v_{3}\right) \varphi_{3}(t)-\right.$
$\left.\left(y_{2}, v_{3}\right) \varphi_{3}(t)\right] d t=\int_{0}^{T}\left(f_{31}\left(x, t, y_{3}\right), v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left(f_{32}(x, t) u_{3}, v_{3}\right) \varphi_{3}(t) d t+$ $\left(y_{3}^{0}, v_{3}\right) \varphi_{3}(0)$
Equations (70-72) are held for each $v_{i} \in V, \forall i=1,2,3$, since $C[\bar{\Omega}]$ is dense in V.
Case1: Choose $\varphi_{i} \in D[I]$ for $i=1,2,3$ s.t. $\varphi_{i}(T)=0$ and $\varphi_{i}(0)=0$, by using IBPs for the $1^{\text {st }}$ term in the L.H.S. of (70-72), we get

$$
\begin{gather*}
\int_{0}^{T}\left[\left(y_{1 t}, v_{1}\right\rangle \varphi_{1}(t) d t+\right. \\
\left.\int_{0}^{T}\left(f_{11}\left(x, \mathrm{t}, y_{1}\right), v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left(f_{12}(x, \mathrm{t})+\left(y_{1}, v_{1}\right) \varphi_{1}, v_{1}\right) \varphi_{1}(t)\right) d t
\end{gather*}
$$

```
\(\int_{0}^{T}\left\langle y_{2 t}, v_{2}\right\rangle \varphi_{2}(t) d t+\)
\(\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right) \varphi_{2}(t)\left(y_{2}, v_{2}\right) \varphi_{2}(t)+\left(y_{3}, v_{2}\right) \varphi_{2}(t)+\left(y_{1 k}, v_{2}\right) \varphi_{2}(t)\right] d t=\)
\(\left.\int_{0}^{T}\left(f_{21}\left(x, \mathrm{t}, y_{2}\right), v_{2}\right) \varphi_{2}(t) d+\int_{0}^{T}\left(f_{22}(x, \mathrm{t}) u_{2}, v_{2}\right) \varphi_{2}(t)\right) d t\)
\(\int_{0}^{T}\left\langle y_{3}, v_{3}\right\rangle \varphi_{3}(t) d t+\)
\(\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right) \varphi_{3}(t)+\left(y_{3}, v_{3}\right) \varphi_{3}(t)+\left(y_{1}, v_{3}\right) \varphi_{3}(t)-\left(y_{2}, v_{3}\right) \varphi_{3}(t)\right] d t=\)
\(\left.\int_{0}^{T}\left(f_{31}\left(x, \mathrm{t}, y_{3}\right), v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left(f_{32}(x, \mathrm{t}) u_{3}, v_{3}\right) \varphi_{3}(t)\right) d t\)
\(\Rightarrow\)
\(\left\langle y_{1 t}, v_{1}\right\rangle+\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)-\left(y_{2}, v_{1}\right)-\left(y_{3}, v_{1}\right)\)
\(=\left(f_{11}\left(x, t, y_{1}\right), v_{1}\right)+\left(f_{12}(x, t) u_{1}, v_{1}\right)\)
\(\left\langle y_{2 t}, v_{2}\right\rangle+\left(\nabla y_{2}, \nabla v_{2}\right)+\left(y_{2}, v_{2}\right)+\left(y_{3}, v_{2}\right)+\left(y_{1}, v_{2}\right)\)
\(=\left(f_{21}\left(x, t, y_{2}\right), v_{2}\right)+\left(f_{22}(x, t) u_{2}, v_{2}\right)\)
\(\left\langle y_{3 t}, v_{3}\right\rangle+\left(\nabla y_{3}, \nabla v_{3}\right)+\left(y_{3}, v_{3}\right)+\left(y_{1}, v_{3}\right)-\left(y_{2}, v_{3}\right)\)
\(=\left(f_{31}\left(x, t, y_{3}\right), v_{3}\right)+\left(f_{32}(x, t) u_{3}, v_{3}\right)\)
\(\int_{0}^{T}\left\langle y_{3 t}, v_{3}\right\rangle \varphi_{3}(t) d t+\)
\(\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right) \varphi_{3}(t)+\left(y_{3}, v_{3}\right) \varphi_{3}(t)+\left(y_{1}, v_{3}\right) \varphi_{3}(t)-\left(y_{2}, v_{3}\right) \varphi_{3}(t)\right] d t=\)
\(\left.\int_{0}^{T}\left(f_{31}\left(x, \mathrm{t}, y_{3}\right), v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left(f_{32}(x, \mathrm{t}) u_{3}, v_{3}\right) \varphi_{3}(t)\right) d t\)
\(\Rightarrow\)
\(\left\langle y_{1 t}, v_{1}\right\rangle+\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)-\left(y_{2}, v_{1}\right)-\left(y_{3}, v_{1}\right)\)
\(=\left(f_{11}\left(x, t, y_{1}\right), v_{1}\right)+\left(f_{12}(x, t) u_{1}, v_{1}\right)\)
\(\left\langle y_{2 t}, v_{2}\right\rangle+\left(\nabla y_{2}, \nabla v_{2}\right)+\left(y_{2}, v_{2}\right)+\left(y_{3}, v_{2}\right)+\left(y_{1}, v_{2}\right)\)
\(=\left(f_{21}\left(x, t, y_{2}\right), v_{2}\right)+\left(f_{22}(x, t) u_{2}, v_{2}\right)\)
\(\left\langle y_{3 t}, v_{3}\right\rangle+\left(\nabla y_{3}, \nabla v_{3}\right)+\left(y_{3}, v_{3}\right)+\left(y_{1}, v_{3}\right)-\left(y_{2}, v_{3}\right)\)
\(=\left(f_{31}\left(x, t, y_{3}\right), v_{3}\right)+\left(f_{32}(x, t) u_{3}, v_{3}\right)\)
```

Which means that \vec{y} satisfies the W.F of the TSVEs.
Case2: Choose $\varphi_{i} \in C^{1}[I]$, for $i=1,2,3$ s.t. $\varphi_{i}(T)=0$ and $\varphi_{i}(0) \neq 0$, also using IBPs for the $1^{\text {st }}$ term in the L.H.S. of (73-.75), it gives
$-\int_{0}^{T}\left(y_{1}, v_{1}\right) \dot{\varphi}_{1}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right) \varphi_{1}(t)+\left(y_{1}, v_{1}\right) \varphi_{1}(t)-\left(y_{2}, v_{1}\right) \varphi_{1}(t)-\right.$
$\left.\left(y_{3}, v_{1}\right) \varphi_{1}(t)\right] d t=\int_{0}^{T}\left(f_{11}\left(x, t, y_{1}\right), v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left(f_{12}(x, t) u_{1}, v_{1} \varphi_{1}(t) d t+\right.$
$\left(y_{1}(0), v_{1}\right) \varphi_{1}(0)$
$-\int_{0}^{T}\left(y_{2}, v_{2}\right) \varphi_{2}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right) \varphi_{2}(t)+\left(y_{2}, v_{2}\right) \varphi_{2}(t)+\left(y_{3}, v_{2}\right) \varphi_{2}(t)+\right.$
$\left.\left(y_{1}, v_{2}\right) \varphi_{2}(t)\right] d t=\int_{0}^{T}\left(f_{21}\left(x, t, y_{2}\right), v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left(f_{22}(x, t) u_{2}, v_{2} \varphi_{2}(t) d t\right.$ $+\left(y_{2}(0), v_{2}\right) \varphi_{2}(0)$
$-\int_{0}^{T}\left(y_{3}, v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3 k}, \nabla v_{3}\right) \varphi_{3}(t)+\left(y_{3}, v_{3}\right) \varphi_{3}(t)+\left(y_{1}, v_{3}\right) \varphi_{3}(t)-\right.$
$\left.\left(y_{2}, v_{3}\right) \varphi_{3}(t)\right] d t=\int_{0}^{T}\left(f_{31}\left(x, t, y_{3}\right), v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left(f_{32}(x, t) u_{3}, v_{3} \varphi_{3}(t) d t+\right.$

$$
\begin{equation*}
\left(y_{3}(0) v_{3}\right) \varphi_{3}(0) \tag{78}
\end{equation*}
$$

By subtracting ((76)-(78)) from ((70)-(72)) one obtains that

$$
\left(y_{i}(0), i\right) \varphi_{i}(0)=\left(y_{i}^{0}, v_{i}\right) \varphi_{i}(0) \Rightarrow y_{i}^{0}=y_{i}(0), \quad \forall i=1,2,3,
$$

Then \vec{y} is a solution of the TSVEs.
Now, for each $\forall i=1,2,3$, we have from Lemma $4.1 \int_{\Omega} g_{0 i}\left(x, t, y_{i}, u_{i}\right) d x d t$ is continuous on $L^{2}(Q)$ for each $i=1,2,3$, but $u_{i}(x, t) \in U_{i}$ a.e. in Q and U_{i} is compact, then by Lemma 4.2 in [12],

$$
\begin{equation*}
\int_{Q} g_{0 i}\left(x, t, y_{i k}, u_{i k}\right) d x d t \rightarrow \int_{Q} g_{0 i}\left(x, t, y_{i}, u_{i k}\right) d x d t \tag{79}
\end{equation*}
$$

But $g_{0 i}\left(x, t, y_{i}, u_{i}\right)$ is convex and continuous w.r.t. u_{i}. Therefore
$\int_{Q} g_{0 i}\left(x, t, y_{i}, u_{i}\right) d x d t \leq \lim _{k \rightarrow \infty} \inf \int_{Q} g_{0 i}\left(x, t, y_{i}, u_{i k}\right) d x d t$

$$
\begin{aligned}
& \left.\quad=\lim _{k \rightarrow \infty} \inf \int_{Q} g_{0 i}\left(x, t, y_{i}, u_{i k}\right) d x d t-g_{0 i}\left(x, t, y_{i k}, u_{i k}\right)\right) d x d t \\
& +\lim _{k \rightarrow \infty} \inf \int_{Q} g_{0 i}\left(x, t, y_{i k}, u_{i k}\right) d x d t \quad, \quad(\text { for } i=1,2,3)
\end{aligned}
$$

Then by (79), one obtains that
$\int_{Q} g_{0 i}\left(x, t, y_{i}, u_{i}\right) d x d t \leq \lim _{k \rightarrow \infty} \inf \int_{Q} g_{0 i}\left(x, t, y_{i k}, u_{i k}\right) d x d t$
i.e. $G_{0}(\vec{u})$ is W.L.S.C. w.r.t. (\vec{y}, \vec{u}),

Since $G_{0}(\vec{u}) \leq \lim _{k \rightarrow \infty} \inf G_{0}\left(\vec{u}_{k}\right)=\lim _{k \rightarrow \infty} G_{0}\left(\vec{u}_{k}\right)=\inf _{\vec{u} \in \vec{W}_{A}} G_{0}\left(\overrightarrow{\vec{u}}_{k}\right)$
$\Rightarrow G_{0}(\vec{u})=\min _{\vec{u} \in \vec{W}_{A}} G_{0}\left(\overrightarrow{\vec{u}}_{k}\right) \Rightarrow \vec{u}$ is a CCTOCV.
Conclusions: Under suitable conditions and for fixed CCTCV, the MGA with the COMTH
are successfully used to prove the existence and the uniqueness theorem of the TSVs for the TNPPDEs. The continuity of the Lipschitz operator between the CCTCV and the corresponding TSVEs is proved. Under a suitable conditions the existence theorem of a CCTOCV for the continuous classical optimal control governing by the TNPPDEs, is also proved.

References

[1] N. L. Grigorenko, È. V.Grigorieva, P. K., Roi, and E. N . Khailov, "Optimal control problems for a mathematical model of the treatment of psoriasis," Computational Mathimatics and Modeling, vol. 30, no.4, pp. 352-363, 2019.
[2] L. Kahina, P. Spiteri, F. Demim, A. Mohamed, A. Nemra, and F. Messine, " Application optimal control for a problem aircraft flight," Journal of Engineering Science and Technology Review, vol. 11, no.1, pp. 156-164, 2018.
[3] Y. O. Aderinto, A. O. Afolabi, and I. T. Issa, "On optimal planning of electric power generation systems," Journal of Mathematics, vol. 50, no.1,pp. 89-95,2017.
[4] A. V. Kryazhimskii, and A. M. Taras'ev, "Optimal control for proportional economic Growth," Proceedings of the Steklov Institute of Mathematics, vol. 293, no. 1,pp. 101119,2016.
[5] M. Afshar, F. Merrikh-Bayat, and M. R. Razvan, " Stepwise solution for optimal Control Problems,"Journal of science and engineering, vol. 13, no. 2, pp.024-037, 2016.
[6] I. Chrysoverghy, and J. Al-Hawasy, "The Continuous Classical Optimal Control Problem of Parabolic Equation," Scientific Journal of Kerbala University, Vol.8,no.3, pp.57-70, 2010.
[7] G. M. Kadhem, " The continuous classical optimal control problem of partial differential equations," M.Sc. Thesis, Department of Mathematics, College of Science, Mustansiriyah University, Iraq, 2015.
[8] J. Al-Hawasy, and M. Jaber, "The continuous classical optimal control governing by triple parabolic boundary value problem," Ibn Al-Haitham Jour. for Pure \& Appl. Sci.,, vol. 33, no.1, pp.129-142, 2020.
[9] J. Al-Hawasy, and A. Naeif, " The continuous classical boundary optimal control of A couple nonlinear parabolic partial differential equations," $1^{\text {st }}$ Scientific international conference, College of Science, Al-Nahrain University, Special Issus: 123-136, 2017.
[10] J. Al-Hawasy, and M. Jaber," The continuous classical boundary optimal control vector governing by triple linear partial differential equations of parabolic type," Ibn AlHaitham Jour. for Pure \& Appl. Sci., vol. 33, no.3, pp.113-126, 2020.
[11] R. Temam, Navier-Stokes Equations. North-Holand Publishing Company, 1977.
[12] J. Al-Hawasy, " The Continuous Classical Optimal Control of a Couple Nonlinear Hyperbolic Partial Differential Equations with Equality and Inequality Constraints," Iraqi Journal of Science, vol.57, no. 2C, pp.1528-1538, 2016.

[^0]: *Email: hawasy20@yahoo.com

